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Abstract—The development of large-scale facial identification systems that provide privacy protection of the enrolled subjects represents an open
challenge. In the context of privacy protection, several template protection schemes have been proposed in the past. However, these schemes
appear to be unsuitable for indexing (workload reduction) in biometric identification systems. More precisely, they have been utilised in identification
systems performing exhaustive searches, thereby leading to degradations of the computational efficiency. In this work, we propose a privacy-
preserving face identification system which utilises a Product Quantisation-based hash look-up table for indexing and retrieval of protected face
templates. These face templates are protected through fully homomorphic encryption schemes, thereby guaranteeing high privacy protection of the
enrolled subjects. For the best configuration, the experimental evaluation carried out over closed-set and open-set settings shows the feasibility of
the proposed technique for the use in large-scale facial identification systems: a workload reduction down to 0.1% of a baseline approach performing
an exhaustive search is achieved together with a low pre-selection error rate of less than 1%. In terms of biometric performance, a False Negative
Identification Rate (FNIR) in range of 0.0% - 0.2% is obtained for practical False Positive Identification Rate (FPIR) values on the FEI and FERET
face databases. In addition, our proposal shows competitive performance on unconstrained databases, e.g., the LFW face database. To the best
of the authors’ knowledge, this is the first work presenting a competitive privacy-preserving workload reduction scheme which performs template
comparisons in the encrypted domain.

Index Terms—Biometrics, face recognition, identification, workload-reduction, hashing, secure indexing, privacy protection, fully homomorphic
encryption.

F

1 INTRODUCTION

B IOMETRIC systems have been successfully deployed
in numerous applications such as border control [1]–

[3], national identity management systems [4], [5], and
forensic investigations [6], [7], among others. According to
the International Civil Aviation Organization (ICAO), face
recognition has been recognised as one of the biometric
technologies most suitable for many practical tasks (e.g.,
travel documents, national IDs) [8].

Depending on the application context, biometric systems
can typically operate in two modes [9], [10]: verification
and identification. Biometric verification is the process of
confirming a biometric claim through a one-to-one biometric
comparison. In contrast, biometric identification is the pro-
cess of searching against a biometric enrolment database in
order to find and return the biometric reference identifier(s)
attributable to a single individual. Generally, a biometric
probe is compared against all stored biometric references,
thereby leading to a one-to-many biometric comparison
(1:N ), where N denotes the number of enrolled subjects.
In this context, two scenarios can be defined: closed-set
identification, which defines that all searched subjects are
enrolled in the system, and open-set identification, in which
searched subjects are potentially not enrolled in the system.
It should be noted, the latter type of scenario (i.e., open-set
identification) is more challenging and interesting for real-
world applications [11].

Current operational and planned large-scale biometric
identification systems around the world (will) host millions
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or even billions of enrolled subjects [11]. For example,
the Indian national ID system, Aadhaar, operates a multi-
biometric database of more than 1 billion enrolled sub-
jects [12]. In such large-scale databases, biometric identifi-
cation based on an exhaustive search is a time-consuming
task which is dominated by template comparison costs [4].
In addition, the probability of running into false matches
increases with the number of subjects enrolled in the sys-
tem [13]. It is important to note that an ordering of bio-
metric references is not feasible since these do not exhibit an
inherent order and are fuzzy [11]. More specifically, different
biometric samples, e.g., face images, from the same subject
yield templates almost never identical due to biometric
variance (i.e., intra-class variations).

Due to the aforementioned issues, numerous researchers
proposed different workload reduction (WR) methods for
biometric identification systems, which have been surveyed
in [11]. The main goal of those approaches is to accelerate
the searches in biometric identification systems. In spite of
efforts achieved on this topic, most WR approaches still
report a degradation of biometric performance while the
scalability of some approaches remains questionable [11].
In addition, those schemes usually do not incorporate pri-
vacy protection, i.e., biometric references are indexed and
retrieved in unprotected form.

Privacy regulations, e.g., the European Union (EU) Gen-
eral Data Protection Regulation 2016/679 (GDPR) [14],
usually define biometric information as sensitive data. An
unprotected storage of biometric references could lead to
different privacy threats such as identity theft, linking across
databases, or limited renewability [15]. This has led to
the development of Biometric Template Protection (BTP),
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Fig. 1. Overview of a proposed privacy-preserving face identification system: at enrolment a face embedding is extracted from a face image from
which a hash and a protected template are generated; subsequently, the hash is used to create an entry in the hash look-up table and the protected
template is stored in the database accordingly. At retrieval a hash is generated from a face embedding based on which a subset of protected
face templates is retrieved via a hash look-up table; subsequently, the protected probe is compared against the protected candidate list to reach a
decision.

i.e., data protection techniques specifically designed for
fuzzy biometric data [16]. BTP methods are traditionally
categorised as cancelable biometrics, biometric cryptosys-
tems, and homomorphic encryption. BTP schemes must
satisfy four main requirements stipulated in the ISO/IEC
IS 24745 [17]: unlinkability, irreversibility, renewability, and
performance preservation. BTP approaches enable a biometric
comparison in the protected domain, i.e., biometric tem-
plates are permanently protected. However, for the majority
of BTP methods, comparisons in the protected domain turn
out to be more costly in terms of computational work-
load compared to the ones carried out by unprotected sys-
tems. Consequently, such BTP schemes are less suitable for
large-scale identification systems which perform exhaustive
searches.

Whereas BTP techniques provide privacy protection,
these are hardly employed in biometric identification sys-
tems [18]. According to Drozdowski et al. [11], only a few
works have combined WR strategies with BTP schemes to
build large-scale identification systems that ensure privacy
protection. In the context of face biometrics, those stud-
ies have mainly employed cancelable biometrics [19]–[21].
However, most of those systems still report a degradation
w.r.t. biometric performance in benchmark against unpro-
tected systems and may unveil privacy or security issues.

In order to overcome the aforementioned limitations,
i.e., provide privacy protection and preserve performance,
the use of Fully Homomorphic Encryption (FHE) for face
identification was suggested in [22]. This technique, un-
like other traditional BTP approaches, preserves biometric
performance while the biometric comparison is carried out
in the encrypted domain [23]. So far, a few works have
employed FHE to achieve privacy-preserving face identi-
fication systems, e.g., [22], [24]. In spite of the results ob-
tained by those studies in terms of privacy protection, these
systems still perform an exhaustive search to retrieve the
protected face references, thereby leading to a degradation
of computational efficiency and in an increase of the false
match probability depending on the number of subjects
enrolled in the system.

Motivated by the aforementioned issues, we propose in
this work a face identification system which combines a pre-
selection-based WR strategy with a FHE scheme to fulfil the
requirements of ISO/IEC IS 24745 [17] regarding privacy
protection. The key contributions of this work are:

• A hash generation scheme based on a Product Quan-
tisation [26] which generates stable hash codes from
faces. These hashes are used for indexing a face
database, i.e., to construct a hash look-up table. Facial
references within the database are protected through
FHE. At the time of authentication, face hashes are
employed to speed up the retrieval, i.e., to return a
candidate short-list. In contrast to existing works in
field, the retrieval of the candidate short-list does not
require a one-to-many search, but can be directly ob-
tained via the hash look-up table, i.e., exact match-
ing with computational complexity of O(1). This is
possible since obtained hash codes are highly stable,
which further allows for a protection thereof using con-
ventional cryptographic methods. Finally, FHE-based
comparisons are carried out in the protected domain
for a small fraction of facial references. Thereby, the
proposed approach which is depicted in Fig. 1 dras-
tically reduces the overall computational workload of a
face-based identification system while the indexing and
retrieval is done in a privacy-preserving way.

• A thorough analysis of several clustering techniques
to obtain a stable hash generation scheme. The ex-
perimental results show the capability of graph- and
density-based clustering algorithms to build a stable
and compact hash code which can be successfully em-
ployed for face identification. In addition, the search of
different sub-spaces offered by the PQ- and clustering-
based combination allows achieving a good trade-off
between efficiency and biometric performance. More-
over, a detailed discussion on the protection of gener-
ated hash codes with conventional cryptographic meth-
ods is given.

• A literature survey on existing approaches which com-
bine WR strategies with BTP for face identification.
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TABLE 1
Overview of most relevant privacy-preserving WR schemes for face-based identification systems (results reported for best configurations and

scenarios).

Approach WR category BTP category Dataset Biometric performance Exhaustive search

Wang et al. [25]
Pre-selection,

Feature transformation
Non-traditional BTP FERET

LFW
89% H-R Yes95% H-R

Murakami et al. [20] Feature transformation Cancelable biometrics NIST BSSR1 SET3 0.1% FRR, 0.022% FAR Yes

Dong et al. [19] Feature transformation Cancelable biometrics

LFW (closed-set) 99.75% R-1

Yes

LFW (open-set) 97.99% DIR, 1% FAR
VGG2 (closed-set) 99.03% R-1
VGG2 (open-set) 96.03% DIR, 1% FAR
IJB-C (closed-set) 80.57% R-1
IJB-C (open-set) 56.80% DIR, 1% FAR

Sardar et al. [21] Feature transformation Cancelable biometrics

CASIA-V5
IITK
CVL

FERET

99.85% CRR-1

Yes100% CRR-1
100% CRR-1
100% CRR-1

Drozdowski et al. [22] Feature transformation FHE FERET ∼5% FNIR, 1% FPIR Yes

Engelsma et al. [24] Feature transformation FHE MegaFace 81.4% R-1 Yes

Ours Pre-selection FHE
FEI

FERET
LFW

0.0% FPIR, 0.0% FNIR
0.0% FPIR, 0.2% FNIR
1.0% FPIR, 2.5% FNIR

No

H-R: Hit Rate
FRR: False Rejection Rate
FAR: False Acceptance Rate
R-1: Rank-1 Identification Rate
DIR: Detection and Identification Rate
CRR: Correct Recognition Rate at Rank-1
FPIR:False Positive Identification Rates
FNIR:False Negative Identification Rates

• A comprehensive performance evaluation based on
standardised metrics [27] carried out over challenging
closed-set and open-set scenarios on three public face
databases, i.e., FEI [28], FERET [29], and LFW [30].

The remainder of this work is organised as follows:
related works are revisited in Sect. 2. In Sect. 3, the proposed
system is described in detail. Sect. 4 presents the experimen-
tal evaluations. Finally, in Sect. 5, conclusions are drawn and
future works are discussed.

2 RELATED WORKS

As previously mentioned, numerous efforts have been made
in the recent years to avoid an exhaustive search in biometric
identification systems. For a summary of state-of-the-art
techniques for WR the reader is referred to [11]. According
to Drozdowski et al. [11], WR methods can be categorised
as pre-selection and feature transformation approaches.

Pre-selection algorithms (e.g., data-structures [31], bin-
ning [32], and pre-filtering [33]) are focused on the search
space reduction, thereby leading to a low number of com-
parisons (i.e., low penetration rate1) per biometric identi-
fication transaction. In contrast, feature transformation ap-
proaches decrease the computational cost of the individual
template comparisons by applying techniques such as re-
duction of the biometric template dimensionality [34], use
of efficient comparators [35], or alignment process [36].
Besides a reduction in workload, feature transformation

1. Average proportion of the total number of references that is pre-
selected from a database.

methods still perform an exhaustive search to determine the
identity of a subject. In addition, most WR approaches do
not guarantee privacy protection, i.e., only a small amount
of works on WR have addressed privacy protection through
BTP schemes. Most relevant works are listed in Tab. 1.

Wang et al. [25] proposed an obfuscated distance mea-
sure which allows concealing the Hamming distance in a
dynamic interval. Thereby, privacy protection should be
guaranteed while performance is preserved. To that end,
the authors proposed a new mechanism to compute earlier
distances in the encrypted domain (i.e., Montgomery multi-
plication domains). This mechanism allows obfuscating the
comparison between binary codes-based representations.
Then, a collision process of substrings is performed. In
this context, hash table-based indexing schemes are built
without preserving original distance values. It is important
to note that the retrieval of reference templates requires
exhaustively comparing pairwise distances in the encrypted
domain (i.e., indexing in Montgomery domains).

Murakami et al. [20] proposed an indexing scheme to
compare so-called secure indexes (or templates). Focusing on
privacy, the authors showed that those indexes fulfilled the
perfect secrecy property, i.e., transformed indexes leak no
information about the original index, i.e., unprotected tem-
plate. A comprehensive analysis revealed that the proposal
complies with the properties of irreversibility, unlinkability,
and revocability. In order to build the secure indexes, face
templates are transformed by using a permutation process,
thereby a cancelable indexing scheme is built. Furthermore,
the authors introduced a new method to generate indexes
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from biometric features through Generative Adversarial
Network (GAN) discriminators which they refer to as pivot.
The pivot-based strategy basically produces a distortion
over the features of subjects depending on how their piv-
ots differentiate from other subjects. That is, this strategy
allows generating a different distribution of the unprotected
biometric features.

Recently, Dong et al. [19] proposed an identification sys-
tem where privacy was ensured by transforming facial fea-
tures to more compact non-invertible features. As a conse-
quence, faster comparison (1:1) in the Hamming space could
be achieved. To this end, an Index-of-Maximum (IoM) [37]
locality sensitive hashing-based technique [38] was used. In
general, BTP schemes based on cancelable biometrics were
reported to negatively affect biometric performance [16].

In contrast, the approach in [19] achieved competitive
results with respect to its baseline (i.e., unprotected system)
by employing different fusion strategies. Inspired by this
idea, Sardar et al. [21] introduced a novel hashing technique,
namely FaceHashing. Within this method, privacy protection
is achieved by modifying the BioHashing technique [39],
[40]. In particular, this approach computed a cancelable
feature vector by applying several feature transformations
(i.e., sparse representation, coordinate descent, and block
coordinate descent techniques).

It is worth noting that the aforementioned research ef-
forts usually yield a trade-off between privacy protection,
computational efficiency, and biometric performance within
face identification systems. Some of these works still suffer
from significant performance degradations (e.g., [19]). Other
works do not provide sufficient privacy protection, i.e.,
they leak biometric feature information (e.g., [41], [42]). In
addition, not all methods have properly shown, that they
can reach unlinkability for cross-comparison attacks [15].
Further, WR strategies employed by these systems (e.g.,
[19]–[21]) are limited to feature transformation or exhaustive
pre-selection approaches (e.g., [25]).

In order to overcome the aforementioned issues, some
face identification systems have recently introduced FHE-
based BTP schemes. Engelsma et al. [24] proposed a com-
pact feature representation through intrinsic dimensionality
reduction based on Deep Neural Networks [43]. In addi-
tion, the authors introduced a Brakerski/Fan-Vercauteren
scheme-based [44] encoding strategy. Keeping in mind that
operations in the encrypted domain are expensive, the au-
thors proposed to encode each intrinsic dimension of the
compact feature as a matrix in order to decrease the compu-
tational complexity. Technically, a set of plaintexts (i.e., set
of dimensionality-reduced feature vectors) are encoded in
a single ciphertext. Finally, an inner product between two
ciphertexts in the encrypted domain could be carried out
efficiently in the comparison stage. In spite of the remark-
able results, the used encoding scheme is restricted by the
number of compressed biometric templates and encryption
parameters, thereby resulting in a performance degradation.

Drozdowski et al. [22] proposed a simpler biometric
face identification system in which privacy protection is
achieved by the application of FHE. In their work, the
authors evaluated two encoding schemes (i.e., Cheon-Kim-
Kim-Song [45] (henceforth referred to as “CKKS”) and
Brakerski/Fan-Vercauteren [44] (henceforth referred to as

“BFV”)) in a trusted third party-based architecture. In this
case, the encoding process is carried out for each feature
vector, in contrast to the method proposed in [24]. It is
concluded that there exist several challenges and issues
which must be dealt with for such schemes, e.g., FHE-
based BTP schemes, to be viable in a biometric identification
scenario, especially if WR is to be employed [22]. Some of
these challenges can be summarised here:

• The speed up of FHE-based scheme implementations
may be prohibitive for larger deployments. In this
context, concepts of WR could be introduced in order
to narrow down the search space for each biometric
identification transaction.

• One drawback of using HE is that it limits the flexibil-
ity in the implementation. For instance, feature vector
elements may not be accessible individually. This lim-
itation makes incremental recognition schemes (which
facilitate early acceptance/rejection of likely/unlikely
candidates) infeasible.

• The incorporation of search strategies, e.g., binning,
indexing, or 1-to-first-based search, over these BTP
schemes may lead to a trade-off between biometric
performance, computational workload, as well as data
security and privacy in a biometric identification sys-
tem.

3 PROPOSED SYSTEM

The proposed scheme consists of four main steps: at the
time of enrolment, i) a reference face image (i.e., input) is
captured, a face is detected, pre-processed, and its feature
representation, denoted as S, is extracted (Sect. 3.1); ii) for
each S, the hash generation scheme extracts a hash code,
H(S), which is stored as an index in a hash look-up table;
iii) additionally, S is encrypted (i.e., Enc(S)) through the
BFV encoding scheme [44] which is used as base in the
FHE scheme [46]. In the enrolment, iv) Enc(S) is stored as
protected reference template in its corresponding index (i.e.,
generated hash code) in the hash look-up table (Sect. 3.3). At
the time of authentication, a probe face image is captured,
processed in the same way (following the steps i), ii), and
iii)). Subsequently, iv) a hash code is retrieved from the
hash look-up table. Finally, a candidate score list of pro-
tected references stored at this hash code and the protected
probe template is compared against them.

In our work, inspired by the security protocol in [24], we
adopt a semi-honest model where each party (i.e., entity)
is constrained by the following protocol [47]. In particular,
our system is built upon three entities: i) a client, which
provides the biometric face features for enrolment or au-
thentication: at the time of enrolment, the client supplies the
public key to encrypt the reference face features, while at
the time of authentication, the client provides the private
key to encrypt the probe face features and decrypt the
scores computed; ii) a database, which holds a hash look-
up table under the responsibility of storing the encrypted
reference templates; and iii) a server being the channel
of communication between the client and the database;
both the enrolment and authentication are performed in the
encrypted domain. It is worth noting, that in the context of
authentication, the encrypted candidate list containing the
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Fig. 2. Overview of the proposed hash generation scheme.

scores of the reference templates most similar to the subject
at hand is directly transmitted from the server to the client
party. By using its private key, the client finally decrypts
the scores of the candidate list and the best score (i.e., after
sorting the list) is selected as final biometric comparison
score.

3.1 Feature representation

The client party supplies the biometric features of an input
face image. To that end, embedding representations ex-
tracted from several Deep Convolutional Neural Networks
(DCNN)-based face recognition systems are used. Therefore,
in the first step, faces are detected and aligned by using
the Multi-task CNN [48] framework. Then, the face em-
bedding is extracted. In our experiments, three well-known
and open-source face recognition systems are evaluated:
FaceNet [49], ArcFace [50], and VGGFace2 [51], which have
shown a remarkable performance for face recognition tasks.

3.2 Hash generation

An overview of the proposed hash generation scheme is
depicted in Fig. 2. In order to extract stable hash codes
from faces, we adopt the Product Quantisation (PQ) ap-
proach [26]. This technique yields a compact discrete rep-
resentation from data which can be employed for either
exhaustive or inverted indexing searches [52]. In particular,
in our work, we explore PQ in combination with clustering
techniques to generate a stable binary hash code which, in
turn, allows a fast retrieval from the hash look-up table since
it enables an exact (non-fuzzy) comparison like it is the case
for passwords or PINs. This means, for a probe face, a candi-
date short-list is retrieved with a computational complexity
O(1). It is worth noting that such clustering techniques have
been successfully applied to face images [53].

Face embeddings of size D are extracted from N sub-
jects. Note that more than one face image per subject could
be used in the enrolment stage. Let S = {S1, . . . , SN} be a

set of face embeddings of all subjects to be enrolled. Each
face embedding can be represented as a concatenation of P
sub-spaces, i.e., a set of equal-size sub-vectors that constitute
the face embedding, each of dimension D

P , denoted as
Si = {Ei1, . . . , EiP }.

For each sub-space 1 ≤ j ≤ P , the PQ generates a
codebook Cj = {cj1, . . . , c

j
K} of size K , where K represents

the number of codewords (or number of clusters) in Cj .
Subsequently, a sub-vector Eij is mapped to a codeword cjτ
in its corresponding codebook Cj . The value τ indicates the
index of the nearest codeword cjτ to the sub-vector Eij and
can be represented as binary hash code (bin) with log2(K)
bits. In summary, a binary hash code Q(Eij) is obtained for
a sub-vector Eij of the face embedding Si:

Q(Eij) = argmin
dist(Eij ,cjτ )τ=1,...,K

bin(τ), (1)

where dist(Eij , C
j
τ ) is the similarity between Eij and

the nearest codeword cjτ ∈ Cj . Finally, the hash code of
size P log2(K) bits representing a face embedding Si is
estimated by concatenating the binary hash code Q(Eij) for
each Eij :

H(Si) = tQ(Eij) : j = 1, . . . , P (2)

As aforementioned, PQ builds a set of codebooks from
data. In our work, we evaluate four different clustering
algorithms (i.e., K-means [54], K-medoids [55], Gaussian
mixture models (i.e., GMM) [56], and Affinity propagation
(i.e., AP) [57]) to generate those codebooks.

3.2.1 K-means

K-means is a well-known centroid-based clustering tech-
nique which yields a partition of N observations into k
clusters defined a priori [54]. In particular, data points
are assigned to k groups by minimizing the squared error
distance between them. Each cluster computed by K-means
is represented by a fictitious node, the so-called centroid
(average of all the points in its cluster). Therefore, to assign
a new point to a cluster, K-means calculates its distance
with the closest centroids. The K-means computational com-
plexity is O(kN) and due to its rapid convergence, this
clustering algorithm has been widely used in numerous
computer vision and pattern recognition tasks [58]–[60]. In
our work, the centroids represent a codebook for a particular
sub-space.

3.2.2 K-medoids

K-medoids [55] is a centroid-based clustering technique
similar to K-means, which assumes k clusters a priori. In
contrast to K-means, this technique computes its centroid
in a different way, i.e., through its medoid. Medoids are the
most centrally located data points in the clusters, with the
minimum sum of distances to other points. It is important
to note that medoids are always restricted to be members
of the data set. In our work, these data points represent a
codebook which is generated for each sub-space.
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3.2.3 Gaussian mixture models
GMM [56] is a density-based clustering algorithm which
assumes each point stems from a mixture of Gaussians. Like
earlier centroid-based approaches, GMM needs to define the
number of clusters K beforehand. In particular, GMM intro-
duces a degree of dependence or uncertainty between the
partitions by assigning probabilities (i.e., soft assignment).
In this context, GMM can be understood as a probabilistic
visual vocabulary whose clusters are described by their mix-
ture weights, means, and covariance matrices. In our work,
for Product Quantisation, we compute the loglikelihood
between a sub-vector and the corresponding probabilistic
GMM codeword to look for the most appropriate cluster.

3.2.4 Affinity propagation
In contrast to the aforementioned clustering algorithms,
Affinity propagation (AP) [57] does not require a number
of clusters K a priori. The AP recursively transmits real-
valued messages along the edges of a graph until a good set
of exemplars and corresponding clusters emerge. To that end,
AP takes as input a set of real-valued similarities between
data points, where the similarity s(i, j) indicates how well
a data point with index j is suited to be a possible exemplar
for the data point i. In order to find the best exemplar,
AP minimises squared errors, where each similarity is set
to the Euclidean distance. In our pipeline, a sub-vector is
assigned to one of M exemplars representing the clusters in
the codebook.

3.3 Template encryption
FHE schemes provide privacy protection of the stored
template by computing comparisons between them in the
encrypted domain. In addition, it provides a high biometric
performance since biometric comparators (e.g., Euclidean
distance) can be computed without a negative impact in
the homomorphic domain. In particular, we adopt BFV
scheme [44] as the base for the FHE computation. The BFV
scheme has shown a significant speed-up in the encrypted
domain computation, in contrast to CKKS scheme [22].
Also, the BFV scheme allows the use of the packing or
batching technique [61] which encrypts multiple values
into a single ciphertext (i.e., facilitates operations on vec-
tors component-wise) and hence performs computations by
using the SIMD (Single Instruction Multiple Data) prim-
itives [62], [63]. Keeping in mind that the BFV schemes
operate on integer values [44], face representations are firstly
quantisised following the equal-width quantile strategy [64]
which assigns for each float-value component in the vector
an integer value.

A single one-to-one comparison based on BFV between
an encrypted probe and each reference template stored in
the candidate list is based on the aforementioned batching
technique. Specifically, we compute the squared Euclidean
distance between two vectors in the encrypted domain. In
particular, addition operations are applied by cyclically ro-
tating the vectors without the need of decrypting them [63].

3.4 Hash look-up table
In order to speed up the subject retrieval, we make use of
a hash look-up table. This hash look-up table stores the

hash code H(Si) generated by PQ and as entries, their
corresponding encrypted templates (i.e., Enc(Si)), hence a
candidate list can be returned with a computational com-
plexity of O(1). In this context, it is expected that the same
hash code H(Si) may point at various encrypted templates
Enc(Si). In a nutshell, the same hash code H(Si) could
point at several encrypted templates of different subjects.
Given a hash code from a probe, our pipeline allows the
retrieval of a candidate short-list with size t � N which
contains the encrypted reference templates of the subjects
most similar to the probe. All encrypted templates in the
candidate list returned are compared with the encrypted
probe. Finally, a list of encrypted scores is obtained. For
a non-existent hash code value, an empty candidate list is
returned.

To prevent from cross-matching or reconstruction at-
tacks, it is recommended to encrypt the obtained hash code
with conventional cryptographic methods. More specifi-
cally, it is suggested to employ an application-specific key.
For instance, this could be realised with Message Authenti-
cation Codes (MACs) which may involve the use of crypto-
graphic hash functions (HMACs), e.g., SHA-256. However,
MACs usually produce bitstrings which are expected to
be significantly longer than the hash code extracted in the
proposed method. Therefore, it is suggested to only use the
first P logK bits (length of hash code) returned by the MAC.
Thereby, the size of the hash look-up is maintained.

3.5 Workload reduction
In this section, we define the cost of a biometric transaction
in the proposed privacy-preserving identification system. To
that end, we analyse the workload (W ) of our system in a
single lookup. We compute W as follows:

W = N × p× θ + β (3)

with:
• N : number of enrolled references
• p: penetration rate
• θ: computational cost of a single one-to-one compari-

son in the encrypted domain by using the BFV-based
encoding scheme. It should be noted that our system
takes 750ms over the BFV-based encoding scheme.

• β: computational cost when encrypted templates are
retrieved through the pre-selection-based WR strategy,
i.e., the hash look-up table. Note that our system enables
an exact match which has a computational complexity
ofO(1) and hence a retrieval low computational cost, in
contrast to other pre-selection methods, e.g., Wang et al.
[25]. In this context, our system takes 0.003ms to pick
up a small fraction of protected templates.

In our system, p is the average proportion of retrieved
or pre-selected candidates for each hash code in the hash
look-up table. It is determined as follows:

p =
γ

N
(4)

where γ represents the average number of comparisons
per hash code when a lookup is carried out, and N is
the number of subjects, i.e., reference templates stored in
the system database. It is worth noting that p depends
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TABLE 2
Summary of the face embeddings extracted from different face recognition systems.

Face recognition system Pre-trained model Feature embedding size Loss function

FaceNet Inception-ResNet-v11 512 Triplet

ArcFace1 ResNet-1002 512 Additive Angular Margin
ArcFace2 MobileFaceNet3 128 Additive Angular Margin

VGG-Face2 Senet-504 2048 Soft-max
1 https://github.com/davidsandberg/facenet
2 https://github.com/deepinsight/insightface/wiki/Model-Zoo
3 https://github.com/deepinsight/insightface/wiki/Model-Zoo
4 https://github.com/ox-vgg/vgg face2

on the number of used sub-spaces P and codewords K .
The maximum number of hash codes computed by H(·)
(see equation 2) can be represented as KP . Therefore, the
probability of collision (i.e., f ) can be determined as follows:

f =

{
1 if N>KP

N
KP otherwise.

As it should be noted, if N is a constant value and P
increases, then f decreases and hence a low p and conse-
quently a low W is achieved.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed
system using a hash look-up table constructed with PQ
in combination with different clustering methods. To that
end, three goals are defined: i) analyse the biometric per-
formance for several parameter configurations over closed-
set scenarios ii) evaluate the trade-off between biometric
performance, privacy protection, and workload reduction
for open-set scenarios, and iii) a benchmark with other
state-of-the-art systems.

4.1 Experimental Protocol
Three different face recognition systems (i.e., FaceNet, Ar-
cFace, and VGG-Face2) are selected to extract face embed-
dings. In our evaluation, pre-trained models provided for
each face recognition system are used. In particular, two pre-
trained models of ArcFace (hereafter referred to ArcFace1
and ArcFace2 over each pre-trained model) are employed.
Tab. 2 shows a summary about the systems utilised in our
work. Our baseline is an exhaustive search, i.e., a biometric
probe is compared against all references enrolled in the
database exhaustively. The proposed identification system
is fully implemented in Python. The Scikit-Learn library2 is
used for the computation of different methods employed in
our investigation (i.e., K-means, K-medoids, GMM, and AP).
In addition, a PySeal wrapper3 on Python 3.7, which uses
the C++ SEAL open-source library [65] is utilised for FHE.
Focusing on the encryption parameters, we select those
parameters that corresponded to a security level of 128 bits4.
Higher levels of security enabled by the library, e.g., 192

2. https://scikit-learn.org/stable/
3. https://github.com/Lab41/PySEAL
4. According to the https://homomorphicencryption.org/ standard.

(a) FERET

(b) FEI

(c) LFW

Fig. 3. Example images from the selected datasets (a) FERET (b) FEI
(c) LFW.

and 256 bits, lead to higher execution times [66]. Although
it is true that most homomorphic encryption schemes pro-
vide weaker security guarantees than traditional encryption
schemes, it is not the actual limiting factor in the case
of facial biometrics, as discussed in section 4.2.2.3. In our
system, we guarantee a trade-off between efficiency and
security for a security level of 128 bits. Our evaluations were
conducted on an Intel Core i7-8750H@2.2GHz, 16GB RAM
hardware, Linux environment.

4.1.1 Datasets
Three publicly available datasets, as shown in Fig. 3, are
used in our investigation:

• FERET [29] includes 14,126 facial images from 1,199
subjects. In our experiments, we select individuals
with frontal images without intentional occlusions (e.g.,
scarves or sunglasses). Some facial images with ex-
ceedingly poor quality are also removed, as done in
[67]. Finally, the selected subset comprises 2,697 face
images from 987 subjects where the first subset of them
comprises subjects who contain at least three samples,
while a second subset contains subjects having two

https://github.com/davidsandberg/facenet
https://github.com/deepinsight/insightface/wiki/Model-Zoo
https://github.com/deepinsight/insightface/wiki/Model-Zoo
https://github.com/ox-vgg/vgg_face2
https://github.com/Lab41/PySEAL
https://homomorphicencryption.org/
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samples. Given that these subsets are unbalanced, we
defined protocols for the investigated scenarios (i.e.,
closed-set and open-set scenarios):
– For the close-set scenario, we select the subset having

more than three samples per subject. For training
and enrolment, three samples are randomly picked
up while the remaining images are included in the
search.

– For the open-set scenario, we select the same set of
images in the closed-set for training, enrolment, and
search. In addition, the subset having two samples
per subject is included in the search set.

• FEI [28] consists of 2,800 color images from 200 subjects.
Most subjects contain 14 images with pose rotation up
to 180 degrees. Some images, whose faces (e.g., p13 and
p14) are not visible, were removed from the dataset.
For the closed-set evaluation, ten samples per subject
are randomly selected for training and enrolment while
the remaining samples are used as probe samples.
Note that a 5-fold cross-validation is considered since
FEI does not present a defined protocol for open-set
scenario, in contrast to LFW. Each of the search sets
contains approximately 136 samples from different sub-
jects. In addition, it should noted that we found an
labelling error (i.e., samples with labels 72 and 2 stem
from the same subject) on the FEI database. This error
was corrected on open-set scenario, thereby leading to
199 subjects for FEI.

• LFW [30] is the first dataset focused on the large-scale
unconstrained face recognition problem. This com-
prises 13,233 face images from 5,749 subjects collected
from the web where 1,680 subjects are represented with
two or more images. While the remaining subjects have
a single image. We divide LFW into three different sets
as done in [19]:
– Known subject set contains 6,733 face images from

610 subjects having more than three samples. These
images are only included in the enrolment and train-
ing set.

– Known unknown subject set consists of 2,431 face
images from 1,070 subjects who are used for training
our hash generation scheme, yet not for enrolment.
Those subjects have two or three samples.

– Unknown unknown subject set comprises 4,069 face
images from 4,069 subjects which are not used for
training either in the enrolment set. They only have a
single sample.

In the closed-set evaluation, we followed the protocol
in [19], where three samples per subjects in Known
set and one image per subject in Know unknown
are randomly selected for training our hash generation
scheme. In addition, the three same samples selected
per subject from the Known set are employed for
enrolment while the remaining images are included in
the identification as probe faces.
On the other hand, for open-set evaluation, we followed
the two protocols in [19]:
– Open-set O1 scenario contains the images from the

closed-set evaluation for training, enrolment, and
search. Samples in the Know unknown set which are

TABLE 3
Summary of databases, scenarios, and partition into training,

enrolment, and search sets.

Dataset Scenario Training Enrolment Search

LFW

Closed-set 2,898 1,830 4,902 genuines

Open-set O1 2,898 1,830 4,902 genuines
1,359 impostors

Open-set O2 2,898 1,830 4,902 genuines
4,069 impostors

FERET Closed-set 747 747 474 genuines

Open-set 747 747 474 genuines
1,476 impostors

FEI Closed-set 2,000 2,000 776 genuines

Open-set 1,890 1,890 732 genuines
136 impostors

not included in the training are also used for search.
– Open-set O2 scenario contains the same images from

the closed-set evaluation for training, enrolment, and
search. In addition, the search set includes images of
the Unknown unknown set.

A detailed description of the number of samples for
training, enrolment, and search for both scenarios is listed
in the Tab. 3. It is worth noting that the images used for
the hash generation scheme training as well as the ones
in the enrolment are randomly selected. In addition, the 5-
fold cross-validation is carried out on both evaluations (i.e.,
open-set and closed-set).

4.1.2 Metrics

The experimental evaluation is conducted according to
ISO/IEC 19795-1 [27] standard methods and metrics:

• Pre-selection error rates are the proportion of subjects
for which the corresponding subject identifier is not in
the pre- selected subset of candidates.

• Hit-rate, which computes the complement of the pre-
selection error rates: 1 - pre-selection error rates.

• Identification rate which is reported as a cumulative
match characteristic (CMC) plot. The CMC plots the
rank-R identification rate. Rank-1 is considered in our
evaluations.

• False Negative Identification Rates (FNIR), which is
defined as the proportion of a specified set of identi-
fication transactions by subjects enrolled in the system
for which the subject’s correct reference identifier is not
among those returned.

• False Positive Identification Rates (FPIR), which is de-
fined as the proportion of identification transactions by
subjects not enrolled in the system for which a reference
identifier is returned.

• Workload (W ) which is defined as the overall computa-
tional workload of a biometric identification transaction
as a percentage of the baseline (exhaustive search)
workload in terms of the number of template compar-
isons. It should noted that in this work W is computed
as defined in Sect. 3.5.
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TABLE 4
Rank-1 identification rates of the baseline systems.

System Dataset

FEI FERET LFW

ArcFace1 100.00 % 100.00 % 99.84 %
ArcFace2 98.97 % 100.00 % 99.67 %
FaceNet 99.74 % 100.00 % 85.08 %
VGGFace 99.82 % 99.79 % 99.84 %

Based on those metrics, we also report: i) the Detection
Error Trade-off (DET) curves between FPIR and FNIR and
ii) the FNIR observed at different FPIR values such as 1%
(FNIR100) and 0.1% (FNIR1000).

4.2 Experimental Results

4.2.1 Closed-set scenario

4.2.1.1 Baseline feature extractor: In the first ex-
periment, we select the most appropriate face embeddings
together with their corresponding pre-trained models (see
Tab. 2) and carry out identification over closed-set scenarios
per database without applying workload reduction efforts
(i.e., exhaustive search). Tab. 4 lists the Rank-1 identifi-
cation rates obtained by the different pre-trained models
on all considered databases. All used pre-trained models
achieve high identification rates. In particular, the ArcFace
recognition system (i.e., ArcFace1) shows the best biometric
performance across the used datasets. Therefore, ArcFace1
is considered for the following experiments.

4.2.1.2 Impact of parameters: In the second ex-
periment, we determine the optimal configuration of our
hash generation scheme in terms of the main parameters:
the number of centers or codewords K and the number
of sub-spaces P . To that end, we select the value range
K = {64, 128, 256, 512, 1024} and P = {1, 2, 4}. Values for
K and P which are greater than 1024 and 4, respectively,
would result in large binary hash codes which are not
suitable for a robust hash generation. The pre-selection error
rates per parameter configuration, clustering algorithm, and
dataset are summarised in Tab. 5. As it can be observed, the
best pre-selection error rates are obtained for differentK per
database. Among centroid-based clustering methods (i.e., K-
means and K-medoids), the former obtains its best average
pre-selection error rates at K = 256, thereby resulting in an
average pre-selection error of 4.8%. In addition, the GMM
achieves its best average pre-selection error rate at K = 256,
which is up to eight times lower than the ones achieved
by centroid-based approaches. This indicates that K = 256
mixture of Gaussians are enough to successfully decrease
the intra-class variability between samples from the same
subject and increase the inter-class variability between dif-
ferent subjects. It is important to highlight that, no result is
reported for at K = 1024 for the FERET database since the
number of samples used for hash generation is lower than
1024 (i.e., 747).

Keeping in mind that the AP does not require the
number of codewords K a priori, we also report in Tab. 5
its biometric performance for the number of exemplars
(i.e., K) detected by this approach. In particular, AP yields
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Fig. 4. Analysis of the number of samples per subject used for training
the AP-based hash generation.

an average pre-selection error rate which is approximately
three times lower than the one achieved by GMM. It should
be noted, the AP obtains its best biometric performance at
the different number of centers depending on the dataset
at hand (i.e., K = 256 for FEI and FERET, and K = 1024
for LFW). This is due to the intra-class variation and face
image quality of samples in the LFW, which are more
challenging than the those in FEI and FERET. In contrast
to K-means, K-medoids, and GMM, AP depends on the
inter-and intra-class variabilities on the dataset to detect
reliable exemplars. Given that the AP finds the optimum
number of clusters representing the data, the number of
hash codes generated by PQ depends on the dataset as well.
Challenging databases such as LFW could benefit from this
type of clustering algorithm. In order to validate earlier
affirmations, a thorough analysis of the effect of image
quality on the hash generation is provided. To that end,
AP and GMM, which reports the best average pre-selection
error rates, are considered. Further, we observe a biometric
performance degradation as the number of P subspaces
increases. Specifically for those clustering methods whose
number of centers needs to be defined a priori (i.e., K-means,
K-medoids, and GMM).

4.2.1.3 Effect of the number of samples for the hash
generation training: In order to analyse the robustness of
the proposed hash generation scheme, we explore the effect
of the number of samples used for its training. To this end,
we use the proposed AP-based hash generation scheme.
In addition, the FEI database, which contains the highest
number of samples per subject, is chosen. Fig. 4 reports the
hit-rates for several numbers of samples used for training
the hash generation over different P sub-spaces. In all exper-
iments, we randomly select the number of images used for
training. The remaining samples are included in the probe
set (i.e., search set). It can be observed that AP achieves a
reliable biometric performance by using only three samples
for training exhibiting high robustness over a datasets like
FEI containing faces with different poses variations.

4.2.1.4 Effect of the face image quality: As could be
seen in Tab. 5, the biometric performance on LFW improves
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TABLE 5
Biometric performance, in terms of pre-selection error rates (%), of the proposed hash generation scheme for different values of K (centers) and

P (sub-spaces). The best results per clustering method are highlighted in bold.

Database Centers K-means K-medoids GMM Affinity Propagation
P = 1 P = 2 P = 4 P = 1 P = 2 P = 4 P = 1 P = 2 P = 4 P = 1 P = 2 P = 4

FEI

64 0 0.05 1.31 6.75 18.74 46.65 0 0.41 15.70

0 0.03 0.05
128 0 0 0.13 5.00 11.21 30.93 0 0 2.37
256 0.05 0.15 0.98 1.98 5.28 12.73 0.05 0.1 0.54
512 0.03 2.55 10.52 0.54 3.76 14.59 0.1 1.57 6.24
1024 0 6.16 17.5 0.21 9.36 13.46 0.08 5.21 13.76

FERET

64 0 0.46 2.95 18.48 39.49 74.25 0 0.21 2.57

0 0 0128 0 0.04 1.77 14.3 68.78 60.13 0 0.25 0.72
256 0 0 0 11.90 20.76 39.28 0 0 0.08
512 0 5.49 13.38 5.86 12.28 32.15 0 4.09 14.3

LFW

64 7.01 18.43 44.19 32.82 57.46 77.23 3.88 8.08 36.32

2.28 2.23 3.14
128 6.43 15.48 33.73 33.08 61.03 77.19 4.19 7.76 21.79
256 5.01 10.53 26.69 27.51 58.02 76.89 3.59 6.91 16.34
512 3.24 5.31 10.36 21.11 48.51 73.39 3.37 8.59 5.09
1024 2.19 2.19 2.45 18.51 33.5 61.9 2.14 2.26 3.09

with K for each clustering-based hash generation, in con-
trast to FEI and FERET. Even, for the AP method which does
not require a number of clusters a priori, it can be observed
that for LFW lowest error rates are achieved for K = 1024.
This is because the samples per subjects in LFW tend to
exhibit higher variations in contrast to images in FEI and
FERET. This is also reflected in the baseline performance
rates of Tab. 4.

Based on that fact, we explore the impact of image
quality on the hash generation used by our identification
system. To that end, we first compute on the LFW, FEI, and
FERET databases, in Fig. 5, the scores of image quality for all
their samples through FaceQNet [68]. As it may be observed
in Fig. 5, LFW exhibits the highest variation of image-quality
scores ranging from 0.0 to 0.7. More precisely, the amount
of samples with lower scores, e.g., < 0.3, is greater than the
ones reported by FEI and FERET. Note that the performance
of the hash generation scheme could be sensitive to the
image-quality variation, thereby confirming the results on
Tab. 5 for small K values. Also, it should be noted that
low quality scores in the FEI database mainly result from
pose variations while LFW contains many low resolution
face images. Secondly, we calculate, in Fig. 6, the biometric
performance for the GMM-based hash generation scheme
over different K values and five image quality thresholds.
It can be observed that the hit-rates improve with K for
those ranges including poor quality images. As expected,
the robustness of the proposed hash generation scheme
improves with image quality.

Fig. 7 depicts a probe and references from LFW which
resulted in false matches in the proposed identification sys-
tem. Both, the probe and the references exhibit a rather low
face image quality. According to Shi and Jain [69], distances
of face embeddings in the latent space can be distorted for
low quality sample pairs, thereby leading to false matches.

4.2.1.5 Benchmark with the baseline: In this experi-
ment, the best configurations of the GMM- and AP-based
system are compared with the baseline (i.e., ArcFace1).
From the results in Tab. 6, only slight deterioration in
biometric performances can be observed in comparison to
the baseline. However, it can also be observed that some
configurations maintain the biometric performance of the
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Fig. 5. Probability density function of quality scores computed by Face-
QNet for the LFW, FEI, and FERET databases.

TABLE 6
Benchmark of our hash generation scheme for different P values with

the ArcFace1 baseline in terms of identification rate (%) at rank-1.

Dataset GMM AP Baseline
P = 1 P = 2 P = 4 P = 1 P = 2 P = 4

FEI 100.00 99.98 99.38 100.00 100.00 100.00 100.00
FERET 100.00 100.00 100.00 100.00 100.00 100.00 100.00
LFW 99.67 99.81 98.87 99.84 99.68 99.68 99.84

baseline system on specific datasets. For instance, for the
GMM-based system using P = 4 sub-spaces an identi-
fication rate of 98.87% is achieved on the LFW database
while this configuration yields a slight decrease of biometric
performance on the FEI dataset.

4.2.2 Open-set scenario

4.2.2.1 Biometric performance: As it was men-
tioned, one of the goals of the proposed system is to cor-
rectly handle identification transactions with data subjects
whose references are not present in the enrolment database
(i.e., open-set scenario). To that end, we consider the eval-
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Fig. 6. Impact of the quality over the LFW database in terms of hit-rate
for the GMM-based scheme using K centers and P = 1 (for higher
quality thresholds the number of samples becomes too low to obtain
meaningful results).

(a) probe: qual-
ity = 0.38

(b) references: quality < 0.44

Fig. 7. Example of false match between a probe and references.

uation of our best performing hash generation scheme (i.e.,
AP) to retrieve non-encrypted and encrypted face templates
from the selected databases.

For the unprotected as well as the protected system, on
the FERET dataset a low FNIR of approximately 0.2% is
achieved at a FPIR = 0.0%. Similarly, on the FEI database
a FNIR = 0.0% is obtained for a FPIR = 0.0% (i.e., perfect
separation). In general, the performance of the unprotected
system is maintained. Slight performance variations are
caused by the feature quantisation step which is necessary
for the applied encoding scheme. Future work could be fo-
cused on a float-based encoding scheme, e.g., CKKS [45], in
combination with feature transformation-based WR strate-
gies to improve its efficiency. On the other hand, on the LFW
database, at a FPIR = 1.0% lowest FNIR of approximately
2.5% are achieved for using P = 1 and P = 2 subspaces.
Corresponding DET curves for the different scenarios of the
LFW dataset are plotted in Fig. 8 (DETs for FEI and FERET
are omitted due to their low rates and hence these do not
contain data points obtained from a significant amount of
identification attempts).

Based on the obtained results, it should be noted that
biometric performance may decrease in open-set scenarios
(compared to closed-set), mainly depending on the database
characteristics. Note that the best biometric performance is
obtained on less challenging databases, e.g., FEI and FERET,
in contrast to LFW. On LFW, a significant drop in biometric
performance is observed, compared to the closed-set sce-

nario. This can be observed by comparing the corresponding
results in Tab. 4 to those in Fig. 8. Even for identification over
closed-set scenarios, variations in identification rates for the
different databases can be seen. Additionally, Sect. 4.2.1.4
confirms the differences over those databases in terms of
image quality. In case face images exhibit generally lower
quality, false positives can occur with higher probability
since extracted face embeddings tend to be less discrimina-
tive. Consequently, identification transactions of impostors
which are not enrolled in the gallery (open-set scenario)
cause false-matches with higher chances, which in turn
degrades the overall biometric performance.

4.2.2.2 Workload Reduction: In order to evaluate
the scalability of our hash look-up table, we compute in
Tab. 7 the workload reduction (W ) of our identification
system according to the equation defined in Sect. 3.5 (see
equation 3). Note some parameters such as θ and β are
estimated in the Sect. 3.5. Penetration rate (i.e., p) can be
computed as is defined in the equation 4. Additionally,
the execution time (i.e., ψ) in seconds (or milliseconds) is
reported for an entire identification transaction for each
tested configuration of the proposed system.

In our experiments, a large number N of enrolled sub-
jects is selected for this purpose. To that end, we join the
FEI and FERET databases. In this case, one sample per
subject is enrolled resulting in a total amount of N = 1,177
enrolled subjects. In addition, we calculate the workload
WB for the baseline (i.e., 1 : N exhaustive search). For
the baseline, ψ is approximately 14 minutes, p is assumed
as 1.0, and β as 0.0, thereby resulting in a workload of
WB = 88.27 × 104 representing 100%. Here, our system
must satisfy the relation 0.0%<W<100%.

From Tab. 7, we can observe that there do exist a high
dependence between the workload reduction (W ) and the
main parameters of the proposed system (i.e., K and P ):
W decreases as K and P increase. In particular, our system
is able to decrease WB down to 0.09 for higher K and P
values. Hence, a penetration rate of approximately 9× 10−4

forK ≥ 256 and P ≥ 2 can be noted. In order to estimateW
for a large number of enrolled subjects (e.g., N = 1 million),
we finally compute in Fig. 9, a linear regression for the worst
(i.e., P = 1) and best (e.g., P = 4) cases over K = 64
and K = 1024 respectively, which reveals the linear relation
between N and p. Therefore, the penetration rate p of our
system in terms of percent (%) for a large dataset would be
p = 0.03 for the best case and p = 1.53 for the worst case.
Note that a low p leads to a low W .

4.2.2.3 Security analysis and privacy protection: We
assume that our identification system could be attacked
at three components of the system, i) the client device,
ii) the communication channel between the client and the
database, and iii) the database. More specifically, we follow
a semi-honest security model where all the parties are
constrained to follow the protocol and learn nothing beyond
their own outputs, although, they might try to learn some
information as possible. In particular, our scheme exploits
the security provided by the BFV scheme based on the
hardness of the Ring Learning [70], similar to Engelsma et
al. [24]. Therefore, a ciphertext cannot be decrypted without
getting access to the private key which is located only in the
client entity. In addition, the hash codes which are utilised as
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Fig. 8. DET-curves of our best performing hash generation scheme (i.e., AP) in an open-set scenario.

TABLE 7
Workload reduction results in terms of percent (%) for different

parameter configurations over N = 1, 177 enrolled subjects taken from
FEI and FERET with θ = 750ms and β = 0.003ms. The workload and
the execution time for the baseline system is WB = 88.27× 104 and

approximately 14 minutes respectively

.

K Metrics P = 1 P = 2 P = 4

64

γ 18.3906 1.3282 1.0020
ψ ∼ 14sec ∼ 750ms ∼ 750ms
p 156 × 10−4 11 × 10−4 8 × 10−4

W 1.56% 0.11% 0.09%

128

γ 9.1953 1.1444 1.0007
ψ ∼ 7sec ∼ 750ms ∼ 750ms
p 78 × 10−4 10 × 10−4 9 × 10−4

W 0.78% 0.1% 0.08%

256

γ 4.5977 1.0815 1.0022
ψ ∼ 3sec ∼ 750ms ∼ 750ms
p 39 × 10−4 9 × 10−4 9 × 10−4

W 0.39% 0.09% 0.09%

512

γ 2.2988 1.0591 1.0022
ψ ∼ 2sec ∼ 750ms ∼ 750ms
p 20 × 10−4 9 × 10−4 9 × 10−4

W 0.2% 0.09% 0.09%

1024

γ 1.1424 1.0148 1.0012
ψ ∼ 750ms ∼ 750ms ∼ 750ms
p 10 × 10−4 9 × 10−4 9 × 10−4

W 0.1% 0.09% 0.09%

keys in our hash look-up table, are computed as the binary
representation of the codeword index and not directly from
the biometric features. Hence, this does not leak information
from biometric features of the subject. Further, in the case
of supervision of an attacker on the data structure (i.e., hash
look-up table), it is relevant that the access to an entry in our
hash look-up table is performed in O(1). That is, it would
become a hard task to get similarity information from the
keys for any attacker since distance values are not revealed.

With respect to privacy protection, our system is able
to fulfil the requirements from ISO/IEC 24745 [17]. In the
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Fig. 9. Relation between the number of enrolled subjects and average
number of comparisons.

context of the keys, hash codes stored in the hash look-
up table are not discriminative which in turn means that
it is unlikely that they can be used to reconstruct original
face templates. However, it should noted that if the hash
codes are exposed, i.e., information could be leaked. If two
templates from a same subject result in a same generated
hash code, cross-matching could potentially be performed.
Also, an attacker could try to reconstruct a pre-image which
may not necessarily identical to the original face. Hence, to
further protect the hash codes in the hash look-up table, the
proposed system could cryptographically hash the binary
string to get a secure hash code by using e.g., SHA256.
This would prevent reconstruction attacks. As previously
mentioned, unlinkabilty and renewability of hash codes can
be achieved with MACs while additional key storage is
required. Note that the application of such conventional
cryptographic methods is only feasible since the proposed
system enables an exact match of hash codes. Further, note
that this extension to the proposed system does not have
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any effects on its performance.
It is important to note that for suitable parameter

configurations hash codes tend to be short. For example,
for K = 1, 024, and P = 4, the hash code length is
4 log(1024) = 40 bits. Nevertheless, it is not realistic to
achieve practical security from a cryptographic point of
view, i.e., more than 128 bits. This is because the entropy
of a face embedding is considered to be much lower than
what would be required for strong cryptographic protection.
For instance, ArcFace extracts embeddings of 512 values.
However, several researchers, e.g., Gong et al. [71], have
shown that the intrinsic dimensionality of those and other
typical facial embeddings extracted by neural networks is
much lower (in excess of an order of magnitude); i.e., guess-
ing the biometric template is a more feasible (although still
very difficult) attack vector than guessing the encryption
keys. This is further underlined by the high FPIRs at which
face identification systems are operated at, e.g., FPIR=0.1%.
Consequently, the security and, hence, privacy protection,
are also upper-bounded by attackers’ effort of being falsely
accepted by the system, the so-called false accept attack. Due
to these reasons, the length of the extracted hash-codes is
considered sufficient.

Focusing on the original face templates unlinkability can
be guaranteed through FHE, where different set of keys for
encryption are used. Irreversibility of the templates depends
on the FHE parameters which support a high security level.
Renewability is ensured, since new biometric templates
can be obtained by changing the encryption keys. In the
FHE scheme biometric performance can be maintained since
comparisons in the encrypted domain are equal to those in
the plaintext domain. It is also very important to note that
the potential attack vectors of guessing the encryption keys
and/or the biometric templates are by no means limited to
homomorphic encryption in biometrics – other template se-
curity approaches including classic general-purpose encryp-
tion and dedicated biometric template protection schemes
(e.g., biometric cryptosystems or fuzzy vaults) likewise have
to address those challenges.

4.2.2.4 Benchmark with state-of-the-art: A bench-
mark of the proposed method with the state-of-the-art on
the LFW dataset is shown in Tab. 8. It can be observed
that our system achieves a biometric performance which is
comparable to the state-of-the-art. In particular, our system
reports a FNIR100 = 2.97% and FNIR1000 = 34.99%, respec-
tively, for P = 2 sub-spaces when images from known
unknown subjects are used for the hash generation scheme
training (i.e., scenario O1). In contrast, a biometric perfor-
mance degradation can be seen for a FPIR = 0.1% over O2: a
FNIR1000 = 70.06% indicates the limitation of our scheme
on the unseen data in challenging databases. In spite of
this limitation, our identification system, unlike the proposal
in [19], is capable of reducing the number of comparisons
on the dataset, thereby achieving to a remarkable trade-
off between privacy protection, biometric performance, and
efficiency. It is important to highlight that the identification
scheme described in [19] carried out an exhaustive search,
which decreases its use for a real-time application. In ad-
dition, it should be noted, Random IoM and LIoM apply
different strategies for training their compact hash codes
while maintaining the protocol over the LFW database.

(a) true match on FEI (b) false match on FEI

(c) true match on FERET (d) false match on LFW

Fig. 10. Examples of (a) true match for slight variations in pose, (b) false
match due to extreme pose variation, (c) true match for variations in
color and expression, and (d) false match due to high similarity and low
image quality.

4.2.2.5 Data exploration: In order to measure the
robustness of the proposed system and to detect sources or
errors we compute a clustering internal validation measure
called Silhouette-coefficient [72]. This is done for the best
performing hash generation scheme (i.e., AP) on all used
databases. The Silhouette-coefficient metric calculates the
degree of separation (i.e., inter-cluster) and cohesion (i.e.,
intra-cluster) between clusters: scores close to 1 indicate a
high separation between clusters while values close to -
1 denote a high dispersion between the samples within a
cluster and hence a high intra-class variation which could
lead to an overlap between clusters. For the FEI, FERET,
and LFW databases Silhouette-coefficients of 0.77, 0.82, and
0.24 are obtained.

Fig. 10, depicts cases of true and false matches. Firstly, it
can be seen that the proposed system is robust to variations
in facial expression, pose, or colour. However, extreme pose
variations or low image quality can lead to false matches.
We also may observe that the Silhouette-coefficient scores
for those groups exhibiting less variation in pose are usually
higher, e.g., 0.9. Nevertheless, face images with extreme pose
variations are expected to occur less frequently in coopera-
tive scenarios. The highest Silhouette-coefficient score (i.e.,
0.82) is obtained on the FREET dataset, since it contains
mostly high quality frontal-pose face images which is three
times greater than the one reported for the LFW (i.e., 0.24).
The result achieved for the LFW confirms the impact of
image quality over our hash generation scheme.

5 CONCLUSIONS

In this paper, we proposed a new privacy-preserving face
identification system which allows indexing and retrieving
candidate lists of protected face templates in O(1). In par-
ticular, a hash generation scheme based on Product Quan-
tisation was introduced in order to extract a stable hash
code from facial images. Compact hash codes generated by
said hash generation are used for efficient indexing via a
hash look-up table. Corresponding face templates are en-
crypted through FHE and stored in the entries as protected
reference templates. In the context of building a stable hash
code, four different clustering algorithms were evaluated
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TABLE 8
Benchmark, in terms of FPIR and FNIR (in %), of the best performing configuration of the proposed system with the state-of-the-art (without fusion

scheme) in open-set scenarios on the LFW database.

System WR Category BTP Category O1 (FNIR1000) O1 (FNIR100) O2 (FNIR1000) O2 (FNIR100)

Random IoM [19] Feature Transformation Cancelable 40.47 2.37 10.97 2.37
LIoM [19] Feature Transformation Cancelable 45.81 2.43 14.37 2.25

Proposed (P = 1) Pre-selection (hash look-up table) FHE 36.40 2.68 74.07 2.60
Proposed (P = 2) Pre-selection (hash look-up table) FHE 34.99 2.97 70.06 2.80
Proposed (P = 4) Pre-selection (hash look-up table) FHE 37.63 3.76 88.22 3.10

(i.e., K-means, K-medoids, GMM, and AP). Specifically, AP,
which does not require to pre-define the number of clusters,
achieved competitive results, i.e., a remarkably low pre-
selection error rate of 0.86%.

The experimental evaluation was carried out over differ-
ent public datasets including the challenging LFW database.
We evaluated the trade-off between privacy protection, se-
curity, biometric performance, and computational efficiency
of the proposed system. In particular, we noted the capabil-
ity of AP to maintain a high performance when the number
of samples in their training varies. We showed the stability
of AP by using only three samples for training. Experi-
ments for several image quality ranges showed that face
image quality has significant impact on the proposed sys-
tem. However, the experimental evaluation over the LFW
showed that for high-quality images (i.e., FaceQNet scores
greater than 0.5) reliable performance can be achieved. In
addition, a benchmark with some state-of-the-art methods
showed promising results of our system to reject known
unknown subjects: a FNIR in the range of 2.68%-37.63%
for a high-security threshold together with a remarkable
workload reduction down to 0.1% was achieved, yielding
reliable, secure, and fast identification system. Finally, this
work indicates the need for introducing pre-selection-based
WR strategies combined with FHE-based schemes to reduce
workload and hence its feasibility in real applications.

In order to tackle some of the limitations of the proposed
system, we plan to: i) improve the process of hash gen-
eration based on PQ with AP clustering. AP finds its best
exemplars on a latent space of face embeddings (by using
distance metrics). Keeping in mind that face embeddings in
latent spaces could be distorted due to quality problems,
probabilistic approaches could be implemented to analyse
the dependence of the samples from a same subject and
hence selecting the best exemplars in AP; ii) more stable
hash generation may be achieved by combining PQ with
compact binary representations and clustering in Hamming
space, thereby alleviating the problem of the intra-class
variability; iii) combine our pre-selection method (i.e., hash
look-up table) with other WR techniques such as feature
transformation to improve the comparison time in the en-
crypted domain.
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Suárez, and C. Busch, “Fingerprint presentation attack detection

http://arxiv.org/abs/1910.07770


IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE (T-BIOM) 16

based on local features encoding for unknown attacks,” IEEE
Access, 2021.

[61] Z. Brakerski, C. Gentry, and S. Halevi, “Packed ciphertexts in
lwe-based homomorphic encryption,” in International Workshop on
Public Key Cryptography. Springer, 2013, pp. 1–13.

[62] N. Smart and F. Vercauteren, “Fully homomorphic simd opera-
tions,” Designs, codes and cryptography, vol. 71, no. 1, pp. 57–81,
2014.

[63] J. Cheon, H. Chung, M. Kim, and K.-W. Lee, “Ghostshell: Se-
cure biometric authentication using integrity-based homomorphic
evaluations.” IACR Cryptol. ePrint Arch., vol. 2016, p. 484, 2016.

[64] P. Drozdowski, F. Struck, C. Rathgeb, and C. Busch, “Benchmark-
ing binarisation schemes for deep face templates,” in Intl. Conf. on
Image Processing (ICIP). IEEE, October 2018, pp. 1–5.

[65] “Microsoft seal (release 3.2),” https://github.com/Microsoft/
SEAL, February 2019, microsoft Research, Redmond, WA.

[66] J. Kolberg, P. Drozdowski, M. Gomez-Barrero, C. Rathgeb, and
C. Busch, “Efficiency analysis of post-quantum-secure face tem-
plate protection schemes based on homomorphic encryption,” in
Intl. Conf. of the Biometrics Special Interest Group (BIOSIG), 2020.

[67] P. Drozdowski, C. Rathgeb, B.-A. Mokroß, and C. Busch, “Multi-
biometric identification with cascading database filtering,” Trans.
on Biometrics, Behavior, and Identity Science (TBIOM), vol. 2, no. 3,
pp. 210–222, July 2020.

[68] J. Hernandez-Ortega, J. Galbally, J. Fierrez, R. Haraksim, and
L. Beslay, “Faceqnet: Quality assessment for face recognition based
on deep learning,” in 2019 Intl. Conf. on Biometrics (ICB). IEEE,
2019, pp. 1–8.

[69] Y. Shi and A. Jain, “Probabilistic face embeddings,” in Proc. of the
IEEE/CVF Intl. Conf. on Computer Vision, 2019, pp. 6902–6911.

[70] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Annual Intl. Conf. on the Theory
and Applications of Cryptographic Techniques. Springer, 2010, pp.
1–23.

[71] S. Gong, V. N. Boddeti, and A. K. Jain, “On the intrinsic dimen-
sionality of image representations,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, June 2019, pp. 3987–3996.

[72] P. Rousseeuw, “Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis,” Journal of computational and
applied mathematics, vol. 20, pp. 53–65, 1987.
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