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Abstract

The increasing popularity of biometric authentication systems simultaneously raises
privacy and security issues. Among other vulnerabilities, presentation attacks (PAs)
that are directed to the capture device pose a severe threat. In order to be prepared
against such attacks, presentation attack detection methods are deployed. However,
due to the variety of materials that can be used to fabricate a presentation attack
instrument (PAI), the classification models must be designed to also protect against
unknown presentation attacks.
The contribution of this thesis is the development of an unsupervised learning

technique based on Convolutional Autoencoders and finger images stemming from
two novel sensor technologies: Laser Speckle Contrast Imaging and Multi-Spectrum
Short-Wave Infrared. On an experimental evaluation over a database of 19, 598
bona fide images and 4, 226 PAs, including 43 unique PAIs, an average detection
equal error rate of 2.47% could be achieved.
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1. Introduction

According to the US Federal Trade Commission, more than 270,000 cases of
credit card identity theft have been reported in 2019 with almost 165 million
records containing personal data being exposed [15]. This indicates, that personal
identification is crucial for many modern applications. However, using passwords
and pins has a major drawback as they can be forgotten, lost, or stolen. To
circumvent this problem, biometric authentication techniques focus on identification,
based on unique biological characteristics. In this context, fingerprints have proven
to be sufficiently unique, easy to capture, and less invasive than other biometric
characteristics such as retina scans. Therefore, on 13th December 2004, the
European Union issued a council regulation [20] for its member states which
obligates them to store in every passport the fingerprint images of the document
holder in order to ensure a strong biometric link between the biometric characteristic
(the fingerprint) and the travel document. With a similar motivation recently the
Smart Border Project of the European Commission [11] has been initiated to
keep track of travellers from third countries, crossing the external borders of the
Schengen area. This requires effective and efficient authentication systems that
focus both on convenience and border security. As part of the Smart Border project,
the Entry/Exit System (EES) [9] is planned to be a IT system to register travellers
from third-countries, including the storage of fingerprints. Furthermore, since 2003,
the European Dactyloscopy (EURODAC) system is used as an EU wide fingerprint
database that assists with determining the member state responsible for examining
an asylum application [10].
With regard to the wide range of applications, the growing demand raises

the question of how vulnerable these systems are to external attacks. In this
context, among numerous attack points, presentation attacks (PAs) constitute
the greatest weakness since the attacker does not need any knowledge about the
internal biometric system. To address that vulnerability, it is important to deploy
algorithms which are able to distinguish between bona fide presentations and
access attempts carried out by a remodelled or overlaid finger. The current state
of research shows that there are many commercially available materials, such as
Play-Doh or silicone, that can be used to execute a PA. Although many presentation
attack instruments (PAIs) are already known, it turns out to be very challenging to
learn a classification model that successfully detects the whole variety of fabricates.
On the one hand, this is related to the high costs involved in fabricating an adequate
number of PAIs. On the other hand, it is hard to protect the biometric system
from PAs performed with previously unseen PAIs as most fingerprint presentation
attack detection (PAD) approaches rely on classifying PAs on the basis of their
similarity to those included in the training phase (known PAD). A common method
to simulate the impact of unseen samples on the models performance is to include
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a subset of PAIs only in the testing phase. Nevertheless, this leads to the problem
of how to compose the subset in order to obtain results as close as possible to the
real world scenario. Since these approaches still involve PAs within the training
phase, they will be referred to as semi-known PAD.
Instead of learning about both the structure of bona fides as well as various

PAs, unknown PAD (UPAD) methods are trained on bona fides solely. The
main contribution of this thesis is to develop a UPAD method by implementing
Convolutional Autoencoders (Convolutional AEs). Convolutional AEs are learned
to compress images while being able to reconstruct them without major loss of
information. However, the reconstruction of the encodings is highly sensitive
and fails for images that are not similar to those contained in the training set.
This can be exploited to detect PAs by training a Convolutional AE only on
bona fides. In the course of this work, three different model architectures are
implemented and compared with each other. Additionally, a novel loss function has
been elaborated in order to increase the robustness of the AE models. The final
detection performance of the Convolutional AE model is then benchmarked against
a semi-known PAD approach using pre-trained Convolutional Neural Networks,
proposed by Gomez-Barrero et al. [26]. Furthermore, a set of One-Class Support
Vector Machines (OC-SVMs) is trained to establish further unknown PAD baselines
for the benchmark in this thesis. The experiments within this thesis are based
on finger images that were captured during the BATL project [7] using a novel
capturing device that was first introduced by Hussein et al. [31], including two novel
sensor technologies: Laser Speckle Contrast Imaging (LSCI) and Multi-Spectral
Short-Wave Infrared (SWIR).

The thesis is organized as follows: Section 2 provides fundamental knowledge
about fingerprint PAD, including ISO-standardized terminology. Next, section 3
presents the contributions of other authors dealing with related topics. Furthermore,
section 4 introduces the methodology applied within this thesis, mainly focusing
on techniques stemming from the deep learning domain. As a preparation for the
following parts, section 5 describes the experimental framework which contains
details about dataset, performance metrics, and implementation. Additionally,
section 6 gives a brief overview of the proposed PAD methods. Section 7 then
presents the experimental results of different Convolutional AE settings. Finally, in
section 8 and 9 the elaborated AE model is benchmarked against other fingerprint
PAD approaches and a final conclusion is drawn with suggestions for future works.
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2. Fingerprint PAD Fundamentals

This section familiarizes the reader with the fundamental concepts of fingerprint
PAD and introduces topic-related terms.

2.1. Standardized Terminology

To accelerate research in the field of biometric PAD and simultaneously increase
the domain-related comparability of results, the technical committees from the
International Organisation for Standardisation (ISO) and the International Elec-
trotechnical Commission (IEC) established a standardized terminology and a testing
framework. Since the contributions presented within this work are in compliance
with the ISO suggestions, the most relevant domain-related terms are presented,
extracted from the following documents.

- ISO/IEC 2382-37:2017 (Information Technology - Vocabulary - Part 37:
Biometrics) gives a systematic description of the concepts in the field of
biometrics [33]

- ISO/IEC 30107-1:2016 (Information Technology — Biometric Presentation
Attack Detection — Part 1: Framework introduces terms and definitions that
are useful in the specification, characterization and evaluation of presentation
attack detection methods. [35]

- ISO/IEC 30107-3:2017 (Information Technology — Biometric Presentation
Attack Detection — Part 3: Testing and Reporting provides principles and
methods for performance assessment of presentation attack detection mecha-
nisms. [36]

The following list of basic biometric terms has been extracted from ISO/IEC
2382-37:2017 without changes since they need to be formulated accurately in
accordance to the standards.

• biometric capture: obtain and record, in a retrievable form, signal(s) of bio-
metric characteristic(s) directly from individual(s), or from representation(s)
of biometric characteristic(s)

• biometric capture device: device that collects a signal from a biometric
characteristic and converts it to a captured biometric sample. A biometric
capture device can be any piece of hardware (and supporting software and
firmware).A biometric capture device may comprise components such as an
illumination source, one or more biometric sensors, etc.
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2.1 Standardized Terminology

• biometric capture process: series of actions undertaken to affect a bio-
metric capture

• biometric capture subject: individual who is the subject of a biometric
capture process

• biometric capture subsystem: biometric capture devices and any sub
processes required to execute a biometric capture process

• biometric characteristic: biological and behavioural characteristic of an
individual from which distinguishing, repeatable biometric features can be
extracted for the purpose of biometric recognition

• biometric data: biometric sample or aggregation of biometric samples at
any stage of processing, e.g. biometric reference, biometric probe, biometric
feature or biometric property

• biometric data subject: individual whose individualised biometric data is
within the biometric system

• biometric enrolment: act of creating and storing a biometric enrolment
data record in accordance with an enrolment policy

• biometric enrolment data record: data record attributed to a biometric
data subject, containing non-biometric data and associated with biometric
reference dentifier(s)

• biometric identification: process of searching against a biometric enrol-
ment database to find and return the biometric reference identifier(s) at-
tributable to a single individual

• biometric presentation: interaction of the biometric capture subject and
the biometric capture subsystem to obtain a signal from a biometric charac-
teristic

• biometric recognition: automated recognition of individuals based on their
biological and behavioural characteristics

• biometric sample: analogue or digital representation of biometric charac-
teristics prior to biometric feature extraction

• biometric system: system for the purpose of the biometric recognition of
individuals based on their behavioural and biological characteristics
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2.1 Standardized Terminology

• biometric verification: process of confirming a biometric claim through
biometric comparison

• captured biometric sample: biometric sample resulting from a biometric
capture process

• mode: combination of a biometric characteristic type, a sensor type and a
processing method

• multi-modal: multiple in at least 2 out of 3 constituents of a mode in a
single biometric system

Furthermore, another set of standardizes terms stemming from ISO-IEC-30107:2016
[35] is defined as follows:

• artefact: artificial object or representation presenting a copy of biometric
characteristics or synthetic biometric patterns

• presentation attack (PA): presentation to the biometric data capture
subsystem with the goal of interfering with the operation of the biometric
system

• presentation attack detection (PAD): automated determination of a
presentation attack

• presentation attack instrument (PAI): biometric characteristic or object
used in a presentation attack

Finally, the last list of relevant terms from ISO-IEC-30107-3:2017 [36] is presented:

• bona fide presentation: interaction of the biometric capture subject and
the biometric data capture subsystem in the fashion intended by the policy of
the biometric system

• attack type: element and characteristic of a presentation attack, including
PAI species, concealer or impostor attack, degree of supervision, and method
of interaction with the capture device

• PAI species: class of presentation attack instruments created using a com-
mon production method and based on different biometric characteristics

• attack presentation classification error rate (APCER): proportion
of attack presentations using the same PAI species incorrectly classified as
bonafide presentations in a specific scenario

• bona fide presentation classification error rate (BPCER): proportion
of bona fide presentations incorrectly classified as presentation attacks in a
specific scenario
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2.2 Biometric Characteristics

2.2. Biometric Characteristics

The primary goal of biometric systems is to automatically recognize individuals
based on one or more physiological and/or behavioural characteristics. However,
according to ISO-IEC-24745:2011 [34] biometric characteristics need to fulfill specific
properties in order to be able to reliably discriminate between individuals:

• universality: Every individual should have the characteristic.

• uniqueness: The characteristic should be distinguishable between individu-
als.

• permanence: The characteristics should not alter over time.

• collectability: The collection of the characteristic should be easy.

• repeatability: The characteristics should be sufficiently distinct and repeat-
able.

In theory, the above mentioned properties are sufficient to unambiguously rec-
ognize an individual. However, from the application point of view there are three
additional properties which are considered as important:

• performance: Refers to the success rate in the recognition process.

• acceptability: Refers to the level of willingness of the subject using the
biometric system.

• spoof resistance: Refers to the question of how difficult it is to replicate
the biometric characteristic to bypass the biometric system

In the context of this thesis, only fingerprints will be taken into account which have
proven to comply with most of the above mentioned criteria. From a history point
of view, the modern usage of fingerprints began in the late 19th century [58] where
authorities started to use body characteristics to recognize individuals. They figured
out that fingerprints seem to differ from data subject to data subject and therefore
concluded that it can be seen as an unique human trait. In 2004, a study from
Han et al. [30] evaluated the uniqueness of fingerprints using a statistical analysis.
In fact, they confirmed that fingerprints are sufficiently unique to distinguish one
subject from another, even between identical twins. Nonetheless, the usage of
fingerprints also has a drawback which is its vulnerability to presentation attacks.
Today, imitating fingerprints can be done with low cost resources (e.g. Play-doh)
and easy to follow online tutorials. Further, presenting a PAI to the capture device,
an attacker does not need any background knowledge of how the internal biometric

6



2.3 Presentation Attack Detection

comparison system is structured. Consequently, the demand for effective PAD
methods is omnipresent. To this end, the next subsection introduces the reader
further to the subject of PAs and explains where they take place within a biometric
system.

2.3. Presentation Attack Detection

To have a better understanding of PAs, it is mandatory to understand how the
underlying biometric system is structured. For this purpose, this subsection will
summarize the most important ideas of the conceptual structure of a biometric
system according to ISO/IEC 24745:2011 (Information Technology — Security
Techniques — Biometric Information Protection) [34]. All operations that are
included in a biometric system are depicted in figure 2.1.

Figure 2.1: Conceptual structure of a biomteric system according to ISO/IEC 24745:2011 [34]

The gray areas indicate that the structure basically consists of the following
parts:

• A biometric data capture subsystem that comprises biometric capture
devices and/or sensors to capture signals from a biometric characteristic and
turn them into biometric samples.

7



2.3 Presentation Attack Detection

• A signal processing subsystem which extracts biometric features from
a biometric sample to identify or verify them against biometric references
stored in the data storage subsystem.

• A data storage subsystem that stores the biometric samples to link the
enrolled biometric references to the identity reference.

• A comparison subsystem which ascertains the similarity between captured
biomtric samples and stored biomteric references.

• A decision subsystem that determines whether the captured biometric
sample and the biometric reference stem from the same biometric capture
subject.

All of the above mentioned components in a biometric system can be target
of an attack. Figure 2.2 shows all of the potential attack points as indicated by
ISO/IEC 30107-1:2016 [35]. This thesis focuses on the detection of presentation
attacks, highlighted by blue background color. The data capture subsystem is the
most vulnerable component since the attacker does not need a deep understanding
of the underlying biometric system to present a faked finger.

Figure 2.2: Generic attacks in a biometric system according to ISO/IEC 30107-1:2016 [35]

In general, a subversive biometric capture subject carrying out a PA can be
classified as a biometric impostor or concealer. A biometric impostor aims to be
verified as another subject whereas a biometric concealer intends to circumvent
being recognized as he is aware that he is known to the system. This leads to the
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2.4 Soft- and Hardware-based PAD

challenge of designing both software and hardware based approaches to be able
to detect impostor as well as concealer attacks. Detecting presentation attacks
is challenging because of the wide range of distinct materials used to fabricate
PAIs. A single PA that has been executed successfully can pose a serious security
threat since it promotes the knowledge about weaknesses in the biometric capture
subsystem. Fingerprint PA methods can be divided into cooperative casts on the one
hand and non-cooperative casts on the other hand [3]. Cooperative casts refer to the
fabrication of fake fingerprints or overlays with various materials like thermoplastic
or silicon by exploiting the availability of the original bona fide. If the original
fingerprint, in contrast to the cooperative casts, is not available, non-cooperative
methods are used. They refer to the production of a PAI by indirectly obtaining
the according fingerprint patterns. For example, the latent fingerprints individuals
leave on suitable surfaces which can then be used to recreate the patterns of the
fingerprint.

2.4. Soft- and Hardware-based PAD

To detect PAs on fingerprint biometric systems both software and hardware based
mechanisms can be used. Software based methods tie in with the data generated
by a sensor and are able to distinguish between bona fide and PA samples by
processing the signal patterns contained in the input data. However, software based
solutions are restricted to the sensors ability of capturing data that contains relevant
patterns needed to detect PAs. On the other hand, software based approaches are
appealing due to the low costs incurring during the deployment.

Software based approaches can be split into static and dynamic techniques where
static methods are based on one single 2D scan and dynamic methods analyse a
series of images. Basically the dynamic approach can be seen as an extension to
the static one, taking into account the changes over time. Sweat pores [19] as well
as the fingerprint ridges [70] are often used as characteristics in the field of static
software based PAD as they can be easily extracted from high resolution images.
The dynamic approaches are more complex because both hardware and software
needs to be constructed in a way that enables capturing and processing multiple
frames. For example, the analysis of multiple images over time can be useful for
observing the distortion of the skin [4] that results by pressing the finger on the
capturing device.
Hardware-based setups use information collected by additional sensors in order

to detect particular properties of a living trait such as the blood pressure [45],
heartbeat [6], or skin impedance [56]. Often, those approaches are more expensive
compared to software-based solutions since they require additional hardware to be
installed. To provide a more specific overview, section 3 summarizes both soft- and
hardware based work that is related to this thesis.
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3. Related Work

This section summarizes previous works related to the contributions of this thesis.
The first subsection introduces a hardware-based approach that enables to capture
fingerprints with two novel sensor technologies. Further, the effectiveness of using
LSCI and SWIR data for fingerprint PAD will be validated by referencing promising
research results. The second subsection is divided into two parts: First, different
methods for detecting unknown and semi-known PAs will be presented. The second
part introduces a general approach of how Convolutional AEs can be used for PAD.

3.1. Hardware-based Related Work

3.1.1. Capturing Device: LSCI & SWIR

One precondition to successfully detect PAs is to use hardware that is able to
capture the structural differences between bona fides and PAs. In this context,
the results presented within the thesis are based on a novel capture device, first
introduced by Hussein et al. [31]. Among others, it includes two sensors: Multi-
Spectral Short Wave Infrared (SWIR) and Laser Speckle Contrast Imaging (LSCI).
Both sensing technologies operate in the SWIR spectrum between 900-1700 nm
which turned out to be a huge advantage as it has a distinctive response to human
skin and is independent of skin tone [12]. This has also been shown by Steiner et
al. [68] who compared the remission intensities of six different skin tones and four
common PAIs. They showed that different skin types react differently to the visible
light spectrum, especially at wavelengths below 800 nm. They also found that the
six skin tones were indistinguishable from the four presentation attack instruments
when a visible light source below 700 nm was used. However, for wavelengths above
800 nm, they showed that the remission intensities of all skin tones behave similarly
and on the other hand that they differ from those of the PAIs.
The new fingerprint capture device of Hussein et al. [31] has been constructed

in a way that it is able to use Multi-Spectral SWIR and LSCI illumination while
preserving backward compatibility with legacy systems. The capturing process
works by the capture subject placing its finger on a fingerslot within the sensor.
The fingeprint PAD camera is used to capture both SWIR and LSCI images. This
involves switching between a 25 mm SWIR lens and a laser lens. The camera is
a 64x64 mm InGaAs area sensor with an almost linear response for wavelengths
between 950 nm and 1650 nm. The field of view of both SWIR and LSCI lens
corresponds to an area of 45x45 mm. The interested reader is referred to Hussein
et al. [31] for more detailed information on the design of this capture device.
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3.1 Hardware-based Related Work

3.1.2. Fingerprint PAD using LSCI & SWIR

Keilbach et al. [41] proposed a fingerprint PAD approach using LSCI data. To
discriminate between bona fide and PA samples, they extracted handcrafted features
such as Local Binary Pattern [53] , Histograms of Oriented Gradients [14] and
Binarized Statistical Image Features [39] and applied SVMs for the classification
part. The scores of the SVMs are then fused using majority voting. On a private
dataset of 770 samples a BPCER of 0.21% vs. an APCER of 15.48% could be
achieved. However, the authors reported that most of the misclassified PAIs are
thin and transparent overlays such as dragon skin.
Another work on fingerprint PAD using SWIR data has been presented in [73]

using Convolutional Neural Networks (CNN) for classification. In this context, the
pretrained VGG-19 CNN model has been fine-tuned on a small private dataset
including 12 different PAIs. The PA and bona fide samples could be separated
without misclassifications.

In February 2019 Tolsana et al. [72] presented an analysis of data stemming from
a new capture device, which was first introduced by Hussein et al. [31], enabling
the acquisition of images within the short wave infrared (SWIR) spectrum. With
their own database of 4700 bona fide samples and 35 different PAIs, Tolsana et al.
introduced a method to detect PAs. On the one hand, they trained a residual CNN
from scratch, on the other hand they fine-tuned a pretrained model (VGG-19). By
fusing the results of the two models into one single prediction they were able to
achieve a Detection Equal Error Rate (D-EER, i.e. APCER=BPCER) of 1.35%.
To have an intuition of how the model behaves in regard to unknown presentation
attacks, they used 5 different PAI species only for testing purposes.

A multi-model fingerprint PAD approach has been introduced by Gomez-Barrero
et al. [27] who extract various features from both LSCI and SWIR images. SVMs
are trained for each feature and the the scores are fused with a weighted sum to
increase the robustness of the final classification. On their own dataset of 4700
samples they report an APCER of 6.6% vs. a BPCER of 0.2%.

A second multi-model approach of Gomez-Barrero et al. [26] is to apply two CNN
models to the SWIR data. The first one is a fine-tuned version of the pretrained
VGG-19 CNN model, while the second one is a shallow residual network trained
from scratch. However, for the LSCI data, SVMs are applied to various hand-
crafted features, similar to Keilbach et al. [41]. Finally, the prediction scores of
both datasets are fused which leads to an APCER of 3.15% vs. a BPCER of 0.12%.
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3.2 Unknown Fingerprint PAD

3.2. Unknown Fingerprint PAD

Ding et al. [18] presented an approach to solve the problem of Fingerprint UPAD
using a so called one-class classification paradigm. They introduced an ensemble
of multiple one-class Support Vector Machine (OC-SVM) classifiers, each of which
is trained on different feature sets (e.g. Local Binary Pattern [53]). The goal of
every OC-SVM is to find the smallest possible hypersphere around the majority
of training samples that relate to the class of bona fides. The boundaries of the
hyperspheres are then refined using a small number of PA samples. To obtain a
single classification, the estimates of all OC-SVMs are fused with an algorithm
called Least Square Estimation proposed by Ding et al. [18]. The authors reported
an APCER of 15.3% on the LivDet 2011 database [77].

Another way of solving the issue of UPAD was introduced by Rattani et al. [59].
They see a connection between the coarseness of the surface of fake fingerprint
images and the consequent inability of models to identify new and unseen PAIs.
They claim that the individual surface structures of the PAIs involved in the
training process results in an overfitted model. To solve this problem they used
both linear filter-based and non-linear threshold-based methods to eliminate the
noise factors contained in the input images. After the preprocessing step, they
exract a feature called Local Binary Pattern that they used as input for SVMs to
obtain the classification result, similar to [18]. On the LivDet 2011 database they
were able to achieve a D-EER of 10.2%.

Recently, Gonzàles-Soler et al. [28] introduced a new method using dense Scale
Invariant Feature Transformation (dense-SIFT) [46] to extract local features from
fingerprint images. In the second stage they apply three different feature encodings:
Bag of Words [13], Fisher Vectors [61] and Vector Locally Aggregated Descriptors
[38]. For the final classification they utilize Support Vector Machines, one for
each of the three encoded feature vectors. The authors highlight the ability of the
proposed method of being able to generalize and define a common feature space
between bona fide and PA samples. To test the performance on unknown samples,
similar to [72], certain PAIs were excluded from training and used only for testing.
In an evaluation of the LivDet 2015 databases [51], an average BPCER of 14.27%
compared to an APCER of 1% could be measured.

3.3. PAD using Convolutional Autoencoders

Nikisins et al. [52] proposed a novel approach for face PAD using a combina-
tion of pretrained AEs and a simple Multi-Layer Perceptron (MLP) for the final
classification. The multi-channel Autoencoders are used to extract features from
multi-channel input data, which in this case is a stack of gray-scale, near infrared
and Depth facial (BW-NIR-D Domain) images. It is worth mentioning that the
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AE are trained only using bona fide samples, learning the appearance of real faces.
Instead of collecting a lot of training data, they used transfer learning techniques,
transferring the knowledge of facial images from RGB to BW-NIR-D Domain. Only
the subsequently used MLP is trained using both bona fides and PAs to classify
the input images. Based on a pretrained model, which was built on a database
containing only RGB facial images (CelebA [47]), they fine-tuned their model on
the Wide Multi-Channel Presentation Attack database (WMCA [24]), reporting a
BPCER of 7.3% with a corresponding APCER of 1%.

To the best of my knowledge no previous works focused on using Convolutional
Autoencoders for Fingerprint PAD based on LSCI or SWIR data.

4. Background

This section serves to build a fundamental understanding of the methods applied
within the experimental part of this work. Nonetheless, since many deep learning
techniques are very complex, some conceptual ideas will be discussed more detailed
compared to others.

4.1. Fully-Connected Neural Networks

Fully-Connected Neural Networks (Fully-Connected NN) are the quintessential
deep learning methods with a wide range of applications. All of the basic ideas
presented in this subsection are extracted from Goodfellow et al. [29]. However, as
a first step to understand the concept of a Fully-Connected NN, it is important to
comprehend the basic notion of a perceptron, whose structure is depicted in figure
4.1.

Figure 4.1: Structure of a Perceptron [17]
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4.1 Fully-Connected Neural Networks

A perceptron can be imagined as a function that transforms an input vector x
into a scalar value by calculating a linear combination between the vector elements
x1, . . . , xN and a set of weights w1, . . . , wN . Subsequently, the result of the linear
combination is given to a non-linear activation function. The non-linearity criterion
is important since otherwise, the network would only be able to learn linear patterns.
Typically, a Fully-Connected NN can be described as a composition of multiple
perceptrons that are interconnected and formed to layers, as shown in figure 4.2

Figure 4.2: Example of a Fully-Connected NN [49]

The following components can be defined within a Fully-Connected NN:

• The input layer equals the input vector x

• The output layer corresponds to the last layer that is contained within the
network

• All layers that are located between input and output are called hidden layers

• The nodes (i.e. perceptrons) within a layer are referred to as units

In figure 4.2, each of the units contained in layer l are connected to all of the units
from the neighbored layers l-1 and l+1, which is the name given main characteristic
of a Fully-Connected NN. However, the primary goal is to approximate some
function f by defining a mapping y′ = f ′(x, θ). Specifically, the parameters θ
need to be learned in order to find the best function approximation. Translated
to the above shown example, θ equals the weights wlij with l denoting the layer, i
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4.2 Convolutional Neural Networks

representing the unit within layer l, and j defining the position of the weight within
unit i. Yet, the challenge remains of how to find the optimal weight parameters.
For this reason, the following three learning stages are briefly outlined.

The first phase is referred to as feedforward. Within this stage, the vector x is fed
to the input layer and is then propagated through the entire network until it reaches
the output layer, which produces the final result y′ = f(x, θ) . Since the main
goal of using Fully-Connected NNs is to approximate an unknown function f , the
discrepancy between y′ and the given target values y needs to be measured. This
problem is addressed in the second stage, which involves calculating the value of a
loss function L(y, y′). The primary goal of a Fully-Connected NN is to minimize the
loss value by finding the optimal weight factors, which leads to the last stage, the
backpropagation and updating phase. Backpropagation is a technique to propagate
back the error from the loss function through the network. This can be done by
calculating the gradients δL(y,y′)

δwl
ij

of the loss function in respect to all of the weights
contained in the network. The gradients are then used to apply a gradient descent
algorithm which updates the weights by changing them into the direction of the
steepest descent of the partial derivatives. The updated weights are then used
again for the feedforward phase, followed by the other steps. This leads to an
iterative adjustment of the weights until a stop criterion is reached.
A major drawback of Fully-Connected NNs is the high number of parameters

resulting from many units being connected. Especially for high dimensional inputs
like images, this soon leads to the systems working on capacity. An alternative
approach are Convolutional Neural Networks which are better suited to process
multidimensional inputs.

4.2. Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a specialized kind of an Artificial
Neural Network which can be assigned to the group of deep learning algorithms.
CNNs were first mentioned in 1980 by Kunihiko Fukushima [23]. Research and
development has since suffered from the high computational power required to
use CNNs for both high-dimensional and large-scale data. This problem has been
addressed in recent years by the continuous improvement of so-called graphical
processing units (GPU). One reason why CNNs have become so popular, is because
of their high efficiency compared to fully connected neural networks. This is due
to the significantly lower amount of parameters involved in the training process. In
this section, we will outline the major concepts of a CNN which are taken from
Goodfellow et al. [29] and Aghadam et al. [2].
A typical layer of a CNN includes three different stages: The first stage uses

several convolutions in parallel to produce a set of linear activations. In the second
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4.2 Convolutional Neural Networks

stage, nonlinear functions are applied on the feature maps from the convolution
operation, such as the rectified linear activation function. This enables the CNN
to also understand nonlinear patterns from the input data. The Pooling stage
is the last one involved in a convolution layer. Each of these components will be
described in more detail in the following subsections.

4.2.1. Convolution Operation

Convolution is a linear operation that is based on two functions and allows to
handle inputs of variable size. The first function I(i, j) returns the value of the
pixel stored at row i and column j of the input matrix. The second function K(i, j)
refers to the kernel and returns the weight at position (i, j). The output that
results by applying the convolution operation is called feature map. To have a
common basis, convolution is mathematically defined as follows:

S(i, j) = (K ◦ I)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (4.1)

In this context, m and n refer to the dimensions of the input image and S is
the final output at position i and j. The application of the convolution operation
is based on three important ideas: sparse connectivity, parameter sharing, and
equivalent representations.

In a fully connected neural network, each output unit is connected directly
to every input unit. In comparison to this, a convolution layer uses only sparse
connections, since each output unit merely results from a subset of the input units.
This leads to a lower amount of parameters, reducing memory requirements and
improving the efficiency. This is due to the structural design of the kernel, whose
dimension is smaller than the input image. Therefore, the smaller the kernel size,
the sparser the interactions between input and output units. This results in a
trade-off, because on the one hand the kernel must be large enough to identify
local features. On the other hand, it negatively affects the performance if the size
is chosen too large. By choosing a small kernel, the first layers in a CNN can only
recognize simple structures and patterns in images (e.g. edges). The deeper the
network is constructed, the more complex structures can be identified. That is
because deeper layers indirectly interact with a larger portion of the input units.
As figure 4.3 shows, the outputs of a convolution layer defines the input of the
subsequent layer. The outputs of the layers can therefore be imagined as building
blocks building on top of each other.
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4.2 Convolutional Neural Networks

Figure 4.3: Visualization between the indirect dependencies between multiple layers in CNN [29] where xi de-
notes an element of the input vector x and hi, gi refer to the outputs of convolution operations in
the first two layers

Parameter sharing is the next characteristic of a convolutional operation. The
main idea behind parameter sharing is to learn one set of weights instead of separate
sets for every location. The kernel matrix can be seen as a 2-dimensional window
that slices through every part of the image, applying matrix multiplication. The
reuse of the weights makes sense, because certain patterns in images often occur
multiple times. This leads to filters that are optimized for the recognition of certain
patterns (e.g. vertical edges). Sharing parameters has no positive effect on the
runtime, because the number of operations remains the same. Nevertheless, the
required storage capacity is reduced, because instead of m× n, only k × k weights
need to be stored, where k is the size of the kernel.

Another beneficial property of applying convolutional operations stems from the
idea of sharing the same parameters and is referred to as equivalence to translations,
which means that if the input changes, the output changes in the same way. With
regard to images, a convolution creates 2-D feature maps that show where certain
features appear in the input. If the position of an object in an image changes, it
will move the same way in the output image. This phenomenon is related to the
kernel, which slides through the input and ensures that a pattern is recognized
regardless of its position. In case of multiple features that are learned with separate
filters, a pooling unit can be even be invariant to other transformations such as
rotations or distortions.

4.2.2. Pooling

The task of the pooling layer is to replace the output of the feature map at a certain
position with a summary statistic of the nearby outputs. The most popular pooling
functions being used in this context are called max and average pooling. The max
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4.3 Transfer Learning

pooling function computes the maximum value that is in the filters receptive field,
while the average function simply calculates the average. Figure 4.4 shows an
example of how the summary metrics are extracted from the feature map.

Figure 4.4: Example of max- and average-pooling operations [76]

One of the tasks of pooling is the dimension reduction of the feature map in
order to eliminate less relevant information. On the other hand, the pooling allows
the processing of images with variable size. Another advantage is the invariance to
small translations. This means that by slightly translating an object in an image,
the value of the pooled output will not change because the maximum value of that
area remains the same.

4.3. Transfer Learning

Transfer learning refers to using a pre-trained model for another task with the
same weights. Generally, two common approaches can be distinguished: First, the
pre-trained model works as a feature extractor [54] by only using the model up to
a specific layer. The extracted features can then be used as input for subsequent
machine learning tasks. Second, the pre-trained model can be fine-tuned and
tailored on a specific task [78] through adding further layers on top of it. As
a result, the training process is more efficient because the weights have already
been trained, preventing them from being randomly initialized. The main benefit
of using transfer learning is that the pre-trained models are mostly based on an
extensive database containing millions of data samples and therefore prevent the
trained model to be biased towards properties of the training set.. Since the first
layers in a CNN are optimized to extract low-level features such as edges, this can
be exploited and applied to other problems.

4.4. Convolutional Autoencoder

A Convolutional Autoencoder (Convolutional AE) is a neural network optimized to
copy its input data. The model consists of two components: the encoder h = f(x)
and the decoder x′ = g(h) function, both of which are implemented as a multi-
layer CNN. This means that the Convolutional AE maps an input image x to
an output image x′. The output of the encoder function is a lower dimensional
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4.4 Convolutional Autoencoder

latent representation of the original image. Out of this latent variable, the decoder
function needs to reconstruct the original image. In order to force the model to
learn correct parameters for decoding an encoded representation, the loss function
needs to be minimized.

L (x, g (f (x))) (4.2)

This loss function penalizes g(f(x)) for being dissimilar from x. The choice of
the loss function thus plays a decisive role in the application of Convolutional AEs.
Three loss functions will be introduced in the next subsection to lay the foundation
for the experimental part of this thesis. However, one important requirement
that must be observed, is to design the architecture of a Convolutional AE in an
undercompleted way. This refers to constrain h to have a smaller dimension than
the original input x. It forces the Convolutional AE to only extract most relevant
features of the training data. Furthermore it prevents the model to be in danger of
learning the identity function [66].
Once the model is trained, it is able to encode and reconstruct images that

resemble the training data. In case of an input image that is dissimilar to the ones
involved in training, reconstruction will fail. This leads to a high reconstruction
error (see 4.2). The high input sensitivity of a Convolutional AE can be exploited
to detect images that differ from the ones being used to train the model. That
is why Convolutional AEs are very popular in the field of anomaly detection (e.g.
[69], [40]). Transferred to the domain of fingerprint PAD, a Convolutional AE is
only trained on bona fides. Later, the model can be used to detect unknown PAs
by comparing the reconstruction error against a threshold.

4.4.1. Weighted Mean Squared Error

A Convolutional AE encodes the input and decodes it again so that the original
input is reconstructed. This means that the loss function needs to be designed in a
way that the reconstruction error is minimized. A common approach is to use the
mean squared error (MSE) [5] which is defined as

L =
1

N

N∑
j=1

msej (4.3)

with

msej =
1

WHI
·
W∑
w=1

H∑
h=1

I∑
i=1

ejwhi (4.4)

where N,W,H, I denote the number of training samples, the width, height,
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4.4 Convolutional Autoencoder

and number of input channels (e.g. three for RGB) of an input image x and
ejwhi = (xjwhi − x

′j
whi)

2 equals the pixel-wise squared error. Using the MSE as a loss
function has the advantage that it is easy to understand and often preimplemented
by many deep learning libraries such as Keras [42]. However, there is also a major
drawback in case of random noise occurring in the data. Since the calculation of the
MSE includes squaring the difference between every pixel of the input image, single
outliers will have a huge impact on the reconstruction error. This will inevitably
lead to an increased rate of bona fides erroneously classified as PAs. This lack of
robustness against outliers is a well known challenge in the deep learning domain
and is referred to as robust estimation [60]. The idea of increasing the robustness
of an AE model for anomaly detection was picked up by [32] who introduced a
weighted version of the MSE:

L =
1

N

N∑
j=1

wj ·msej (4.5)

with wj defined as

wj =

{
1, msej ≤ C
0, msej > C

. (4.6)

where C equals the α-th quantile of mse = [mse1, . . . ,mseN ]. The approach of
Ishii et al. forsees to ignore training samples during the optimization process as
soon as their measured MSE exceeds a defined threshold C. Translated to the
problem of fingerprint PAD, that means that a certain percentage of bona fides will
be ignored during the training phase. The authors state that their proposed loss
function is useful to cope with unknown outliers within the training set since they
will not distort the resulting model. Unknown outliers can occur, for example, if
the data is not labelled. Therefore it will be difficult to split them from the inliers.
However in case of this thesis, the training data is labelled and does not contain a
single PA. Thus, the exclusion of bona fide samples exceeding C could lead to an
unwanted loss of information, since the ignored images still contain areas relevant
for classification.

For that reason, the proposed loss function of Ishii et al. will be slightly adjusted
within this work. The main idea is to integrate the weight factor such that it
excludes image areas for which the target grey values can systematically not
be reconstructed by the Convolutional AE. In other words, this means that the
Convolutional AE is optimized to reconstruct the most meaningful areas of the
images while ignoring random noise. The adjusted loss function is defined as
follows.
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4.5 t-Distributed Stochastic Neighbor Embedding

L =
1

WHI
·
N∑
j=1

W∑
w=1

H∑
h=1

I∑
i=1

wjwhie
j
whi (4.7)

with

wjwhi =

{
1, ejwhi ≤ msej + C · stdj
0, ejwhi > msej + C · stdj . (4.8)

and

stdj =

√√√√ 1

WHI
·
W∑
w=1

H∑
h=1

I∑
i=1

(
ejwhi −msej

)2
(4.9)

Generally speaking, every pixel value will be compared with a threshold that
is a linear combination of both mean and standard deviation of the squared
error. Exceeding pixels will be ignored within the model optimization and during
prediction. Thus, contrary to the MSE, it is assumed that this approach will prevent
random noise from increasing the overall reconstruction error of bona fide samples.
The remaining challenge however consists in finding the optimal constant value of
C. By choosing a too low threshold the model might tend to over-generalize such
that decisive patterns that are important for distinguishing between bona fides and
PAs are not extracted anymore. On the other hand, if C is too high, noisy data
might be involved in both training and testing which leads to a less robust model
and consequently to increased misclassification rates. This problem is related to
the typical trade-off between bias and variance. To validate the assumptions made,
section 7.2 compares the performance of a Convolutional AE model trained with
the proposed weighted MSE against another one trained by using the usual MSE.

4.5. t-Distributed Stochastic Neighbor Embedding

In 2008, Van der Maat [48] presented t-Distributed Stochastic Neighbor
Embedding (t-SNE) as a method to visualize high-dimensional data. T-SNE
is a dimension reduction technique that converts a high-dimension data set X =
x1, x2, . . . , xN into low-dimensional data Y = y1, y2, . . . , yN . Usually, the high-
dimensional data is reduced into the 2-dimensional space so that the samples can
be visualized in a scatterplot. The main goal of reducing the dimension is to
preserve as much of the relevant structure of the high-dimensional as possible in
the low-dimensional space. Basically, t-SNE solves this problem by keeping the
low-dimensional representations of very similar data points close together by using
a nonlinear mapping algorithm. To this extend, t-SNE is able to capture local
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4.5 t-Distributed Stochastic Neighbor Embedding

structures of the high-dimensional data, as well as revealing global structures such
as the presence of clusters.
T-SNE translates the euclidean distances between data points xi and xj in the

high-dimensional space as a symmetric joint-probability distribution P. Analo-
gously, a joint-probability distribution Q is defined that describes the similarity of
the data points yi and yj in the low-dimensional space. The main goal is to shape
Q, also Embedding, so that it behaves as similar as possible to P . T-SNE addresses
this problem by optimizing the positions of the low-dimensional data points by
minimizing the cost function KL given by the Kullback-Leibler divergence
between P and Q:

KL(P||Q) =
N∑
i=1

N∑
j=1

pij · ln
(
pij
qij

)
(4.10)

Given two data points from xi and xj from X = x1, x2, . . . , xN , pij models the
probability that xi would choose xj as its neighbor. In this context, for each point a
Gaussian kernel, P〉, is chosen. The variance of the Gaussian kernel σi is dependent
on the local density in the high-dimensional space. Then pij is defined as follows:

pij = pji =
pi|j + pj|i

2N
(4.11)

with

pj|i =
exp (− (||xi − xj||2) / (2σ2

i ))∑N
k 6=i exp (− (||xi − xk||2) / (2σ2

i ))
(4.12)

where pj|i can be seen as the relative measure of similarity between xi and xj,
based on a local neighborhood centered around xi. For the purpose of choosing
sigmai for a given Gaussion kernel, the perplexity number θ is defined. This can
be interpreted as a measure of the effective number of neighbors and be chosen
individually. The value of σi is chosen that for a fixed θ and each i the following
equation is satisfied:

θ = 2−
∑N

j=1 pj|i·log2(pj|i) (4.13)

Instead of using a Gaussian distribution as in the case of pj|i, the computation of
the joint-probability distribution Q is based on a Student‘s t-Distribution. Given
two lower-dimensional points yi and yj, the similarity measure qij is defined as
follows:
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qij = ((1 + ||yi − yj||2) · Z)−1 (4.14)

where

Z =
N∑
k=1

N∑
l 6=k

(
1 + ||yk − yl||2

)−1 (4.15)

The minimization of the KL-divergence from equation 4.10 is based on Gradient
Descent, which gives an indication of the positional change of the low-dimensional
points. The gradient of KL is given by:

δKL

δyi
= 4

(
N∑
j 6=i

pijqijZ (yi − yj)−
N∑
j 6=i

q2ijZ (yi − yj)

)
(4.16)

The authors of [48] recommend to limit t-SNE on data sets not containing more
than 10, 000 points as the computation and memory complexity increases quadratic
with the number of data samples. In the course of this thesis, t-SNE has been
applied to a maximum total number of 14,898 data samples without reaching
system capacities.

4.6. One-Class Support Vector Machines

A One-Class Support Vector Machine (OC-SVM) defines a group of unsupervised
learning algorithms that decide whether a new data point belongs to a class or
not, i.e. being an outlier or not. In this context, the work of Schölkopf et al. [62]
provides an algorithm that computes a binary function that captures regions in
feature space where the probability density of the data lives. The decision function
is defined as follows:

f(x) = sgn

(
N∑
i=1

αiK(x, xi)− ρ

)
(4.17)

where αi and ρ are obtained by solving a minimization problem and characterize a
hyperplane which has maximal distance from the origin in feature space, separating
all data points from the origin (for further details see Schölkopf et al. [62]). As
part of the decision function, a radial basis function kernel has been used, which is
defined as:

K(x, xi) = exp
||x− xi||2

2σ2
(4.18)

where σ automatically gets scaled within the scikit-learn machine learning library
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[64], dependent on the variance of the input data. The RBF-Kernel value decreases
with distance and ranges between zero and one, therefore it can be interpreted as a
similarity measure between two data points [75]. Translated to equation 4.18, this
means that the decision function f(x) will be +1 for data points that are similar
to the ones the OC-SVM was trained on. On the other hand, f(x) outputs −1 for
data points which are dissimilar to the training data, thus indicating an outlier.

5. Experimental Setup

This chapter provides a detailed overview of the experimental framework to prepare
the reader for the next sections.

5.1. Dataset & Collection

In order to evaluate the suitability of LSCI and SWIR as a basis for unknown
fingerprint PAD using Convolutional AEs, an extensive dataset is mandatory. Since
most publicly accessible data sources for fingerprint images such as the LivDet
dataset [55] do not include LSCI or SWIR data, an own capturing process has
been initiated within the BATL project [7] using the capturing device described in
section 3.1.1.
To make use of the observations of Steiner et al. [68], the SWIR images were

taken within the following wavelengths: 1200 nm, 1300 nm, 1450 nm and 1550
nm. For each finger presentation, eight different images were captured, two per
wavelength. The first one (SWIR image) with active SWIR illumination and the
second (dark image) without any illumination. By subtracting the dark from the
SWIR image, light sources not stemming from the illumination inside the capturing
device can be removed.

For the LSCI sensor the laser module is used as the illumination source facing the
finger slot. The scattering pattern appears when light from a coherent light source
(i.e. laser) is reflected by a sufficiently rough surface. After the light gets reflected
it interferes either constructively or destructively which leads to alternating dark
and bright patterns. Since the laser light penetrates the skin to a certain depth,
the speckle pattern can also detect temporal variations such as the blood flow in
the finger [74]. To investigate this temporal effect, a video sequence of two seconds
was recorded at a frame rate of 50 fps (i.e. 100 frames). Figure 5.1 shows sample
images of a captured bona fide fingerprint using LSCI and SWIR sensors.

In several sessions a total of 19, 598 bona fide and 4, 226 PA samples were collected,
including 43 unique PAIs. During the acquisition, the fingerprint images were
labeled as either bona fide or PA in order to train binary classification algorithms.
Additionally, the data has been cleaned by removing erroneous samples which were

24



5.1 Dataset & Collection

caused through an improper placement of a subject’s finger. Finally, the region
of interest (ROI) has been extracted by cropping the image frames to a size of
100x300 pixels.

The rest of this section is dedicated to further inspect the PAIs involved to
test the performance of an AE. Among others, Ecoflex, Silicone, Gelatin, and
Dragonskin are the most represented materials used for fabrication. Since both
structure and appearance within the PAIs varies a lot, they were assigned to specific
classes. This is advantageous since the performance of an AE can be broken down
to determine which type of PAI the model is most susceptible to. In this context,
the following classes are defined:

• Fake Fingers refer to PAIs that reconstruct the whole finger

• Overlay Opaque.

• Overlay Transparent

• Overlay Semi refer to PAIs that can neither be classified as opaque nor
transparent

• Printout Transparent

• Printout Opaque

A more detailed breakdown of the PAI species classes is given in appendix
A. However, to provide an insight into the variety of different PAIs, figure 5.2
shows one randomly chosen example image of each class, both for LSCI and SWIR

Figure 5.1: Examples LSCI and SWIR bona fide images - from left to right: LSCI, SWIR (1200nm, 1300nm,
1450nm, 1550nm)
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data. Comparing the PA samples with figure 5.1 which shows bona fide examples,
they can be clearly discriminated visually. This is an important characteristic as
Convolutional Autoencoders are not able to detect PAs that look exactly the same
as bona fides.

Figure 5.2: Left: LSCI image, Right: SWIR image captured with 1200nm, Top to bottom: Overlay Opaque
(overlay ecoflex fleshtone), Fake Finger (dragonskin), Overlay Transparent (overlay knox gelatin),
Overlay Semi (overlay wood glue), Printout Transparent, Printout Opaque (Printout Paper)

Since the number of samples belonging to the predefined PAI species classes is
not equally distributed, figure 5.3 depicts the proportions of each class to the total
amount of all PAs. Apparently, both opaqued overlays as well as fake fingers are
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over-represented, containing approximately 80% of the PA samples. Contrarily, the
printout classes are represented with only 2.6%. It is important to take this into
consideration as even models achieving highly competitive performance numbers
could potentially misclassify all samples stemming from an underrepresented class
and therefore lead to a false security perception regarding the robustness of the
biometric capture device. Thus, also the detection performance within the PAI
species classes will be examined during the course of this thesis.

Figure 5.3: Visualization of the PAI species classes representations within the dataset

5.2. Evaluation

5.2.1. Metrics

In order to facilitate the comparison of the presented results, the reported evaluation
metrics are in accordance with the ISO/IEC - 30107-3 standard [36] and defined
as follows:

• Detection-Equal Error Rate (D-EER) reports the misclassification rate
when APCER equals BPCER

• APCER20 reports the APCER for a fixed BPCER of 5%

• BPCER20 reports the BPCER for a fixed APCER of 5%

• APCER100 reports the APCER for a fixed BPCER of 1%

• BPCER100 reports the BPCER for a fixed APCER of 1%
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Generally, a low BPCER (e.g. as indicated with the fixed BPCER of 1%) repre-
sents a convenient PAD system because less bona fide fingerprints will accidentally
be classified as attack presentations. On the other hand, the lower the APCER, the
more PAs will be detected and therefore increase the security of the overall biometric
system. The decision on which metric is most important therefore depends on the
final application. To further facilitate the performance analysis between multiple
models, Detection Error Tradeoff (DET) curves provide a graphical presentation
of the trade-off error rates [50]. In case of fingerprint PAD, both APCER and
BPCER are plotted against each other for multiple thresholds. In addition to the
above listed metrics, the partially measured area under the DET-Curve (pAUC)
has also been taken into consideration as part of the experimental evaluation. Since
very high error rates are not of particular interest, the pAUC is calculated for both
APCERs and BPCERs smaller than 20%, as depicted in figure 5.4.

Figure 5.4: Graphical illustration of the area beneath (orange) and above (green) an example DET-curve (blue)
with an according pAUC computed as A

A+B

5.2.2. K-Fold Cross Validation

Cross-Validation (CV) is a technique for evaluating the performance of a machine
learning model on limited data sets. The motivation behind CV is to find out how
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well the trained model predicts the classes of new and unseen samples that were
not involved during the training process. On the one hand, it is desirable to include
all available data samples to train the model. On the other hand, this means that
the only possibility to validate the model is to use data that has already been
seen by the model which often leads to overly optimistic results ([37], section 5.1).
Generally speaking, it is mandatory to use different data partitions for the training
and testing process. This is where the CV comes in: it involves partitioning the
data into complementary subsets which are randomly chosen. The separation of
the following three subsets has proven to be effective [8]:

• Training subset. The data samples used to train the model.

• Validation subset. The data samples used to provide an unbiased evaluation
of the model fitted on the training subset while tuning the parameters of the
classifier. The evaluation gets more biased the more information from the
validation subset gets incorporated into the training process.

• Test subset. The data samples used to evaluate the performance of the
final model. Neither model- nor hyperparameters get trained based on the
test samples in order to provide an unbiased evaluation.

Splitting data into training, validation, and test subsets provides an intuitive
technique to detect overfitting and evaluate the model in an unbiased manner.
However, since not all of the data samples are included in the training process,
this may result in important variability being lost. To anticipate this problem
and to ensure that different samples are used for training and testing, a k-fold
Cross-Validation will be performed throughout the experiments of this thesis. The
idea of k-fold CV consists of randomly partitioning the dataset into k equal sized
subsets ([22], section 7.10.1). The next step foresees to leave out the first of the k
subsets as evaluation and the remaining k−1 subsets as training data. This process
will then be repeated k times so that each subset has been used only once for
validation. To obtain a single performance estimate, the k results can be averaged.

Since the computing time increases with increasing k, a value of k = 3 was chosen
for the experiments. Choosing a low value for k still leads to a stable estimate
of the true misclassification error as long as not too many classes are involved
[44]. Figure 5.5 depicts the number of samples contained in training, test and
validation on three different folds. The 30-20-50 split setting has been chosen after
a comparison of alternative configurations (see appendix B). Since the fingerprints
of some test subjects were captured multiple times, the data splits are based on
the subject ID. This is important because data samples from the same subject,
which are included in both training and test set, might lead to overly optimistic
classification results. Since the Convolutional AEs are trained on bona fide samples
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solely, the data split is applied to the total amount of bona fide fingerprint images.
In addition to the total amount of test samples reported in figure 5.5, all of the
4, 226 PA samples were added to the test set afterwards.

Figure 5.5: Graphical representations of the three folds used for 3-fold Cross Validation. After the data partitions
were created, all PAs were added to the test set.

5.3. Implementational Details

5.3.1. Libraries

The presented AE architectures have been implemented with Keras, that is a
python based deep learning library that facilitates the definition, training and
evaluation of various deep learning model types [21]. Initially it has been developed
for researchers to enable fast experimentation [43]. It provides a high-level API
containing modular building blocks to be able to construct customized deep learning
models. However, Keras does not include low-level operations such as tensor
manipulations or differentiations [1]. For this reason, Tensorflow [71] is used as a
low-level framework which provides all the necessary tensor operations, offering
the perfect foundation for Keras. Furthermore, Scikit-Learn [63] is used as a
python based machine learning library. It contains a pre-implemented function
OneClassSVM() for both training and testing OC-SVMs, analogous to Schölkopf et
al. [62]. All of the package versions used within this work are listed in appendix C.

5.3.2. Dynamic AE Model Creation

In order to be able to build a tailored AE model, it is essential to test differ-
ent parameter settings. In this context, it is recommended to keep the model
construction part as dynamic as possible. During implementation, the variable
design of the number of layers turned out to be one of the biggest challenges.
The problem and its solution is illustrated in figure 5.6. The arrow diagrams are
simplified representations of two AE models, with the left version consisting of
one downsampling and the right version consisting of two downsampling steps.
The left version will not cause any problems because both width and height of
the original image are even numbers. By adding an additional downsampling

30



operation the size of the latent space representation needs to be either rounded up
or down. Since the reconstruction part involves two upsampling operations, the size
is simply doubled twice to restore the original image. However, this would result in
a reconstructed image with a shape of 32x32x1 that differs from the original one.
This leads to error occurrences in the calculation of the pixelwise mean squared
error. The workaround solution includes a layerwise shape comparison. In case of
a mismatch, the rightmost column and the last row are truncated to compensate
the discrepancy.

Figure 5.6: Illustration of the problem that arises with uneven shapes. Left: AE with a single downsampling
operation, Right: AE with two downsampling oeprations

6. Proposed PAD methods

This section gives an overview of the experiments which are presented in section 7.
Specifically, the first part introduces the reader to the baseline AE architectures
that have been implemented within this thesis. Building on this, the second and
third part discuss additional test settings. However, since the depictions within
this section only serve as a first overview, various details, such as the filter sizes of
the convolution operations, are not specified. A further description of the baseline
architectures follows in section 7.1.1.
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6.1. First Part: Baseline Models

The first part of the experiments introduces three baseline model architectures
whose results are presented and benchmarked against each other to determine
which one is best suited for fingerprint PAD on both LSCI and SWIR data. The
structure of the architectures is depicted in figure 6.1. All of the baseline models
are trained using MSE as a loss function and a single input channel, i.e. a single
image. For the LSCI data, the 50th image out of a sequence of 100 images per
captured finger has been chosen. The SWIR models are trained on a single image
with a wavelength of 1550 nm. Looking at the architecture of the Dense-AE, a
new operation (Flatten) is involved. Since a Fully-Connected NN demands for a
vector input, the multi-dimensional output of the max pooling operation needs to
be reshaped. Therefore, the flatten operation reshapes a multi-dimensional tensor
to have a single dimension with the number of entries being equal to the total
number of elements contained in the multi-dimensional tensor.

Figure 6.1: The first part of the experiments includes three baseline architectures, defined as Conv-, Pooling-,
and Dense-AE. Operations: C = Convolution, US = Upsampling, MP = Max Pooling, F = Flatten,
R = Reshape

6.2. Second Part: Weighted MSE

Section 4.4 introduced a weighted MSE as an alternative loss function for Convolu-
tional AEs. Therefore, the second part of the experiments examines the impact
of replacing the MSE loss function with the proposed weighted MSE, as depicted
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in figure 6.2. To accomplish this, the architecture of the best performing base-
line model will be retrained with exactly the same parameters but with the loss
function replaced by the weighted MSE. Additionally, since the weighted MSE
entails a further hyperparameter C, the effects of different parameter choices are
also examined.

Figure 6.2: The second part of the experiments evaluates the effect of using a Dense-AE with a Weighted MSE
instead of the usual variant

6.3. Third Part: Multi-dimensional Inputs

Finally, the third part adopts the same model configurations as previously but
with multi-dimensional input channels. The addressed question here is whether the
supplementary dimensions contain additional information that are of value for the
distinction between bona fides and PAs. In case of LSCI, a 3-dimensional input
tensor is used, composed of the first, middle, and last image that were extracted
from the sequence of 100 images. Since the acquisition of the SWIR images included
four different wavelengths, all of them were concatenated to a 4-dimensional input
tensor to exploit the whole spectrum of information, as shown in figure 6.3.

Figure 6.3: The third test setting includes multi-dimensional inputs for a Dense-AE on both LSCI (3D) and
SWIR (4D) data.
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7. Experimental Results

The following subsections are structured according to section 6 and present the
results of all experiments performed during the course of this thesis

7.1. Baseline Model Architectures

7.1.1. Model Descriptions

This subsection introduces the three baseline AE model architectures which were
implemented and tested as part of the thesis. The basic structure corresponds to
the one described in section 4.4. It consists of two different parts: the encoding
and decoding stage. Figure 7.1 allows to compare the layers contained in each
model. To make it easier to refer to the three architecture types, they are defined as
Conv-AE, Pooling-AE, and Dense-AE (left to right in figure 7.1). The names
refer to the type of layers which were successively added to the architecture. So the
Conv-AE includes only convolutions, while the Pooling-AE additionally consists
of max pooling operations. Finally, the Dense-AE model also comprises dense
layers, which correspond to the node structure in an ordinary Fully-Connected NN
introduced in section 4.1.
First, a more detailed comparison between the structure of the Conv- and

Pooling-AE model is been discussed: The only difference between them is how
dimension reduction works. The idea behind the first model structure is to halve
the dimension of the input tensor by using convolution operations with a striding
number of two, which refers to the number of pixels a convolutional filter moves.
Within the Pooling-AE, the convolution operation uses a stride value of one so
that the dimension is preserved. The reduction of the dimension takes place in the
second layer, the maximum pooling layer, which is described in section 4.2.2. By
choosing a kernel size of two, the dimension is cut in half. The decoding stages of
both architectures are identical and consist of an upsampling and convolutional
operation. The upsampling layer simply repeats the rows and columns such that
the dimension is doubled and again matches the dimension of the original input
tensor. The consistency of the input and output dimension is mandatory because
of the pixel-based mean squared error calculation involved in the optimization
process.

Next, the architectural differences between the Pooling- and Dense-AE model are
analyzed. The first two layers are identical and reduce the dimension by applying a
maximum pooling operation. Unlike the Pooling-AE, the Dense-AE model uses a
Fully-Connected NN between the convolutional encoding and decoding stage. Since
Fully-Connected NNs require an one-dimensional tensor input, it is mandatory to
flatten the multi-channel tensor output of the first maximum pooling layer. The
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structure of the Fully-Connected NN complies with the basic structure of an AE.
It consists of an encoding and decoding phase, whereby the dimension is reduced
in the encoding and then rebuilt in the decoding part. Afterwards, both model
architectures use the same technique to reconstruct the original input image.

The motivation to develop and test the performance of these models stems from
related works that either use the Conv- or Dense-AE model structure. Specifically,
the inspiration is grounded on scientific findings of Springenberg et al. [67] who
claim that the max pooling operation can simply be replaced by a convolutional
layer with an increased stride without significant loss in accuracy. This view is
contrary to that of Goodfellow et al. [29] who state that the max pooling operation
leads to an invariance of translations in smaller regions. The experimental results
show which architecture is better suited for the task of fingerprint PAD using
LSCI and SWIR data. Finally, the construction of the Dense-AE can be seen as
an extension of the Pooling-AE. As mentioned by Ke et al. [40] the task of the
Fully-Connected NN is to further process the feature maps of the previous layers by
combining them to find interdependent patterns. The following subsections present
the experimental results of all baseline model architectures.
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Figure 7.1: Left: Conv-AE including only convolutional operations, Middle: Pooling-AE using both convo-
lutional and max pooling operations, Right: Dense-AE including convolutional and max pooling
operations in addition to a Fully-Connected NN
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7.1.2. Conv-AE Model

First, the results of the Conv-AE are presented. Table 7.1 lists the performance
measures introduced in section 5.2.1 for each partition used as part of the Cross-
Validation. The bold numbers represent the mean value of all three partitions. In
addition to the performance measurements of the LSCI and SWIR data set, the
results of a score fusion is given, using a simple weighted average. The question
of how the scores are weighted is addressed in figure 7.2, which depicts multiple
DET-curves each of which representing a different weight setting. The comparison
of several DET curves can be interpreted subjectively, especially when the curves
intersect. In this case, it often depends on whether the model should rather focus
on the safety or the convenience of the biometric system. However within this
thesis, the decision of which model performs best relies on the partially measured
area under curve (pAUC) which has been introduced in section 5.2.1. This leads to
a more general evaluation of the models, as they are not specifically meant to be
optimized for safety or convenience purposes.

The first question to discuss is which sensor technology better suits to distinguish
between bona fide and PA samples. When comparing the average measurements in

Metric Partition LSCI (%) SWIR (%) Fused (%)

D-EER

0 20.71 14.46 14.46
1 20.93 12.27 12.27
2 21.11 10.82 10.82

Avg 20.92 12.52 12.52

BPCER20

0 99.97 47.64 47.64
1 99.99 52.20 52.20
2 99.99 19.32 19.32

Avg 99.98 39.72 39.72

APCER20

0 28.38 19.62 19.62
1 28.74 15.30 15.30
2 28.65 18.88 18.88

Avg 28.56 17.93 17.93

BPCER100

0 100.00 76.34 76.34
1 100.00 83.00 83.00
2 100.00 67.76 67.76

Avg 100.00 75.70 75.70

APCER100

0 45.32 24.26 24.26
1 45.22 21.20 21.20
2 44.48 28.28 28.28

Avg 45.01 24.58 24.58

Table 7.1: Cross Validation results of a Conv-AE on LSCI and SWIR data. Additionally, a score fusion is given
whose weights have been chosen according to table 7.2
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table 7.1, it becomes clear that the SWIR model is the superior one. All performance
indicators have a lower value, which leads to the conclusion that the SWIR data
set is more suitable as a basis for the Conv-AE. Another question to be addressed
is whether the LSCI and SWIR data complement each other. As mentioned before,
the optimal weights have to be found in order to fuse the two scores of the models.
Figure 7.2 shows seven different DET-curves, each representing different score
weights. Only the first fold will be taken into account to find the optimal weight
setting since the measurements across the three partitions are similar.

Figure 7.2: DET-Curves after fusing the scores of Conv-AE Models, which are trained on both LSCI and SWIR
data

Figure 7.2 shows that the straight black curve outperforms all other weighted
fusions. Therefore, the best setting is a weight of zero for the the scores of the LSCI
model. Furthermore, table 7.2 presents the respective pAUC values and indicates
that an increasing weight for the LSCI model, the pAUC value also increases.
Hence, the overall performance decreases and we can conclude that the LSCI and
SWIR models are not complementary, as the best results were obtained using the
SWIR model alone.
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LSCI weight (%) SWIR weight (%) pAUC (%)
0.0 100.0 84.94
10.0 90.0 94.02
30.0 70.0 99.57
50.0 50.0 99.94
70.0 30.0 100.00
90.0 10.0 100.000
100.0 0.0 100.00

Table 7.2: pAUC values measured in a range between 0-20% of the Conv-AE for multiple score weights

7.1.3. Pooling-AE

This subsection is structured exactly like the previous one: First, table 7.3 lists the
performance metrics for each of the three data folds. Next, table 7.4 contains the
pAUC values of the DET-curves shown in figure 7.3, which are used to determine
the optimal score weights of the score fusion between LSCI and SWIR models.
A comparison of the averaged performance metrics indicates once again that the
SWIR model performs better than its counterpart. The results are therefore similar
to the previous evaluation of the Conv-AE model. Looking at the performance of
the fused model, it indicates that no complementary effect could be measured since
the numbers are identical to the ones from the single SWIR model. Supplementary,
figure 7.3 depicts the DET curves corresponding to the different weight settings.

39



7.1 Baseline Model Architectures

Metric Partition LSCI (%) SWIR (%) Fused (%)

D-EER

0 20.10 11.01 11.01
1 19.17 10.78 10.78
2 19.54 10.66 10.66

Avg 19.60 10.82 10.82

BPCER20

0 99.99 40.32 40.32
1 97.38 42.66 42.66
2 96.90 22.48 22.48

Avg 98.09 35.15 35.15

APCER20

0 27.22 14.05 14.05
1 28.16 13.55 13.55
2 28.37 16.96 16.96

Avg 27.92 14.85 14.85

BPCER100

0 100.00 67.43 67.43
1 100.00 69.36 69.36
2 100.00 54.49 54.49

Avg 100.00 63.76 63.76

APCER100

0 42.86 22.92 22.92
1 51.03 21.22 21.22
2 46.92 26.02 26.02

Avg 46.94 23.39 23.39

Table 7.3: Cross Validation results of a Pooling-AE on LSCI and SWIR data. Additionally, a score fusion is
given whose weights have been chosen according to table 7.4

The straight black curve, similar to the last observations, stands out clearly
from the others. This shows once again that the inclusion of the LSCI model leads
to worse results. This observation can be confirmed by a pAUC value of 61.44%
according to Table 7.4. It also shows that the higher the LSCI model is weighted,
the higher the pAUC values, indicating a gradual deterioration in performance.
Summarizing the results of the Pooling-AE model, it should be mentioned that
the models are still far from providing a practical use for a biometric system. An
D-EER of about 10% means that every tenth PA as well as every tenth bona fide
sample has been misclassified. This can neither be considered particularly safe nor
particularly convenient. In the next subsection, therefore, the results of the third
type of AE are presented.
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Figure 7.3: DET-Curves after fusing the scores of Pooling-AE Models, which are trained on both LSCI and
SWIR data

LSCI weight (%) SWIR weight (%) pAUC (%)
0.0 100.0 61.44
10.0 90.0 79.15
30.0 70.0 95.20
50.0 50.0 98.68
70.0 30.0 99.72
90.0 10.0 99.93
100.0 0.0 100.00

Table 7.4: pAUC values measured in a range between 0-20% of the Pooling-AE for multiple score weights

7.1.4. Dense-AE

The evaluation of the results of the Dense-AE model is again structured in the
same way as the previous subsections. Table 7.5 shows the performance metrics
across all three data folds for the LSCI, SWIR, and fused models. In the last two
subsections, the models trained on the SWIR dataset have outperformed the LSCI
models without exceptions. This time, however, it seems to be exactly the opposite.
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Except for the APCER100, all of the averaged measurements indicate that the
LSCI model performs slightly better. This is a surprising result which proves that
the choice of the model architecture has a significant impact on the final result.
Additionally, looking at the fused scores, it can be observed that the combination
of LSCI and SWIR models leads to a significant improvement. Comparing the
average D-EER of the LSCI models with the ones measured by fusing the scores,
they differ by over two percentage points which corresponds to percentage change
of minus 35.5%.

Metric Partition LSCI (%) SWIR (%) Fused (%)

D-EER

0 6.59 6.01 4.01
1 7.01 6.68 4.01
2 6.67 8.46 5.05

Avg 6.76 6.85 4.36

BPCER20

0 8.56 9.29 3.20
1 10.66 12.23 2.63
2 11.83 26.88 5.33

Avg 10.35 16.13 3.72

APCER20

0 8.75 6.55 3.55
1 9.01 7.58 3.50
2 7.86 11.64 5.05

Avg 8.54 8.59 4.03

BPCER100

0 31.64 46.01 18.86
1 29.47 46.45 27.43
2 47.73 61.66 49.07

Avg 36.28 51.37 31.79

APCER100

0 33.97 13.14 20.90
1 26.85 14.31 15.81
2 29.41 20.12 20.51

Avg 30.08 15.86 19.07

Table 7.5: Cross Validation results of a Dense-AE on LSCI and SWIR data. Additionally, a score fusion is given
whose weights have been chosen according to table 7.6

The next step consists of analyzing the performance of the fused models using
the DET-curves in Figure 7.4. Compared to the last two subsections, it is more
difficult to see which DET curve performs best, since most curves are intersecting.
Using the pAUC values according to table 7.5 as a decision criterion, the setting
corresponding to the blue curve stands out with the lowest value. In this scenario,
the LSCI scores are weighted with 10% while the SWIR scores are weighted with
90%. However, a closer look at the lines reveals that the black and blue curves
intersect. This phenomenon can be confirmed by looking at Table 7.5. While
the SWIR model has a APCER100 value of 15.86%, the fused model amounts
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to a higher rate of 19.07%. This observations behaves the same across all three
partitions. It can therefore be assumed that in an application that relies on the
security of the biometric system, it is more valuable to stick to the SWIR model.
Finally, after the results of the three baseline architectures have been presented,
the next subsection deals with the comparison between them to decide which one
is best suited for UPAD.

Figure 7.4: DET-Curves after fusing the scores of Dense-AE Models, which are trained on both LSCI and SWIR
data

LSCI weight (%) SWIR weight (%) pAUC (%)
0.0 100.0 28.16
10.0 90.0 18.79
30.0 70.0 20.18
50.0 50.0 23.51
70.0 30.0 27.24
90.0 10.0 31.27
100.0 0.0 33.46

Table 7.6: pAUC values measured in a range between 0-20% of the Dense-AE for multiple score weights
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7.1.5. Cross-Model Comparison

The last subsections were meant to see how the different AE architectures perform
on both LSCI and SWIR data. However, the question of which architecture
generally outperforms the others remains still open. To address this, figure 7.5
shows three different DET-curves each of which representing the best setting of
the three model architectures. The decision of which model to choose for the
comparison is based on the pAUC values given in table 7.2,7.4 and 7.6.

Figure 7.5: DET-Curves for comparing the fused performance between Conv-, Pooling-, and Dense-AE. Score
weights have been chosen according to pAUC (see tables 7.2, 7.4, 7.6

At first sight, it is clear to see that the red curve, belonging to the Dense-
AE, clearly stands out. Accordingly, the pAUC with a value of 18.79% is also
significantly lower compared to the other values of 84.94% (Conv-AE) and 61.44%
(Pooling-AE), respectively. It can therefore be concluded that the Dense-AE
architecture is the most appropriate to distinguish between PAs and bona fides.
This also confirms the statement of Ke et al. [40] who emphasize the importance
of using a Fully-Connected NN within the autoencoder architecture. Their main
argument is that after reducing the dimension with either convolutional or max
pooling operations, the resulting local features still need to be combined with each
other. So without the use of a Fully-Connected NN, the architecture is simply not
able to capture the dependencies between the extracted local features, resulting in
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a loss of information.
Another interesting observation is the discrepancy between the curves of the

Pooling- and Conv-AE model. The Pooling-AE model seems to perform much better
although the only difference between the two models is the dimension reduction
technique. This is contrary to Steinberger et al. [67], who stated that the pooling
operation can simply be replaced by increasing the stride of the convolutional
layers without sacrificing accuracy. This reinforces the thesis of Goodfellow et al.
[29], who considers the pooling operation important since it leads to a translation
invariance of the detected local features in smaller regions.

After evaluating the three baseline architectures, the conclusion is that the Dense-
AE model best suites on the LSCI and SWIR dataset. It should also be mentioned
that the collection of both LSCI and SWIR data is useful as the combination of
the scores leads to a significant performance boost. Yet, the potential of using
Convolutional AEs as a method for UPAD is not exhausted since the next section
introduces the results obtained by using the proposed weighted MSE outlined in
section 4.4.

7.2. Evaluation of weighted MSE

After introducing the results of the baseline AE models this section expands upon
the idea of using the Dense-AE since it generated the most accurate predictions.
However, in section 4.4, another loss function has been introduced which will be
referred to as weighted MSE. Inspired by the work of Ishii et al. [32], the basic
concept is to make the Dense-AE model more robust by ignoring image areas that
the AE fails to reconstruct, thus increasing the reconstruction error. The usage
of the proposed weighted MSE integrates an additional hyperparameter C which
is part of the calculation of the threshold to decide whether a pixel value will be
ignored or included in the training phase. According to equation 4.8, choosing a
value of C = 0.8 indicates a threshold configuration of msej + 0.8 · stdj where j
denotes the j-th sample within the batch set. Figure 7.6 shows two graphs, each
containing DET-Curves for different hyperparameter settings of C.
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Figure 7.6: DET-Curves of a Dense-AE, trained with a weighted MSE and different settings of hyperparameter
C. Left: LSCI Right: SWIR

The first observation to record is the impact of C on the model performances.
Looking at the graph on the right, the black curve clearly stands out from the
other ones. It represents a Dense-AE which is trained with a configuration of
C = 0.8 which is also the lowest value tested. However, since the model performs
worst, this indicates that too much data has been ignored during the training
stage. Consequently, the model over-generalizes the data such that it is not able
to distinguish between bona fides and PAs. This can also be confirmed by the
highest measured pAUC which is given in table 7.9. Looking at these values, it
is interesting to see that they decrease as the value of C increases. Only the last
setting of C = 1.6 indicates a turnaround point where the performance seems to
get worse again.

The results of the cross validation with C = 1.4 are given in table 7.8. It includes

C LSCI (%) SWIR (%)
0.8 33.36 55.87
1.0 34.78 35.32
1.2 27.84 27.88
1.4 23.07 27.00
1.6 26.43 29.03

Table 7.7: pAUC values measured in a range between 0-20% of different hyperparameter settings of C

46



7.2 Evaluation of weighted MSE

Dense-AE models which are trained on three data folds. The comparison of the
averaged metrics imply that the performance between the different datasets is quite
similar. Looking at the fused score results, the LSCI and SWIR models complement
each other as it significantly improved the numbers. Figure 7.7 shows the different
DET-curves each of which representing different weights for the score fusion.

Metric Partition LSCI (%) SWIR (%) Fused (%)

D-EER

0 4.80 6.05 3.12
1 7.05 6.00 4.20
2 7.13 6.09 3.61

Avg 6.33 6.05 3.64

BPCER20

0 4.51 8.03 1.87
1 11.46 8.72 3.36
2 12.38 9.01 2.02

Avg 9.45 8.59 2.42

APCER20

0 4.68 6.73 2.34
1 9.01 6.48 3.85
2 8.50 6.52 3.20

Avg 7.40 6.58 3.13

BPCER100

0 45.19 38.04 14.95
1 45.73 37.93 15.71
2 39.04 46.47 24.43

Avg 43.32 40.81 18.36

APCER100

0 13.14 14.17 7.14
1 20.60 13.90 11.55
2 15.57 13.71 7.49

Avg 16.44 13.93 8.73

Table 7.8: Cross Validation results of a Dense-AE that is trained with a weighted MSE on both LSCI and SWIR
data. Additionally, a score fusion is given whose weights have been chosen according to table 7.9

At first glance, the blue curve stands out from the other ones. This indicates that
the optimal weight factors provide for weighting the LSCI scores with 10% and the
SWIR scores with 90% which is the same conclusion as the Dense-AE presented in
the previous section. This first visual analysis of the DET curves can finally be
validated with table 7.9 which depicts the pAUC values. The lowest measurement
is printed bold and belongs to the 10-90 setting, reaffirming the initial assumption.
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Figure 7.7: DET-Curves after fusing the scores of Dense-AE models, which are trained with a Weighted MSE
on both LSCI and SWIR data

LSCI weight (%) SWIR weight (%) pAUC (%)
0.0 100.0 27.88
10.0 90.0 12.01
30.0 70.0 15.77
50.0 50.0 18.56
70.0 30.0 20.64
90.0 10.0 22.22
100.0 0.0 23.07

Table 7.9: pAUC values, measured in a range between 0-20% of the Dense-AE, trained with a weighted MSE,
for multiple score weights

Now that the results of the models based on the weighted MSE loss function
have been presented, the next step consists of comparing the proposed against the
original MSE approach.
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7.2.1. MSE vs. Weighted MSE

Next, the comparison between the weighted and usual MSE will be addressed. It is
assumed that the model based on the weighted MSE outperforms its counterpart
since it ignores noisy areas during the training. For this purpose, figure 7.8 depicts
two DET curves. The black one represents the Dense-AE model trained with the
usual MSE while the blue one stands for the weighted MSE method.

Figure 7.8: DET-Curves of the fused scores of two Dense-AE models, the first being trained with a weighted
MSE and the second with a usual MSE

The comparison of the two curves shows that the blue curve runs consistently
below the black one. Thus, indicating that using the proposed weighted MSE
achieves a significant performance boost since the two curves have no intersection
points. To compare the impact of the two loss functions further, figure 7.9 depicts
the reconstruction errors of all images contained in the test set. Besides to the loss
function, the boxplots are also divided into bona fide and PA samples.
To recall the assumption of using the proposed weighted MSE, the expectation

is that the AE model is more robust against outlier areas within bona fide training
data. Thus, the reconstruction error of bona fide samples containing noisy areas
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is reduced and therefore leads to a lower misclassification rate. With that in
mind, it is interesting to observe that the interquartile range within the bona fide
class changes by replacing the usual MSE by the weighted variant. Especially the
topmost point of the upper whisker decreases significantly. This means that bona
fides that were previously difficult to reconstruct can now be better rebuild.
But not only the results of the bona fides, but also those of the PAs should be

analyzed. In order to find an optimal threshold to distinguish between the two
classes, it is mandatory to check whether the reconstruction errors also change.
There would be no benefit if the loss values of the PAs decrease the same amount as
the ones of the bona fides. For this purpose, the boxplots of the PAs only visualize
the lower whiskers in order to be able to compare them to the bona fides on the
same scale. The general loss values are naturally larger as they were not included
in the training process. Also the interquartile ranges are longer since a variety of
different PAIs are analyzed as a single class. In this context, it is negligible that
the upper parts of the boxplots are missing, as they represent poorly reconstructed
PAs that can easily be detected. However, the most interesting observation is that
the overlapping interval between the upper whisker of the bona fides and the lower
one of the PAs gets narrower after replacing the loss function. This inevitably
means that the misclassification rate decreases and therefore the initial assumption
of producing a more robust model is confirmed.
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Figure 7.9: Visualizes the change in reconstruction errors by replacing the MSE with a Weighted MSE

To establish a deeper understanding of how the AE processes bona fide samples,
figure 7.10 shows four reconstructed fingerprint images in the SWIR domain. The
two images on the left are fingerprints based on the Dense-AE model trained
with the weighted MSE while the right ones are based on the usual MSE. The
topmost row shows the bona fide samples within the test set that resulted in the
highest reconstruction error. The middle row, on the other hand, depicts the
reconstructed images of the Dense-AE model. Finally, the bottom row visualizes
the pixel-wise absolute difference between the original and the reconstructed image
as a heatmap. This makes it easier to comprehend which areas of the image fail to
be reconstructed.

The first conspicuous phenomenon to remark are the bright spots in the original
images on the right. This indicates that the fingers did not cover the whole
slot during the capturing process. In regards to the reconstruction capability of
the AE, the light source is a disturbing factor which leads to an increased loss
value. A different scenario can be observed on the left side. Contrary to the usual
MSE, the weighted variant excludes outlier areas from both training and testing.
Consequently, instead of the light affected samples where only a small part is
responsible for the high loss values, the AE now fails to predict images where the
high reconstruction errors are spread all over the image.
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Figure 7.10: Visualizes the reconstructed LSCI bona fide images (middle) with the highest reconstruction errors
in addition to the original images (top) and the pixel-wise absolute difference (bottom). Left:
Weighted MSE, Right: MSE

Similarly to the analysis of the LSCI images, figure 7.11 shows bona fides within
the SWIR domain that ended up with the highest loss values during the test
set evaluation. In contrast to figure 7.10, the same type of images caused high
reconstruction errors. Once again, some fingers of the biometric capture subjects
did not cover the whole capturing slot, resulting in bright spots. The camera
automatically focuses on the light, making the rest of the image appear very dark.
Apparently, with the chosen hyperparameter setting, the weighted MSE is not able
to filter out all of the bright areas which leaves potential for further optimizing C.
Nevertheless, it is noticeable that the reconstructed images on the right are more
effected from the disturbing light as the model tries to reconstruct it. On the left
side however, the reconstructed images resemble more the successfully captured
bona fides. This indicates that using the weighted MSE as a loss function prevents
the bright spots from distorting the optimization process, therefore producing a
more robust model. Since only the bona fide images with the highest reconstruction
errors are included in this subsection, the interested reader is referred to appendix
D where the bona fide samples with the lowest reconstruction errors are presented.

Figure 7.11: Visualizes the reconstructed SWIR bona fide images (middle) with the highest reconstruction errors
in addition to the original images (top) and the pixel-wise absolute difference (bottom). Left:
Weighted MSE, Right: MSE

Now, that the positive effect of the weighted MSE has been validated, the next
section is dedicated to the question of how increasing the input channels effects
the final results.
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7.3. Evaluation of Multi-dimensional Inputs

Part of this section is to further improve the classification results by training the
Dense-AE model with multi-dimensional input tensors. The assumption is that
bundling several fingerprint images includes more relevant information for the final
classification. In case of the LSCI dataset that contains a sequence of 100 images for
each finger sample, there might be temporal information included, such as the blood
flow. Therefore the first, middle, and last fingerprint images have been extracted
to form a 3-dimensional input tensor. In regard to the SWIR dataset, four different
wavelengths (1200nm, 1300nm, 1450nm, and 1550nm) were captured. In contrast
to the last sections where only a single wavelength was used, all images are now
combined into a 4-dimensional input tensor. This exploits the idea of involving
complementary information throughout the whole spectrum of wavelengths. For
this purpose, analogous to the last sections, figure 7.12 demonstrates how the choice
of the hyperparameter C effects the predictions.

Figure 7.12: DET-Curves of Dense-AE, trained with a weighted MSE and multiple input dimensions, including
different settings of hyperparameter C. Left: LSCI Right: SWIR

Comparing the curves between the two datasets, it can be observed that the
volatility remarkably differs. While the curves on the left (LSCI) tend to be varying
more, the ones on the right (SWIR) are more robust. Considering the pAUC values
of the LSCI models in table 7.10, the lower C gets chosen, the more the model
tends to overgeneralize the data, expressing in a poorer performance.
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C LSCI (%) SWIR (%)
1.4 82.65 7.86
1.6 41.10 7.90
1.8 28.82 7.30
2.0 22.45 8.94
2.2 24.37 7.95

Table 7.10: pAUC values measured in a range between 0-20% of different hyperparameter settings of C

After optimizing C, figure 7.13 shows the comparison between the single input
based models of the previous section and the ones trained with multiple dimensions.
At this point, it is beneficial to decide as early as possible whether increasing the
input dimension improves the results since the training process requires more time
and resources.

Figure 7.13: Comparison of the performance between Dense-AE models, trained on single vs. multiple input
dimensions. Left: LSCI, Right: SWIR

Using multiple dimensions, as described above, has two opposite effects. On the
left, the curves intersect two times and it is not clear which one outperforms its
counterpart. Also the measured pAUC values of 23.07% and 22.45% reflect that
adding two additional input dimensions has little effect. This is most likely due to
the high similarity between the 100 images. However, directing the focus on the
right to the SWIR results, the additional information from the other wavelengths
significantly improve the predictions. The blue curve consistently runs below the
black one. Furthermore, the measured pAUC improved from 12.01% to a value
of 7.30%. Therefore it can be concluded that acquiring fingerprints in the SWIR
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domain on several wavelengths leads to a complementary effect. To validate this
observation and to prevent it from being caused by the random data split, table
7.11 summarizes several metrics on three data folds.

Metric Partition LSCI (%) SWIR (%) Fused (%)

D-EER

0 4.94 2.00 2.00
1 5.25 2.29 2.29
2 6.23 3.02 3.02

Avg 5.47 2.47 2.47

BPCER20

0 4.93 0.31 0.31
1 5.25 0.28 0.28
2 7.98 1.13 1.13

Avg 6.05 0.57 0.57

APCER20

0 4.87 1.66 1.66
1 5.30 1.63 1.63
2 6.84 2.54 2.54

Avg 5.67 1.94 1.94

BPCER100

0 30.73 11.74 11.74
1 28.86 12.39 12.39
2 36.15 23.79 23.79

Avg 31.91 15.97 15.97

APCER100

0 15.92 2.89 2.89
1 12.24 3.04 3.04
2 14.57 5.19 5.19

Avg 14.24 3.71 3.71

Table 7.11: Cross Validation results of a Dense-AE that is trained with multiple input dimensions on both LSCI
and SWIR data. Additionally, a score fusion is given whose weights have been chosen according to
table E.1

Fortunately, the numbers obtained between the three partitions are all in the
same order of magnitude. Apparently, the measurements of the fused scores are
identical to those of the SWIR model. That is because increasing the weight factors
on the LSCI scores consistently led to a performance decline. Therefore it can be
concluded that both SWIR and LSCI model do not complement each other in this
scenario. The interested reader is referred to appendix E where the DET-Curves,
each representing different weight combinations, can be found. As the SWIR results
look very promising, a further analysis of the PAI species classes introduced in
section 5.1 is presented in the next subsection.
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7.3.1. PAI Species Class Analysis

So far, the previous sections focused on reporting overall performance metrics.
However, as discussed earlier, it is also required to establish an understanding of
which PAI species leads to the highest number of misclassified PAs. In this context,
figure 7.14 depicts seven boxplots, each representing the reconstruction errors of a
different PAI species class.

Figure 7.14: Overview of the reconstruction errors within the PAI species classes, obtained by a Dense-AE
model, trained on SWIR data with multiple input dimensions and a weighted MSE (ascending by
median)

Since the boxplots are sorted by the magnitude of its median, the first obser-
vation worth mentioning is that the bona fide fingerprint images have the lowest
reconstruction error in average. This speaks for the models capability of learning
about the structure of real fingerprints. On the other hand, looking at the PAI
species classes with the highest medians, both opaque overlays as well as opaque
printouts are located at the top. Especially, the reconstruction errors of the samples
stemming from the opaque overlay class have a wide range, indicating that the
images are heterogeneous. Yet, it is difficult to estimate which PAI species classes
are most responsible for the classification errors. For that reason, figure 7.15 depicts
the same setting on a more appropriate scale that enables a deeper analysis of
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whisker overlaps.

Figure 7.15: Overview of the reconstruction errors within the PAI species classes, obtained by a Dense-AE
model, trained on SWIR data with multiple input dimensions and a weighted MSE (ascending by
median)

Unlike before, the boxplots are supplemented by outlier values which allow to
better estimate how they influence the position of the optimal threshold. On this
scale however, it is easy to recognize that the most sophisticated PAs are either
transparent overlays or fake fingers since the whiskers of their boxplots have the
largest overlaps with the bona fide one. In contrast, the PAs belonging to the
printout classes are perfectly separable from the bona fides as even the lowest
reconstruction error is far greater then most of the bona fide outliers. The boxplots
whiskers of both semi and opaque overlays do not overlap with the bona fides.
Nevertheless, choosing the threshold too low will inevitably lead to several bona
fide outliers being misclassified. Therefore, for biometric systems with convenience
in mind, it might be beneficial to choose a higher threshold. To have a rough
idea of how the Dense-AE model internally structures samples from different PAI
species classes, figure 7.16 shows a t-SNE scatterplot where every data point
represents one test sample. As depicted in figure 7.1, the latent representation of an
image within the Dense-AE architecture is a 64-dimensional vector. Consequently,
using the Dense-AE model to encode the 14780 images within the test set leads
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accordingly to 14780 64-dimensional vectors. The latent representations dimensions
can then be reduced into the two-dimensional space using t-SNE. This allows to
draw conclusions about how the Dense-AE structures samples stemming from
different PAI species classes.

Figure 7.16: Low-dimensional representations of the latent vectors of a Dense-AE, trained on SWIR data with
multiple input dimension and a weighted MSE using t-SNE

Apparently, the largest clusters are formed by the bona fides. However, also sam-
ples that were assigned as opaque overlays form clusters that are spread throughout
the plot. This might be a sign that the class can be further splitted into subclasses
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which is also indicated by the high range of reconstruction errors measured within
the boxplot chart. It is conceivable that next to the material, another dimension,
such as the brightness, could be considered to define more detailed classes. The
more specific the classes are formulated, the more comprehensive will be the un-
derstanding of how the Dense-AE model reacts to different PA types. Also of
interest are the bona fide samples that fall into another cluster as they might be
considered as outliers and therefore should be excluded from both test and training
set. Unfortunately, a deeper analysis of the received clusters is outside of the scope
of this thesis, leaving potential for future works.

As a first conclusion, it can be summarized that the best performing Dense-AE
model is trained on the SWIR dataset, including multiple input dimensions and a
weighted MSE loss function. The following section uses these findings to benchmark
them against comparable fingerprint PAD techniques.

8. Benchmarking

In order to compare the performance of the evaluated methodology of this thesis, a
few other fingerprint PAD approaches will be presented as a benchmark for the
proposed Dense-AE. The following overview in advance will briefly outline how the
following subsection are structured.

• Within section 8.1, the performance of the proposed Dense-AE model is
benchmarked against a CNN model introduced by Gomez-Barrero et al. [25].
Since the AE was only trained on bona fide samples, whereas the training
of CNNs includes both bona fide and PAs, a leave-one-out technique was
used to increase comparability. For this purpose, several CNN models were
trained, excluding different PAI groups and including them only in the test
set.

• Section 8.2 compares the performance of the proposed Dense-AE model with
various OC-SVM approaches which are also trained on bona fides solely. Since
OC-SVMs require vector inputs instead of tensors with multiple channels, the
first OC-SVM has been trained on the latent representations as a substitute
of the decoder part of the Dense-AE. Additionally, two pre-trained CNNs
(VGG19 [65], VGGFace [57]) were used to extract feature vectors from
the original fingerprint images, which were then taken as an input for two
separately trained OC-SVMs.
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8.1. Dense-AE vs. CNN

As mentioned in the introductory part of this section, the proposed Dense-AE
model is benchmarked against the CNN approach of Gomez-Barrero et al. [25].
Specifically, the fine-tuned VGGFace model produced the most promising results
and is therefore used as a benchmark. Since both the work of Gomez-Barrero et
al. as well as this thesis originated as part of the Biometrics and Internet-Security
Research Group, both of the models were trained and tested on exactly the same
data, which increases the validity of the comparison. However, since the CNN
reference model needs to be trained on both bona fides and PAs, it is unclear
how it classifies unseen attacks that were not part of the training set. For this
reason, in order to establish a more appropriate benchmark, several CNN models
were trained, each excluding a different PAI group from the training phase. These
left-out groups are constructed of the PAI species classes introduced in section 5.1
and composed as follows:

• Fake fingers: Includes only Fake fingers

• Fake fingers + Opaque: Includes Fake fingers, Opaque Overlays and
Opaque Printouts

• Overlay + Printout: Inlcudes Fake fingers, Opaque Overlays, Semi Over-
lays, Transparent Overlays, Opaque Printouts and transparent Printouts

• Overlay Semi: Includes only Semi Overlays

• Semi + Transparent: Includes Semi Overlays, Transparent Overlays and
Transparent Printouts

• Overlay Opaque: Includes Opaque Overlays and Opaque Printouts

• Transparent: Includes Transparent Overlays and Transparent Printouts

Given the above defined groups, figure 8.1 shows the first part of the DET-curves
corresponding to the left-out groups.
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Figure 8.1: Comparison of the Performance between the best performing AE models from section 7 with the
CNN approach described above within different leave-one-out groups

The first visual analysis of the AE curves proves that the LSCI model generally
perform worse than its counterparts. However, the SWIR model looks more
promising as it shows competitive results compared to the CNN approaches. Looking
at the Overlay + Printout chart, it clearly outperforms the CNN models on both
datasets. However, the comparison gets more difficult in the Fakefinger + Opaque
scenario where multiple curves intersect. Therefore, it is up to the performance
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metrics given in table 8.1 and 8.2 to decide which model is superior. Nevertheless,
this decision should also be attuned to the final applications purpose. Within the
Fakefinger such as the Semi group, the CNN model trained on the LSCI dataset
works best. Finally, figure 8.2 depicts the DET-curves of the remaining PAI left-out
groups.

Figure 8.2: Comparison of the Performance between the best performing AE models from section 7 with the
CNN approach described above within different leave-one-out groups
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Summarizing the observations of the three remaining PAI groups, the impression
is confirmed that the AE model which is trained on the LSCI data performs worst.
Of particular interest is the AE model trained on SWIR data as it outperforms all
of its counterparts within the Opaque group. This means that especially for opaque
overlay PAs, which account for more than half of the test set data, the Dense-AE
model seems to be the best choice. Last but not least, the SWIR AE and CNN
models perform similarly within the Semi + Transparent and Transparent group.

Table 8.1 and 8.2 compare the above depicted DET-curves based on the pAUC
on the one hand and the D-EER on the other. The lowest number in a row is
marked in bold, indicating that the according model type is best suited to detect
this kind of unseen PAs. As already derived in the above visual analysis, the SWIR
AE model is of particular interest, as it is most competitive. And indeed, in three
out of seven groups it outperforms the other models in terms of the measured
pAUC and even in four regarding the D-EER. This proves that the transition
from semi to unknown fingerprint PAD does not necessarily lead to a performance
decline. It is noticeable that the worst results among all models were obtained
when only transparent overlays were included in the test set. This indicates that
these types of PAs resemble most to real fingerprint images and thus represent the
most sophisticated PAs.

PAI species Class S-AE S-CNN L-AE L-CNN
Fake Finger 19.1 17.51 53.63 2.18
Fake Finger + Opaque 7.17 6.73 24.22 4.73
Overlay + Printout 3.46 6.55 17.03 26.59
Semi 1.81 1.86 16.08 0.18
Semi + Transparent 11.04 12.22 49.77 42.87
Opaque 0.06 0.58 1.98 0.56
Transparent 18.34 12.57 71.41 44.48

Table 8.1: Measured pAUC values of the DET-Curves from figure 8.2 and 8.1

PAI species Class S-AE S-CNN L-AE L-CNN
Fake Finger 4.59 4.45 9.41 1.68
Fake Finger + Opaque 1.81 2.75 5.86 2.27
Overlay + Printout 1.63 2.35 4.27 5.88
Semi 0.52 1.34 4.93 0.37
Semi + Transparent 3.21 3.87 8.88 7.78
Opaque 0.17 0.65 1.22 0.45
Transparent 4.49 3.95 11.89 8.58

Table 8.2: Measured D-EERs of the DET-Curves from figure 8.2 and 8.1
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In conlcusion, it can be stated that particularly the Dense-AE trained on the
SWIR dataset performs highly competitive compared to the CNN models. In
addition to a comparable performance, the use of AEs for the leave-one-out test
scenario also had an efficiency advantage since only a single model needed to be
trained. On the other hand, seven different CNN models were trained in order to
exclude each group.

8.2. Dense-AE vs. One-Class SVMs

However, since the comparison between a model trained on PAs with a model that
was only trained on bona fides still is a bit unbalanced, this section provides a
comparison against another unknown fingerprint PAD approach. More specifically,
various OC-SVMs were trained using a RBF-Kernel. Since OC-SVMs are trained
on one-dimensional vectors, the following three feature extraction techniques were
chosen to provide a compatible input.

• The first OC-SVM is trained on the latent representations of the the Dense-AE
model. As the t-SNE plot 7.16 shows, we can observe that the distribution is
well structured in the 64-dimensional space and might therefore be a suitable
input. Generally thinking, the OC-SVM then replaces the decoder phase of
the Dense-AE model.

• The second OC-SVM is trained on feature vectors which were extracted with
the VGG-19 pre-trained CNN [65] to exploit transfer learning. The CNN was
trained on ImageNet [16] which is a large-scale hierarchical image database
containing 3.2 million annotated images.

• As an alternative pre-trained CNN, VGGFace [57] is also used as a feature
extractor. This model was trained on a large-scale dataset containing 2.6
million facial images of 2.6k people. Since the training process of the VGGFace
model was exposed to faces, it might be extracting more relevant skin-features
the OC-SVM could benefit from.

Both the DET-Curves of the Dense-AE such as the OC-SVMs are depicted in
figure 8.3.
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Figure 8.3: Comparison of the Performance between the best performing AE models from section 7 with the
OC-SVM approaches described above. Left: LSCI, Right: SWIR

The black curves clearly stand out on both sides which means that the Dense-AE
outperformed all of the OC-SVM models. This can also be validated by table 8.3
and 8.4 which show that the pAUC as well as the D-EER of the Dense-AE are
lowest. Notably, both OC-SVMs that are trained on the VGG19 and VGGFace
features perform quite similar. The worst results however were measured in case of
the OC-SVM that was trained on the latent representations, reporting D-EERs
higher than 15% on both datasets.

Model SWIR LSCI
Dense-AE 7.30 23.07
Latent OC-SVM 92.98 92.62
VGG19 OC-SVM 54.51 64.96
VGGFace OC-SVM 53.01 82.36

Table 8.3: Measured pAUC values of the DET-Curves from figure 8.3
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Model SWIR LSCI
Dense-AE 2.00 4.80
Latent OC-SVM 16.17 16.21
VGG19 OC-SVM 9.49 10.78
VGGFace OC-SVM 9.52 13.62

Table 8.4: Measured D-EERs values of the DET-Curves from figure 8.3

Finally, it can be concluded that the proposed Dense-AE model consistently
outperformed the OC-SVMs which again validates the effectiveness of using Convo-
lutional AEs for detecting unknown fingerprint PAs. However, future works may
focus on establishing better benchmarks by extracting more relevant features from
the fingerprint images.

9. Conclusion

This thesis aims to evaluate whether Convolutional AEs are well suited as a
methodology for unknown fingerprint PAD, especially in regard to LSCI and SWIR
data. To address this question, three AE architectures have been implemented
and compared with each other. Based on the results of the cross validation, it
can be concluded that the Dense-AE significantly outperforms both other model
architectures. An average D-EER of 4.36% has been measured compared to values
of 10.82% (Pooling-AE) and 12.52% (Conv-AE).
Furthermore, a weighted MSE has been introduced as a novel loss function

to increase the robustness of a Convolutional AE. This is accomplished through
excluding image areas that the AE fails to reconstruct during the optimization
phase. Hence, the AE focuses on the most relevant areas while disturbing noise is
ignored. The positive effect of the weighted MSE could be demonstrated, as the
replacement of the loss function reduces the average D-EER of the Dense-AE from
4.36% to 3.64% and the according pAUC values from 18.79% to 12.01%.

Finally, the classification results could be further improved by using multiple
input dimensions. In case of the LSCI data, a 3-dimensional input has been tested
to exploit the temporal effect that results from capturing images in a sequence.
However, despite an average improvement of the D-EER from to 6.33% to 5.47%, the
partially measured AUC improved only slightly from 23.07% to 22.45%. Contrarily,
a clearer result could be achieved in case of the SWIR data, where the inclusion of
four different wavelengths reduced the average D-EER from 6.05% to 2.47% while
at the same time the pAUC decreased from 27.00% to 7.30%. To investigate if the
LSCI and SWIR models complement each other, their scores have been fused with
a weighted average. However, a complementary effect could not be confirmed as
the best classification results were measured using the SWIR model alone.
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The last part of the work compares the results of the best performing LSCI and
SWIR AE models to alternative fingerprint PAD approaches, trained and tested on
the same data partitions. First, the Dense-AE has been compared to a fine-tuned
VGGFace CNN introduced by Gomez-Barrero et al. [26]. Since the CNN is trained
on both bona fides and PAs, seven different models were trained, each excluding a
different group of PAs from the training process. The analysis of the performances
indicate that the Dense-AE trained on SWIR data achieves highly competitive
results. Considering the D-EERs, it outperforms the CNN models in four out of
seven PA groups.
The second comparison includes two OC-SVMs that are trained on the latent

representations of the Dense AEs (LSCI + SWIR). Additionally, four OC-SVMs were
trained on image features extracted with pre-trained CNNs (VGG-19, VGGFace).
The measured D-EERs indicate that none of the OC-SVMs produced competitive
results, as the best OC-SVM (VGG-19) achieved a pAUC of 53.01% with an
according D-EER of 9.52%.

All in all, the objective of this work has been achieved, as the proposed Dense-AE
has proven to be highly competitive with other approaches. These findings could be
of particular interest in a scenario where the production of a wide range of PAIs is
too cost-intensive. Future works might expand on the idea of developing techniques
for detecting unknown PAs as the ensemble of multiple approaches could further
improve the classification results.
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Appendix

A. Breakdown of PAI Species

The following tables depict all of the PAIs that are contained within the PAI species
classes:

PAI Species Class PAI Species Names Count

Overlay Opaque

overlay ecoflex fleshtone 699
overlay conductive silicone black 432
overlay ecoflex factor2 tan 336
overlay ballistic gelatin fleshtone 194
overlay PDMS fleshtone 122
overlay conductive silicone 100
overlay silicone solutions 98
overlay urethane with gold 72
overlay dental material 51
overlay dragonskin opaque 17
bandage plaster (no fp) 14
Total 2135

Fake Finger

dragonskin 426
ecoflex 147
monster latex 78
wax 74
ecoflex with graphite 72
latex with gold 69
ecoflex with nanotips white 54
playdoh orange 53
3D printed finger 48
dental material 33
dragonskin with nanotips white 27
silly putty original 25
dragonskin with barepaint 24
playdoh white 24
3D printed finger with Ag 24
playdoh yellow 24
ecoflex with barepaint 18
silly putty metallic 15
silly putty glow-in-the-dark 15
playdoh black 15
Total 1265

Table A.1: Shows the specific PAIs and the according species classes - Part 1
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PAI Species Class PAI Species Names Count

Overlay Transparent

overlay two part silicone 157
overlay knox gelatin 107
overlay dragonskin clear 106
overlay monster latex 34
overlay school glue white 25
overlay wax 18
overlay school glue clear 2
Total 449

Overlay Semi

overlay conductive silicone yellow 160
overlay school glue 76
overlay wood glue 70
overlay dragonskin semi 47
overlay ecoflex 24
Total 377

Printout transparent printout transparent 64
Printout opaque printout paper 49

Table A.2: Shows the specific PAIs and the according species classes - Part 2
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B Evaluation of different Partition Sizes

B. Evaluation of different Partition Sizes

In order to decide how to split into train, valid, and test sets, different partition sizes
have been tested on both LSCI and SWIR data. Figure B.1 shows the according
DET-curves. Since the curves of the 30-20 and 50-30 splits perform similar in both
cases, decision has been made to use 30% of the bona fides as training and 20%
of them as validation data. In this setting, the training process involves enough
bona fide samples to learn relevant patterns, while at the same time the test set
contains enough data for a profound evaluation.

Figure B.1: Evaluation of different data partition settings based on a Dense-AE model. Left: LSCI, Right:
SWIR
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C Packages and Versions

C. Packages and Versions

The following list specifies all packages that have been used for the experiments
within this thesis:

abs l−py==0.8.1
a s t o r ==0.7.1
bat l−u t i l s−modules==0.1
c e r t i f i ==2019.11.28
c y c l e r ==0.10.0
gast ==0.3.2
g rpc i o ==1.23.0
h5py==2.10.0
HDAFingerPAD==0.1
j o b l i b ==0.14.0
Keras==2.3.1
Keras−Appl i ca t i on s ==1.0.8
Keras−Preproce s s ing ==1.1.0
keras−vgg face==0.6
k iw i s o l v e r ==1.1.0
Mako==1.1.0
Markdown==3.1.1
MarkupSafe==1.1.1
matp lo t l i b ==3.1.1
mkl− f f t ==1.0.15
mkl−random==1.1.0
mkl−s e r v i c e ==2.3.0
mock==3.0.5
numexpr==2.7.0
numpy==1.17.4
o l e f i l e ==0.46
pandas==0.25.3
patsy==0.5.1
Pi l l ow==6.2.1
protobuf ==3.11.1
pygpu==0.7.6
pypars ing==2.4.5
python−da t e u t i l ==2.8.1
pytz==2019.3
PyYAML==5.2
s c i k i t−l e a rn ==0.21.3
s c ipy ==1.3.1
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C Packages and Versions

seaborn==0.9.0
s i x ==1.13.0
s ta t smode l s ==0.10.1
t ab l e s ==3.4.4
tensorboard ==1.13.1
t en so r f l ow ==1.13.1
tensor f l ow−e s t imator ==1.13.0
termco lor ==1.1.0
Theano==1.0.4
t i k z p l o t l i b ==0.8.7
tornado==6.0.3
Werkzeug==0.16.0
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D Visualization of lowest Reconstruction Error

D. Visualization of lowest Reconstruction Error

The following two figures D.1 and D.2 visualize those bona fide images with the
lowest reconstruction errors. Analogous to section 7.2.1, the first row visualizes the
original image while the second row depicts the reconstructed one. Additionally,
the third row shows the pixel-wise absolute difference as a heat-map.

Figure D.1: Visualizes the reconstructed LSCI images (middle) with the lowest reconstruction errors in addition
to the original images (top) and the pixel-wise absolute difference (bottom). Left: Weighted MSE,
Right: MSE

Figure D.2: Visualizes the reconstructed SWIR images (middle) with the lowest reconstruction errors in addition
to the original images (top) and the pixel-wise absolute difference (bottom). Left: Weighted MSE,
Right: MSE
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E. Score-Fusion: SWIR (4D) vs. LSCI (3D)

Figure E.1 shows DET-curves, each representing a different weight setting for
the score fusion between LSCI and SWIR model. The first scores stem from a
Dense-AE model that is trained on SWIR data, including four wavelengths (1200
nm, 1300 nm, 1450 nm, 1550 nm). These scores are fused with those of a Dense-AE
that is trained on LSCI data with three input dimensions (first, middle, and last).
The according pAUC values are depicted in table E.1.

Figure E.1: DET-Curves after fusing the scores of Dense-AE Models, which are trained with the weighted MSE
and multiple input dimensions on both LSCI and SWIR dataset

LSCI weight (%) SWIR weight (%) pAUC (%)
0.0 100.0 7.30
10.0 90.0 7.84
30.0 70.0 8.36
50.0 50.0 11.97
70.0 30.0 15.11
90.0 10.0 19.80
100.0 0.0 23.07

Table E.1: pAUC values, measured in a range between 0-20% of the Dense-AE, trained with multi-dimensional
inputs, for multiple score weights
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