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Abstract German
Fingerabdrücke sind eines der am häufigsten verwendeten biometrischen Merk-
male und finden Verwendung in einer Vielzahl von Systemen. Oft werden sie für
die Identifizierung von Personen verwendet, indem deren Fingerabdrücke gegen
diejenigen verglichen werden, die zuvor in einer Datenbank gespeichert wurden.
Solche Datenbanken werden beispielsweise von Strafverfolgungsbehörden betrieben.
Sie enthalten dann z.B. die Fingerabdrücke von registrierten Straftätern oder un-
bekannte Abdrücke von Tatorten. Die Anzahl der in solchen Datenbanken gespe-
icherten Fingerabdrücke wächst stetig. Schon jetzt verfügt das FBI über eine
solche Datenbank, in der ca. 230 Millionen Abdrücke gespeichert werden. Das
suchen eines Abdruckes in einem solchen System kann sehr lange dauern, da im
einfachsten Fall alle gespeicherten Fingerabdrücke mit einer entnommenen Probe
verglichen werden müssen. Um die Anzahl der Vergleiche zu reduzieren, verwendet
man Algorithmen um eine Vorauswahl von Fingerabdrücken zu treffen. In dieser
Arbeit geht es darum, mehrere Fingerabdrücke eines Subjektes zu verwenden, um
die Subjekte innerhalb der Datenbank anhand der Klassen ihrer Fingerabdrücke
zu gruppieren, sodass eine Probe lediglich gegen Subjekte verglichen werden muss,
deren Fingerabdrücke dieselben Klassen besitzen. Für die Klassifizierung sollen
ausschließlich globale Eigenschaften des Fingerabdruckes, z.B. der Verlauf der Fin-
gerabdrucklinien, verwendet werden. Der erste Teil dieser Arbeit besteht aus einem
Survey von Ansätzen, die in diesem Bereich publiziert wurden. In einem nächsten
Schritt wurde die öffentlich zugängliche SD9 Datenbank des NIST mit dem Ziel
untersucht, die Korrelationen zwischen den Klassen der Fingerabdrücke eines Sub-
jektes zu bestimmen. Mit den daraus gewonnenen Informationen konnte ermittelt
werden, dass die Verwendung mehrerer Fingerabdrücke für die Gruppierung theo-
retisch bis zu 94% weniger Vergleiche notwendig macht. Mithilfe eines im Rahmen
dieser Arbeit erstellten Systems und der Verwendung selbst trainierter neuronaler
Netze für die Fingerabdruckklassifizierung, konnte gezeigt werden, dass bei Ver-
wendung der Klassen von lediglich 3 Fingern einer Hand, die Anzahl der notwendi-
gen Vergleiche von Subjekten um bis zu 80% reduziert werden kann und selbst die
Verwendung von ungenauen Klassifizieren eine Verbesserung möglich macht.
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Abstract English
Fingerprints are one of the most used biometric characteristics. They are used in
a wide range of applications, as the identification of subjects within a database.
Therefore, the fingerprints need to be compared against those stored in the database,
what is often done by law enforcement agencies like the FBI. Their database con-
tains around 230 million fingerprints from inter alia recorded criminals or unre-
solved traces from crime scenes. Identifying a fingerprint within this database can
take a long time. Since the naïve approach of comparing each fingerprint subse-
quently would result in long identification time, often a pre-selection is used to
reduce number of comparisons. Within this work, we will use multiple fingerprints
of a subject to create a binning of the subjects towards the classes of those fin-
gerprints, so that only subjects whose fingerprints share same classes need to be
compared. The classification of the fingerprints should be done using only global
information of the fingerprint pattern, like the orientation of the ridgelines. The
first part of this work is therefore a survey on the different approaches for fin-
gerprint classification using those features. After that, the NIST SD9 database
was analyzed towards the correlations between the fingerprint classes of the sub-
ject. With the derived information we can show, that using multiple instances of
fingerprints for the binning of the database can result in up to 94% less compar-
isons for identification assuming perfect classification. The use of the system for
multi-instance classification defined in this work, together with the trained neural
networks for fingerprint classification enabled us to reduce the number of required
comparisons by up to 80%, while using just 3 fingers of a subject. In addition, it
was shown, that the use of classifiers with only moderate classification accuracy
allowed a reduction of comparisons.
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1. Introduction

Since the time, that fingerprints were found to be a proper biometric characteristic
for identification tasks, in the early 20th century, they were adapted into a wide
range of applications and present in many aspects of our everyday life. Especially
for civilian and crime investigation purposes, huge amounts of fingerprints are
stored within the databases of fingerprint identification systems. E.g. the United
States’ FBI fingerprint database already contains ca. 135 million fingerprints [1] of
civilians as well as criminals and is therefore one of the biggest datasets of its kind.
But as the time goes by, additional fingerprints will be stored to the system and
increase a major drawback that comes together with the size of the database: the
workload and directly connected, the response time of the systems. Since the naïve
approach of comparing each fingerprint subsequently to a captured probe is very
inefficient, another approach has to be done to reduce the number of comparisons.

The reduction of the workload is the key motivation for this thesis. Since various
approaches exist on the classification of fingerprints that can serve for the task, a
further step is done within this thesis towards the application of multiple instance
of fingerprints for classification purposes and database binning.

1.1. Research Questions
In the following, the research questions for this work are outlined. They served
as the basis for the work packages and allow the definition of milestones for the
project. They further imply a basic structure for this work as defined in section
1.2.

RQ1 What are the state-of-the-art classification features for fingerprint

1



1. Introduction

databases?
It is intended to make a deeper related work study in order to find global
features (Level-1) of a fingerprint that are used for classification purposes
and outline their performance. Further this will give a description of possible
classes that can be investigated and utilized.

RQ2 How are the fingerprint classes distributed?
The task is to find proper datasets on which analysis of the class distribution
of fingerprints can be done. A further analysis is planned to find possible
correlation of the fingerprint classes from adjacent fingers of the subjects.
This aims for an understanding of possible error classes and the correlation
between those fingers. In addition, existing statistics and works should be
mentioned in the related work study.

RQ3 Is there a theoretical improvement for multi-finger classification?
Depending on the findings of the related work study and the distribution
of fingerprint classes, a statement on theoretical improvements for multi
instance classification should be given.

RQ4 Can multi-finger classification improve fingerprint identification
systems?
Is it possible to utilize the classes of multiple fingerprints of a subject for
a finer-grained binning of the databases to reduce identification workload
without decreasing biometric performance of the overall system? For this
task, a baseline system based on neural networks is going to be extended to
multiple fingerprints and evaluated.

1.2. Structure of the Work
The structure of this work is oriented towards the order of the research questions
stated above.

• Initially chapter 2 will give some fundamental information on fingerprints

2



1. Introduction

and biometric systems in order to get a general understanding about the
context of this work.

• Chapter 3 then introduces further information that are related to fingerprint
classification and presents a survey on works that deal with classification
techniques based on global classification features.

• The statistical analysis of fingerprint databases towards their distribution of
fingerprint classes is the topic of chapter 4.

• Chapter 5 then presents a possible fingerprint classification system that is
based on multiple fingerprint instances and utilizes the findings of the statis-
tics chapter for improved classification performance and workload reduction
towards identification scenarios.

• Testing of the proposed system is described in chapter 6 and the results are
discussed subsequently together with some ideas for further improvements.

• The conclusion in chapter 7 will sum up the results of the chapters shortly
and give an outlook to future work.

3



2. Fundamentals

The fingerprint is one of the most used biometric characteristics [2], which is
evident when looking to Figure 2.1. Its manifold applications reach from end-
user authentication on personal devices like smartphones or notebooks and mobile
banking, over access control systems for buildings in public and private sector up
to the usage within law enforcement and public administration. In this section the
fundamental information on fingerprints as a biometric characteristic as well as its
biological background is given. The second part of the chapter covers biometric
systems in general and outlines their basic workflow and operational modes.

Fingerprint
31%

Iris
16%

Face
15%

Voice
13%

Vein
10%

Signature
4%

Other
11%

Fingerprint

Iris

Face

Voice

Vein

Signature

Other

Figure 2.1.: Biometric market share by characteristic [3]

2.1. Fingerprint as a biometric characteristic
Following section will give some fundamental information on fingerprints, their
formation and patterns. The basic properties in relation to biometric systems and
the suitability as a biometric trait are denoted afterwards.
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2. Fundamentals

Figure 2.2.: Example fingerprints from left to right: dry, normal and wet impres-
sion (created by SFinGe)

2.1.1. Foundations

The observable unique ridge and valley structure (see Figure 2.2) on the surface of
the fingerprint can be used as a biometric characteristic. Figure 2.4 shows a finger-
print with the marked positions of so called minutia points (endings of ridgelines
in red and bifurcations in blue). If a sufficient number of minutia points (typically
a minimum of 12 minutiae [2]) is available, the combination their positions and
directions can be used for the identification of a subject.

Nowadays, the usage of latent fingerprints is very common in crime investigation
whereas fingerprints in general serve for a variety of applications like authentication
or access control as mentioned before. As the first person that found indications
for the uniqueness of fingerprints based on empirical studies, Henry Fauld laid
the foundation for the development of the systems, we know today, back in 1880.
Later, in the beginning of the twentieth century, the understanding of fingerprints,
its formation and individual patterns proceeded so far that their application for
identification became widely accepted [2], especially for forensic purposes. This
was the beginning for a continuously increasing number of application areas of
fingerprints.

5



2. Fundamentals

Figure 2.3.: Different layers of tissue
within a finger [4]

Figure 2.4.: Fingerprint with marked
minutia, cores and delta

2.1.2. Fingerprint Formation

The formation of fingerprints starts during the fetal development and is affected
by genes as well as diverse environmental conditions within the womb. That is
why even monozygotic twins differ in the patterns of their fingerprints, though
there seems to be some correlation in their basic structure. [5]

Human fingers consist of different layers of tissue (compare Figure 2.3) that form
the visible structure on its surface. The outermost layer that is directly showing
up this structure is the epidermis. The underlying dermis is a tissue having the
same structure as the epidermis. Its function is to rebuild the outer skin layers in
case that they are destroyed, while preserving the pattern.

Taking a high-resolution image of a finger shows small pores on the ridgelines
that are the ends of the sweat glands. Beside the ridge and valley structure,
these pores can further increase the distinctiveness of the finger. However, since
the sweat glands emit fluids to the surface of the finger, they can have impact
on the quality of images taken from fingerprints. Especially a very high or very
low amount of emitted fluid affects the presentation of fingers to contact scanners
(compare Figure 2.2).

6



2. Fundamentals

2.1.3. Biometric Properties

In terms of biometric systems, the biometric characteristic used by the system,
needs to fulfill some basic properties to guarantee that preferably all targeting
individuals can use it and are willing to. Other properties are mandatory to make
sure that the system is capable of distinguishing the individuals correctly and to
describe the security level of the characteristic. Forging the characteristic is a hard
task to ensure security.

In the following, these properties (firstly defined in [6]) are outlined for finger-
print patterns as biometric characteristic as described in [2, 7, 8].

Collectability Taking an impression of fingerprints can be done very easy with a
variety of different capturing devices and sensing techniques [2]. For most
biometric systems that use fingerprints as the characteristic of choice, the
quality of the images highly depends on the capturing devices on the one
hand and the cooperation of the subject on the other.

Universality The universality of fingerprint is given by natural presence of ten
fingers for most people, with exception of those individuals suffering from
illnesses that affect their fingerprint patterns or those where amputation of
fingers, hands or arms were performed.

Uniqueness Any of a person’s ten fingers is claimed to show a unique pattern
build by the ridgelines, given a sufficient number of visible minutiae. [9].

Invariability Fingerprint patterns were found not to change during a person’s life
[10]. While they grow together with the person, no altering in the actual
pattern can be seen, so that the invariability due to natural factors is very
high. Even damages of the pattern by small cuts or bruises only cause
temporary alteration, since the skin is able to heal itself. Only continuous
damaging or serious injuries like deep cuts or even amputations would result
in permanent alteration.

7



2. Fundamentals

Performance The performance indicates how well fingerprints suit for develop-
ment of biometric recognition systems. It takes into account the recognition
accuracy, throughput of the system, hard and software requirements as well
as dependency on external factors. Fingerprints offer good performance due
to the high distinctiveness, good and cheap collectability as well as low re-
source requirements for its processing.

Circumvention In order to provide good security, it should be hard to forge the
biometric characteristic. Since the hands and fingers are our main tool in
everyday life, we leave our fingerprints on any surface that we touch, allowing
forgers to capture and use these latent prints. Therefore, it is more easy to
copy fingerprints then for example iris images. By using countermeasures
as liveness detection or other presentation attack detection (PAD) methods,
biometric systems try to overcome these drawbacks.

Acceptability Since first approaches of using fingerprints for forensic applications,
they were continually linked to crimes. But as our society evolves, the accep-
tance of fingerprints in our everyday life is still increasing. Our fingerprints
are saved on the identity cards and the biometric characteristics replace login
credentials or tokens required for online banking. Further attempts to im-
prove the acceptance contain contact-less sensors to reduce interaction and
a proceeding integration of biometrics in governmental applications.

Concluding the fingerprint as a biometric characteristic, one can find that it is
suitable for a variety of applications. The individuality of its pattern and the ease
of collecting impressions with different sensors integrated into most of the latest
smartphone and notebook models shows the hight potential of this characteristic.

2.2. Biometric Systems
A biometric system as defined in [11] is a system used for recognizing individuals
based on their behavioral and biological characteristics. The following section will
give an overview on a reference biometric system, its subsystems and its internal
workflows as it is described in the ISO/IEC 19795-1 [12].

8



2. Fundamentals

Figure 2.5.: Standard Biometric Recognition System [12]

2.2.1. System Overview

A biometric system, as depicted in Figure 2.5 consists of five major subsystems,
described in the following.

Data Capture Subsystem The ‘Data Capture Subsystem’ is responsible for cap-
turing a biometric sample from a presented biometric characteristic. For this pur-
pose the systems can make use of one or multiple sensors. The captured biometric
sample is then processed in the subsequent system.

Signal Processing Subsystem This system fulfills three tasks based on the re-
ceived biometric sample.
1. During the segmentation, the system processes the sample to differentiate
between foreground and background areas. The foreground defines the region of
interest, that contains the usable information, whereas the background consists of
unwanted information (e.g. noise in digital images).
2. In the feature extraction phase, the systems extracts biometric features from

9



2. Fundamentals

the segmented data. These features are later used for the creation of a biometric
reference, that might be enrolled to or compared against the enrollment database.
3. Before the actual reference creation, a quality control is performed on the
extracted features. Its purpose is to detect features of low quality and potentially
reject captured samples and initiate a recapture of the characteristic.

Data Storage Subsystem If a captured sample successfully passed the signal
processing during the enrollment of a subject, the ‘Data Storage Subsystem’ is
used to store the create reference of the subject together with a reference identifier.
It holds the references of all subjects enrolled to the system within an enrollment
database and provides them the comparison system, as needed.

Comparison Subsystem This subsystem is intended to compare a probe that
was extracted from a biometric sample in the signal processing system, against
one reference from the enrollment database for verification or against multiple
references for identification. The output then is one or more comparison scores
indication the similarity of the probe and the reference(s).

Decision Subsystem Within the ‘Decision Subsystem’ a final outcome of the
biometric system is calculated, based on the comparison scores obtained by the
‘Comparison Subsystem’, predefined thresholds and further decision policies. In
terms of verification, the systems states if a probe matches to the compared refer-
ence or not. For identification, the outcome can be the identified subject, a list of
most likely candidates or nothing in case no candidates were found.

2.2.2. Biometric Fingerprint Recognition System

Further details on the previously defined subsystems can be given in the context
of fingerprint recognition. Within the ‘Data Capture Subsystem’, different types
of sensors can be used to capture one or multiple fingerprint of a subject at a time.
These days, different types of sensors based on various technologies are in use to
capture fingerprint. The most common sensor types are the optical and capacitive

10



2. Fundamentals

Figure 2.6.: Fingerprint image from capacitive (left) and optical sensor (right) -
created by SFinGe

ones. The former take a visual impression of the finger, while the second ones uti-
lize electrostatic effects to detect the ridge and valley structures in order to create
the image (see Figure 2.6).

The ‘Signal Processing Subsystem’ combines image enhancement and segmenta-
tion techniques to extract the biometric features of the sample. The subsequent im-
age quality estimation following the ISO quality specifications [13] and [14], is then
used to determine if the extracted sample can be used as a reference that is stored
in the database or a probe for comparison purposes. In fingerprint recognition
systems, the enhancement often includes brightness and contrast optimization to
increase the visibility of ridgelines. Various approaches exist for the segmentation,
which searches for the area of interest within the image and discards background
information like noise (compare Figure 2.7). Examples would be measurements of
pixel gray values, utilizing ridge orientations within pixel blocks and even neural
network approaches exist[2]. Afterwards, the actual feature extraction can be per-
formed.

The subsequent quality estimation can be done using the reference algorithms
for [14] - NFIQ2. It checks if the processed image and extracted features can ful-
fill the minimum requirements on the quality to perform subsequent steps or if a
recapture of the finger is required.

11



2. Fundamentals

Figure 2.7.: Original (left) and segmented image (right) - from SD9

2.2.3. Operational Modes

Biometric systems can be operated in two different modes, visualized by the blue
shaped arrows in Figure 2.5, namely verification and identification. During the
verification and identification processes, the ‘Signal Processing Subsystem’ creates
a biometric probe of the acquired sample (as described in the previous section)
that can be compared to one or multiple stored references, within the ‘Compari-
son Subsystem’. The comparison score(s) obtained in this step are then utilized in
the ‘Decision Subsystem’ to determine either verification or identification outcome.

Verification The intention of both, verification and identification is slightly dif-
ferent. The verification process is used to check a presented biometric sample
against the reference sample of a claimed identity. This is denoted as 1:1 compar-
ison whose outcome is either a match or non-match between probe and reference.

An example would be an access control system for a building based on finger-
prints with an additional identity claim. The fingerprints of every person with
access rights are enrolled to the database and linked to the identity of the subject.
When a subject wants to access the building, it makes a claim of its identity and
presents its fingerprints to create a probe that can be compared against the refer-
ence stored in the enrollment database. If the comparison score exceeds a given
threshold, the identity can be verified and the subject is granted access. Otherwise,
the access is denied.

12



2. Fundamentals

Identification The identification of a subject is a more challenging task since no
identity claim is given. In this scenario, the probe extracted from a presented
biometric sample has to be compared against multiple references within the ‘Data
Storage Subsystem’.

With a naïve approach this results in n comparisons of the probe, where n is
the number of enrolled subjects. The outcome is a candidate list containing the
subjects with the highest comparison scores above a defined threshold. A decision
policy is then required to produce the final identification outcome, which might
be the identified subject, a list of subjects or nothing.

The workload of such a system during the identification process increases with
each additional references enrolled to the database, due to required additional
comparisons. For that reason, some of the systems implement steps for workload
reduction. Two major approaches aim for reducing the total number of compar-
isons.

Indexing approaches try to create a logic order of the references in the database.
If a probe should be compared to the database, the index of the probe is calculated
and all references with similar indices are determined.

The second major approach is the classification. It is used to separate the
database into multiple bins or sub databases in with all of the containing refer-
ences are members of the same class. This allows us to reduce the workload, by
comparing a probe only against references that are of the same class. In case of
fingerprints, these classes are often derived by the observation of different pattern
shapes (see chapter 3).

Example of Identification System A very prominent example of such an iden-
tification system is the Integrated Automated Fingerprint Identification System
(IAFIS), which was established in 1999 and is operated by the US Department
of Justice. Later this system was merged to the Next Generation Identification
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(NGI) System. Currently 135,093,826 fingerprint (civilian and criminal) are en-
rolled to the system [1] by January 2018. Thereof around 2,763,222 subject are
included within a sub-database called ‘Repository for Individuals of Special Con-
cerns (RISC)’ that is used for ‘Rapid Fingerprint Identification’ and has an average
response time of around 8 seconds. The response times for requests of criminal
receipts were around 10 minutes for urgent request and ca. 15 minutes for non-
urgent (in year 2017).
These facts show, that the high number of subjects enrolled results in high re-
sponse times for the system. The adaption of the RISC dataset might be a result
of the response times, because time critical requests could not be handled other-
wise. This approach indicates, that splitting a database into multiple bins and
concentrate search to smaller parts of the database will decrease the workload of
the system and increase response time, since fewer comparisons are required.

This example well illustrates the context in which the present work was created.
Within this work, we follow the classification approach for workload reduction.
The related work towards this topic is outlined in the next chapter.
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Within this chapter, the related works regarding the thesis topic are revealed. The
focus here is on papers about fingerprint classification using global features. The
intention of studying these works and doing a structured analysis of their results
is having a good overview of past work on the one hand and finding the most
promising approaches that can serve as a foundation of this work on the other
hand. The surveys of Galar [15, 16] and Kavati [17] served as a starting point
for the study. Since the structure of [15] was found appropriate, the subsequent
sections are structured in a similar way.

By analyzing the structure of the fingerprint patterns Galton [18] was able to
describe three major classes of fingerprints based on the curvature of the ridge-
lines, namely: whorls, arches and loops. Henry [19] further refined these classes
into whorls, arches, tented arches, right loop and left loop, given a total of 5 sepa-
rable classes. Most of the subsequent approaches will follow the Henry Scheme but
some of them will used an extended scheme like Moayer[20, 21] (Mairs’ classifica-
tion scheme), or reduced schemes where one or more of the classes will be merged
into a combined class. An often-used example is the merging of both arch classes
because an automatic distinction can be challenging. The different classes defined
by Henry as well as further subclasses are depicted in Figure 3.1. This definition
allows us to split up fingerprint databases with respect to these classes. When
trying to search a fingerprint within the database, we can reduce search time and
the amount of fingerprints compared to the searched, by then only determining
its class and first perform search for the enrolled subjects sharing the same class.
The separation of the database into chunks of fingerprints holding the same class
is called binning and the chunk are referred to as bins.
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Figure 3.1.: The five most used fingerprint classes (created by SFinGe)

left loop right loop

arch tented arch whorl

3.1. Fingerprint Classification Process
In order to achieve the classification, there are 3 to 5 general steps to be performed
after receiving an input image. The number of steps depends on the type of clas-
sification approaches. Works using machine learning need to train their classifier
before it can be used to classify new images. If multiple classifiers are used, fusion
metric is required in order to combine their outcomes. In the following, these basic
steps are described.

Preprocessing
The preprocessing is used to prepare the input image for the feature ex-
traction step. While some of the reviewed works lack in information on
whether they used preprocessing or not, few papers distinguish only in the
algorithm used for preprocessing in order to receive better performance in
feature extraction. The preprocessing can consist of different enhancements.
For example increasing the contrast of the image for better detection of the
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ridgelines, filters to reduce the noise or the segmentation of the fingerprint
image into a Region of Interest (ROI) and background. Most of the classifi-
cation algorithms utilize segmentation to remove the background areas that
do not contain information on the fingerprint pattern. Further enhancements
are skeletonization and binarization.

Feature Extraction
The second step is to extract features out of the (enhanced) fingerprint image
that are capable of describing the class of the fingerprint pattern. A first
starting point at of nearly all approaches is the creation of the Orientation
Map (OM). It is either applied as a feature or used for derivation of other
features like singular point. Some of the approaches use a registration point
to define a region of interest within the fingerprint. Further information on
the features used by the different algorithms are given in Section 3.2.

(Train Classifier)
In case of neural network based classification approaches, the supposed sys-
tems need to be trained on real data in order to be able to classify finger-
prints. Although it is a good idea to use disjunct data for training and testing
to prevent overfitting of the classifier, some of the approaches present results
with overlapping training and test data.

Classification
In this step the actual classification of a sample fingerprint is done. Depend-
ing on the extracted features, a classifier assigns the fingerprint to the most
suitable class. Because not all approaches classify the fingerprints into the
same number of classes, we have to take care of this fact when comparing
them. To deal with fingerprints that are of low quality or for which no class
can be determined, some of the works deploy criteria to reject such finger-
prints or classify them as Unknown. The main reason for that is to prevent
the algorithm from classifying the fingerprint into wrong classes.

(Classifier Fusion)
To further improve classification performance, several approaches utilize mul-
tiple classifiers and features. The outputs of the different classifiers need to

17



3. Related Work

be fused to obtain the fingerprint class. Different strategies are used to
achieve the fusion, like majority vote, winner takes all or weighted decision.

Classification and Rejection Metrics
To measure the performance of classification algorithms and allow comparison of
different approaches, some metrics are defined. The Correct Classification Rate
(CCR) describes the relative measure between the correctly classified fingerprints
and all fingerprints that were tested. With respect to that, the classification error
can be described by the proportion of falsely classified fingerprints over the test
samples. When binning is applied to the database regarding the fingerprint classes,
the so called Bin-Error-Rate defines the probability, a fingerprint is assigned to a
wrong bin. It is an equivalent to the classification error rate. In some papers, a
rejection rate is pointed out. It measures the amount of fingerprints that were
excluded from the classification process at some point within the algorithm based
on predefined rejection rules. The rejection correlates with the CCR insofar as
increasing the number of rejected samples will reduce the classification error and
increase CCR.

3.2. Global Classification Features
Before facing the different approaches for the actual classification of fingerprint
patterns, the underlying features are described in the following.

When looking at a fingerprint image one can observe different types of features
within it. They can be described as level 1, level 2 and level 3 features [2]. Level 1
features give a coarse description on the fingerprint pattern, which makes it useful
for classification of similar fingerprints. Information like the ridge flow directions
and detected singular points (see subsequent paragraphs) are used in this scope.
The level two features are given by describing single ridgelines in the form of
minutia. These information e.g. bifurcation (splitting of a ridgeline) or ridgeline
ends allow a finer description of the fingerprint, which can make it unambiguously
identifiable as long as sufficient minutia points can be found. For level 3 features,
high resolution images are required to detect the width of ridgelines, sweat glands
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Orientation Map Minutia Sweat Glands

Figure 3.2.: Visualization of the three feature levels

or distance between ridgelines. Especially the sweat glands can serve as highly
distinctive feature for fingerprints. In Figure 3.2 a visualization of the different
feature levels can be found.

As mentioned before, level 1 features are the means of choice for classification
of fingerprints. They are also called global features of the fingerprint and allow
a general/coarse description of the fingerprint pattern. Together with the help
of classification schemes like Henry’s [19], algorithms can be developed that are
capable of classifying fingerprints into the different classes.

Reviewing the works on classification approaches and analysis of the used fea-
tures leads to the following general features.

Orientation Information
The orientation information is derived by the analysis of the local ridge flow
within the fingerprint image. This can be done by for instance frequency
filters, slit sum [22] or gradient methods. In the most approaches, an OM
is calculated block wise, containing the averaged direction, instead of using
orientations on a pixel level.

Singular Points
The singular points or singularities are defined as the area of the greatest

19



3. Related Work

curvature changes[18]. Two types of singular points can be described: 1. the
core point, at which the ridgelines seem to converge 2. the delta point, where
ridges tend to diverge. Many approaches make use of these points either as
features or alignment of the image. Many extraction algorithms exists for
the singularities, that are described in[15]. To mention one of the most used
extraction algorithm, the Poincaré method should be mentioned. It uses the
orientation information by measure the directions around a given point. A
singular point is found, if the directions behave as defined in 1. and 2.

Structural Information
The structural information of fingerprints is derived by tracing the ridgelines.
It is used to build representative graphs or derivation of features like ridgeline
curvature changes.

Frequency Filter Responses
These features are obtained by applying filter function (like gabor or fast
fourier) to the image or OM or parts of it. The main reason for their ap-
plication is their ability to detect the ridge/valley pattern of the fingerprint.
The filter response depicted in figure 3.3 is the so called Fingercode invented
by Hain et al.[23].

A visualization of the outlined features can be found in Figure 3.3. More detailed
information on the approaches to determine these features can be found in [15].

3.3. Classification Approaches
The following section presents an survey of fingerprint classification algorithms
based on global features.

3.3.1. Syntactic Classification

The syntactic classification approaches can be found in the early beginning of au-
tomatic fingerprint classification[20, 21, 24]. They share the idea of describing the
ridge structure by a number of symbols that code different structural information.
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Figure 3.3.: Visualization of outlined global fingerprint classification features

By analyzing this code with a defined grammar over the symbols, they can make
a decision of the fingerprint class.

First approaches were made by Moayer [20] for distinguishing 7 classes. The
main idea here is to use directional information from the OM and interpret them
block-wise to obtain a feature set of 64 symbols (syntactic coding). This represen-
tation allows the classification of the feature set based on a defined grammar for
a syntax-free language. In [21], they used more detailed directional information
(256 symbols) and statistical syntax-free language to determine subclasses of these
used in [20]. For the first approach results are based on very small database (92
images) gave a CCR of 92.5% while rejecting 13% of the images. Results of the
second approach were provided for sub classification of one class. Therefore, they
are not representative for the test set.

Another approach was made by Rao [24]. They used representative characters
to build a string that describes the ridge flow based on the OM. Then a context-
free grammar is used to determine the class. Tests were done on a small test set
(60 images) only, where 91.66% CCR could be achieved.

The only later approach using a grammar for classification was found in Chang’s
work [25]. His approach based on ridge distribution derived by extracting ridge
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patterns. He defined a number of different ridge patterns that can occur within
fingerprints, represented by characters. Starting from the bottom of the image,
he creates a sequence of the characters depending on the ridge types that were
crossed. By utilizing a non-deterministic automate, the fingerprint class is re-
trieved. An analysis on the NIST Special Database 4 (NIST-SD4) shows 93,4%
CCR for 7 classes and 94.84% CCR for 5 classes while rejecting 5.1% of the fin-
gerprints containing error-prone sequences.

3.3.2. Rule-Based / Fixed Classification

The common aspect of the following approaches is their classification utilizing pre-
defined rules for categorization of the features used. Therefore, no further training
of the classifier is needed. For instance, the number of cores and deltas is used to
define rules for classifying fingerprints. For some cases, the approaches might use
a rejection rule to prevent misclassification.

Rao [26] described the first rule based classification algorithm depending on a
ridgeline tracer. While working on a thinned and binarized image the line tracer
does a counting of 0s and 1s in different image areas. Based on the results of
counting, the fingerprint is categorized into one of 4 classes (the loop classes are
merged). Since the algorithm was tested only with a few representative images to
show its functionality, no further testing results are available.

Most of the rule-based algorithms rely on extracted singular points. Kawagoe
[27] used the number of singular point to have a rough classification in a first step
and uses a ridge tracing algorithm around the singular points afterwards to do
a finer distinction. Test on a small database of 94 fingerprints show a CCR of
91.48% for 6 different classes. With respect to Kawagoe, Zhang [28] makes use
of the ridge tracing only in the case that only one core and one delta was found.
Thereby he wants to prevent incomplete images, with missing singular points, re-
sulting in wrong classification. CCRs of 92.7% for 4 classes and 84.3% for 5 classes
were archived on NIST-SD4. Wang [29] further extended the approach by intro-
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ducing a new singular point using Gaussian-Hermite Moments (GHMs). They call
it the Core-Delta-Pair and it represents a pair of close by core and delta point,
which would be ignored using Poincaré method. Test on the NIST-SD4 show an
improved performance for tented arches at a total CCR of 88.6% for 5 classes.

Karu’s proposed method [30] uses the number of singular points together with
their location information. The connection of core and delta point is checked
against the local ridge direction within the area and taken into account for final
decision. Different tests on NIST-SD4 and NIST Special Database 9 (NIST-SD9)
show CCRs of 91.3% and 90.1% for 5 classes and 93.9% and 91.4% for 4 classes
respectively. Similar to that, Ballan [31] uses the relative locations of core and
delta to do further classification. The given images were self-made and no results
were published. Klimanee [32] names the connections between core-core and core-
delta principal axes and additionally measures ridge flow directions in that area to
distinguish classes. The algorithm was tested on a small individual database (157
images) and had a CCR of 91.3.% for 6 classes with 4.5% rejection rate.

Further rules are defined by Msiza [33] to receive better classification perfor-
mance for loops, in case of missing delta points by measuring the loop position
within different image partitions. Their tests on the FVC2002-1 reveal a CCR
84.5% and 83.5% for of 4 and 5 without rejecting fingerprints. Webb [34] take
up the idea of Msiza and formulated further rules for the absence of delta points
to improve recognition of loops, whorls and partial fingerprints. They were able
to distinguish between 5 classes in FVC2002-1 with 91.1% CCR and 91.8% in
FVC2004-1 without any rejection. By introducing measurements like Center-to-
Delta Flow (CDF) of Balance Arm Flow (BAF) and an extended decision tree,
[35] achieved an overall CCR of 92.74% on the FVC2000, FVC2002 and FVC2004
databases without rejection for the 4 class problem.

Hong [36] uses a combination of singular point number and position together
with the recurrence of ridge types, which they detect with their ridge verification
algorithm. Results on the NIST-SD4 show a CCR of 87.5% for 5 and 92.3% for 4
classes without rejection. At 20% rejection rate, they can achieve 92.5% for 5 and
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97.6% for 4 classes. Later Liu et al.[37] take up the idea and presented a similar
approach. They detect the singular points and three different ridgeline types in a
first stage for pre-classification. Then they apply a ridge count between detected
cores and deltas to get the final class. The approach was tested on the NIST-SD4
and achieved a CCR of 95.6% for the five-class problem.

By analyzing the OM using Poincaré index, Cho [38] selects the candidates for
core points. After applying a filter to eliminate spurious core points, the curva-
ture around the core point is detected and used for classification together with the
number of cores. On a self-made database containing 6283 fingerprints, a CCR of
92.3% was achieved for 4 classes without rejection.

Dass [39] proposes the use of Orientation Field Flow Curves (OFFC). He detects
the number of representative OFFCs for four different classes and uses thresholds
to select the fingerprint class. On the NIST-SD4, the algorithm got 94.4% CCR
for the four-class problem.

Wang and Xie[40] use the OM to detect the singular points using a self-developed
algorithm based on Poincaré. Classification is done by the number of cores and
deltas. Besides that, distinction of classes with one core only is done by analyzing
ridge flow around the core block. For the five-class problem, the method achieved
a CCR of 82% without rejection and 94% when rejecting 14.4% of the fingerprints
of the NIST-SD4.

Besides that, Wang et al.[41] propose to use the number of singular points to-
gether with the relative position of cores and deltas for further distinction of loop
types and tented arch. The method uses a pixel-wise OM as a basis and slightly
modified Poincaré method for singular point detection. On a combined database of
FVC2002, FVC2004 and Verifinger_Sample_DB (730 fingerprints), the algorithm
achieved a CCR of 96.96% distinguishing five classes while rejecting 0.8% of the
images where no singular point were extracted.

Fan et al.[42] try to improve the classification accuracy by using an improved
algorithm for singular point detection. In a first stage, they use Hough Transfor-
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mation to detect candidate singular points from OM of foreground blocks. These
points are further evaluated using the Poincaré method and class decision relies
on the number of cores and deltas and ridgeline curvature originating from the
core. A reduced set of the NIST-SD4 (first 100 fingerprints) was used for testing.
The algorithm was able to classify arch, loop together with tented arch and whorls
at a CCR of 97%.

The approach of Liu et al.[43] is, to use a combined classification based on
the number of singular points, predominant directions and a directional pattern
analysis. Therefore, they detect the singular points from the OM by clustering the
directions into pattern zones of three major directions and finding the points where
the zones intersect. For fingerprints, containing only one core-delta pair, further
rules are applied that base on directional pattern analysis of the realigned area
around the core-delta connection. Fingerprints with missing singular points or for
which no reliable statement on the class can be given are rejected. The algorithm
was tested on the NIST-SD4 and NIST Special Database 14 (NIST-SD14). CCRs
on the NIST-SD4 are 91.62% for 5 classes and 94.38% for four classes respectively,
while rejecting 1.55% of the fingerprints. The test on the NIST-SD14 shows a
CCR of 89.15% with 3.07% of rejections for distinguishing 5 classes.

In Dorasamy[44], they propose a clustering of the OM based on 3 orientation
ranges. They analyze the intersection of the clusters to determine the singular
points and process an alignment of the fingerprint. With the help of their de-
fined rules, the algorithm performs well on the FVC2002-1(92.87%) and FVC2004-
1(92.2%) with no rejection for 5 classes. The cross validation on NIST-SD4 states
80.51% at a rejection rate of 12%.

The latest rule based approach by Chua [45] makes use of geometric measure-
ments between cores and the corresponding delta point. For classification, a fuzzy-
rule based decision system is used to treat with possible uncertainties by detecting
tented arches and loops. The systems shows a CCR of 88.33% (5 classes) and
92.13% (4 classes) on the NIST-SD4.
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3.3.3. Machine Learning Classification

The Machine Learning approaches are used to analyze high dimensional features
vectors and derive probabilities of class affiliations. In most cases, a statistical
process like principal component analysis (PCA) [46] or Karhunen-Loéve Trans-
formation (KL-Transformation) is used to reduce the dimensionality of the feature
vector to the most discriminative ones and to keep the size of the classifier man-
ageable. Some of the approaches also implement a reject option for the case, that
the classifier output is not significant.

Artificial Neural Network

Hughes [47] were using micro patterns for extraction of OM of size 8x8. They
propose a neural network with Back Propagation Algorithm (BPA) takes the OM
as input vector for learning a classifier. A handmade database of 1600 fingerprints
was used for Training, but no results were provided.

The approach of Bowen [48] shows the usage of average directions from OM and
a vorticity map as input for 2 neural networks. The outputs of these networks
were further used to a train a Back Propagation Network (BPN) for actual classi-
fication. Test on a very small test set (47 images, 12 per class) give CCR of 93.6%
for 4 classes.

In the work of Kamijo [49] a ridge tracing algorithm is used to find the charac-
teristic ridge of the fingerprint class. Thereof a feature vector with 256 elements
is created that serves as input to the network, which consists of 5 subnetworks
for each class. The approach can reach CCR of 86% on a database containing
500 equally distributed fingerprints (5 classes). Using continuous classification,
including second most probable class, the algorithm achieves 99% CCR.

Geng and Shen [50] introduced a neural network structure, called ‘fuzzy - cere-
bellar model arithmetic computer (CMAC)’. The feature vector is derived from a
20x20 OM, which is further reduced, using KL-Transformation. The classifier was
trained to distinguish between arch and whorl class on the NIST-SD4. The results
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obtained are 98.2% CCR.
Nagaty [51] proposed a combined feed forward neuronal system with one sub-

system for each of six classes. After normalization and skeletonization of the input
image, a ridgeline-tracing algorithm is used to detect ridge curvature. The differ-
ent curvatures found are described by alphabetic symbols, similar to a syntactic
coding. Afterwards a statistical analysis of the symbols is done and together with
the binarized string used as input vector for the neural network. On a sub database
of Egyptian Criminal Evidence Database, CCRs of 98.8% (5 classes) and 99% (4
classes) were observed. Some of the fingerprints were assigned to the ‘Unknown’
class if no proper classification can be done.

The approach of Mohamed [52] includes the usage of singular point information
like number, positions and directions as input vector for a fuzzy neural network.
The results obtained from the NIST-SD4 show a CCR of 98.5% when distinguish-
ing 5 classes. It should be denoted, that training and testing was done on the same
data.

A filter based feature vector is used in Jin’s [53] work. By clustering the finger-
print image and applying Discrete Cosine Transformation (DCT) 64 coefficient are
derived. These are further processed by Fisher’s Discriminant Analysis to obtain
training features. Classification is done by a neural network using a Radial Basis
Function (RBF). The algorithm is supposed to have a faster running time than
other approaches and is able to achieve 91.4% CCR on the NIST Special Database
24 (NIST-SD24) for 5 classes.

The algorithm in [54] includes a Vector Quantization (VQ) approach. Clustered
images consisting of 8x8 blocks for each of the 5 classes are used for training. The
VQ algorithm creates a codebook of size 4 that is used for classification. By calcu-
lation the Euclidean Distance between input vector and stored codebooks, a class
decision can be done. On a small test set of only 50 images, the algorithm was
able to achieve 80% CCR.

In [55] Wang et al. propose a algorithm based on a Deep Neural Network. The
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algorithm works without any preprocessing and the OM is used as feature for
the network. After training the classifier on four classes, it is able to determine
the probability of class memberships for the fingerprint. Test were performed on
NIST-SD4, using the first half for training and second for testing. For distinguish-
ing four classes, 91.4% CCR can be achieved without rejection. With a rejection
of 1.8%, the CCR improves to 93.1%.

Multi-Layer Perceptron (MLP)

Wilson et al. [22] described a system using the vectors of the OM as features for
a MLP network. After the preprocessing with Gabor filters and finding a registra-
tion point, the derived vector with 1620 elements was reduced to 96 features using
KL-Transformation. The proposed network was able to achieve 89.2% CCR on the
NIST-SD4 with 10 percent rejection rate. They further improved the setup of the
network [56] and obtained 90.2% CCR at 10% rejection, on NIST-SD4 for 5 classes.
In a later work [57], they tested a new sine activation function for the MLP net-
work and were able to further improve the performance. Testing was done on the
NIST-SD4 and gave CCR of 92.2% without rejection and 96.57% at 10% rejection.

In the approach of Sarbadhikari [58], the MLP with BPA is used to classify the
filter responses of the Fast Fourier Transformation (FFT) of different directional
band. For each bands response a histogram is created giving the powers of 256
frequencies which serve as input for the MLP. The algorithm was tested on images
that were derived from the training images, by adding some noise. Results up to
100% CCR were achieved, but overfitting effects have to be taken into account, so
that they are not meaningful.

Self Organizing Map (SOM) / Kohonen Map

The approach of Moscinska [59] proposed the usage of SOM for the extracted
OM. In a first step, image enhancement and skeletonization is done before OM
extraction. Then the SOM is trained to find delta patterns and their position
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within the OM and distinguish between arches, loops and whorls. Around 80% of
100 fingerprints were classified correctly.

Halici [60] extended the idea of Moscinska to the use of Multiple SOMs. The
OM and certainty map (derived during segmentation process) are used as feature
vectors (64 elements each). After a core based alignment, the features can be used
to train the SOMs. Since the proposed systems does a classification to more than
the Henry classes, an additional BPN is used to do the mapping to the Henry
classes. The proposed method was tested on NIST-SD4 and received 81% CCR
for 5 classes.

The SOM algorithm defined in [61] uses extracted singular points from the OM
for a correction of the OM in a first step. The used feature space is derived from
the 32x32 OM. A deterministic forgery algorithm is applied for clustering based
on some prototypes. The proposed SOM is capable of classifying 1600 fingerprints
of a NIST database into 4 classes with a CCR of 88%.

A recent approach by Borra et al.[62] proposes extensive preprocessing and an
Adaptive Genetic Neural Network for classification. The preprocessing contains
a denoising of the input image and morphological transformations for image en-
hancement. An extracted feature vector (no further information given) is used
for training a Feed-Forward Neural Network. With the use a Genetic Algorithm,
the weights of the network are adjusted to gain better results. The algorithm was
evaluated on the FVC2000 database and gave a CCR of 97.56%. Since they lack
in giving information on the used features and the number of classes, the results
are not comparable.

Support Vector Machine

Since Support Vector Machine (SVM)[63] is a machine learning approach that is de-
signed for solving two-class problems, its application for fingerprint classification[64]
tasks requires a network of multiple SVMs in order to distinguish more than two
classes[65]. Multiple types of SVMs are used for these networks. The One-vs-All
SVM is used to make a decision if the test vector belongs to one concrete class
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or any of the other possible classes. With the pairwise SVM, a decision is made
between two concrete classes or two disjunct subsets of classes. Combinations of
multiple SVMs of these types can be used to design an Error-Correcting Code
(ECC) system to lower classification errors[66]. It is further possible to apply an
explicit rejection rule for feature vectors depending on the minimum distance.

The use of SVM for fingerprint classification was introduced by Yao [65]. In this
approach the FINGERCODE is used as feature for classification as described in
[67]. Three combinations of the SVMs were tested on NIST-SD4 to classify into
five classes. Using five One-vs-All SVMs, 88% CCR was achieved while rejecting
1.8% of the fingerprints. The combination of ten pairwise SVMs can improve CCR
slightly to 88.4%. Best results were obtained by using a combination of both sys-
tems and fusing them to an ECC Scheme. The CCR for this scheme is 89.3%.

Min [68, 69] also described the use of FINGERCODE and SVM as classifier. 5
One-vs-All SVMs are used (one for each class) to create so called Decision Tem-
plates for each class, using training data. The Decision Templates of each class
are then clustered with the help of a SVM to obtain one Decision Profile per class.
For classification, the distance of the Decision Profiles to the Decision Template
of the probe is computed. The algorithm was tested on the NIST-SD4 and gave
a CCR of 90.4% (5 classes) and 94.9% (4 classes). It is notable, that the first
impression of fingerprints were used for training and the second for testing, which
might result in overfitting.
An alternative approach was given by [70]. While he also uses the FINCERCODE
as feature for classification, he also extracted singular point and ridge structure
information. The additional information is used within a naïve Bayes classifier to
calculate the weights for the output of 5 One-vs-All SVMs. This allows dynamic
ordering based on the input fingerprint and improved classification performance.
For five classes, a CCR of 90.8% was achieved on the NIST-SD4. In case of am-
biguous class labels, all of them were considered correct.

In [71] a lot of preprocessing is applied to the image, containing a reject option
for low quality images. Filters are used on the image in order to find candidates for
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singular points (including the probability to be SP). Responses of complex filters
and the information extracted from the candidate singular points are used as fea-
tures. A predefined SVM System is used for classification. The best performance
observed on the NIST-SD4 is 93.5% for five and 95% for four classes.

Nearest Neighbor

The Nearest Neighbor or K-Nearest Neighbor classifier [72] uses the entire training
set for its class decision. During the classification, it compares the feature vector
of the probe to all the feature vectors of the training data and determines the k
training features close to the probe. The different approaches based on k-Nearest
Neighbor (kNN) classifier defer in the way, they calculate the distances between
vectors and how the class decision is done after obtaining the neighbors.

In Fritz work [73], a feature is used to classify fingerprints with the Nearest
Neighbor (NN) method. During the preprocessing, many enhancements are ap-
plied to the image and afterwards skeletonization is done. The feature vector is
received by using FFT on the image and employ the defined ‘wedge-ring’ detector,
which aggregates FFT responses in predefined areas. The NN algorithm is used to
find the nearest reference vector for a given sample. On a small test set consisting
of 40 images, a CCR of 85% was achieved for classifying arches, loops and whorls.

Another approach was made by Wang [74], who used directional classification
together with kNN. In a first preprocessing step, the image quality is enhanced.
After the calculation of the OM, the core point is searched using Poincarémethod.
Around the core point, 16x16 blocks of the OM are extracted and their mean is
calculated. A k-Means is used for creating the clusters and 3 kNNs are used for
classification. On a reduced set of the NIST-SD14 89.4% of the fingerprint were
correctly classified into four classes. The CCR on their created database (1200
images) is 91.5%.

Rajanna et al. [75] tested and compared multiple feature extraction algorithms
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with kNN as classifiers. They used OMs, a generalized representation of it called
Orientation Collinearity Maps (OCs), Gabor filter responses and Minutia Maps.
Since Minutia Maps depend on level 2 features and results are worst of the tested
features, they are not further mentioned here. All tests were performed on the
NIST-SD4 to solve the 5 class problem. The CCR using OM was the best (85.53%)
compared to the other single classifiers (Gabor with 83.6% and OC with 76.76.5%).
Only the combined output of the classifiers using OM an OC could outperform
the best single classifier slightly (85.85%).

Luo et al.[76] take up the idea of kNN and use features for the classification.
First step of their algorithm is a preprocessing to reduce noise, as well as the de-
tection of a reference point. A Curvelet Transformation is used to create gray-level
co-occurrence matrices, from which the feature vector for classification is derived.
With help of 10-Nearest Neighbor classifier, a CCR of 94.6% for five classes and
96.8% for four classes was obtained on the NIST-SD4.

Classifier Comparison

Nyongesa et al. [77] did a benchmark of different neural network approaches,
namely MLP, RBF and Fuzzy-Neural Network (FNN). They used 7 features de-
rived from the OM and singular points like their relative position and orientations.
Results of classifying into five classes were reported for the NIST-SD4. The best
CCR of 92.55% was achieved using MLP. CCR for RBF and FNN were 88.85%
and 90.75% respectively.

In [78], Kristensen et al. compare different machine learning classifiers using the
FINGERCODE as a feature. They use the core of the fingerprint as reference point
to extract the feature vector for classification. SVMs as well neural networks based
on MLP, Bidirectional Associative Memory (BAM), Hopfield and Kohonen were
tested on a small database (512 images) with natural class distribution. Only
the MLP and SVM approaches produced noteworthy CCRs of 88.8% and 87%
respectively, without rejecting fingerprints.
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3.3.4. Graph Matching & Structural Approaches

Maio [79] introduced a new type of approaches by segmenting the OM into areas
containing similar slopes. The interconnection of the center points of these areas
form a graph that is then further analyzed. Thereby he makes the classification
problem to graph matching problem. By defining an arbitrary number of proto-
type/model graphs for each class that needs to be distinguished this method is
very flexible. The classification is done by the calculation of distances between the
probe and model graph. No tests on databases were performed to show classifica-
tion performance.

In the approach of Senior [80] fiducial lines are used on an enhanced and skele-
tonized image. The classification features are derived by analyzing the intersection
of the fiducial lines with the ridgelines and taking some measurements. By using
a two dimensional Hidden Markov Model (HMM) up to 90% CCR were achieved
on subset of NIST-SD4.

Cappelli et al. [81] defined a graph based classification algorithm, called MASKS.
This algorithm utilizes segmentation of the directional image similar to [79] but has
some changes in the algorithms that do the work. A genetic algorithm is used to
improve the segmentation and to be more robust to local ridge direction changes.
Predefined dynamic masks are used to do a cost calculation for the transformation
of the template mask to the predefined ones. The lowest costs indicate the class
of the fingerprint. Since this approach was primary designed for continuous clas-
sification, results for exclusive classification classifying into five classes are lower
than other approaches. On the NIST-SD14, 85.7% CCR were achieved and 87.1%
on the NIST-SD4.

The proposed method of Jain and Minut [82] uses ‘Kernel Fitting’ for classi-
fication. The OM derived from a fingerprint image is analyzed using predefined
kernel functions e.g. unique circle for the loop class. The classifier tries to fit
the kernel functions to the OM and calculates scores on which the classification is
done. In their test, they were able to achieve a CCR 91.25% without rejection on
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the NIST-SD4.

An improved feature extraction algorithm for graph matching is presented by
Neuhaus and Bunke [83]. Within the OM directional variances are detected and
used to create the graphs. Prototype graphs for the different classes are used to
calculate the graph edit distance (GED) to the graph extracted from probe. The
class is then determined by the lowest GED. The performance was tested on NIST-
SD4 and CCR of 80.27% was achieved.

Jung and Lee[84] proposed an algorithm using Markov Model (MM) for classi-
fication. After enhancing and applying skeletonization, a ridgeline scanner is used
to extract the directional variations of the ridges. The compressed variation in-
formation are used as classification features. A MM for each class is used is then
used to classify input feature vector. The tests on the second half of a combined
set of FVC2000-DB1 and FVC2002-DB1 shows a CCR of 80.1% for distinguishing
four classes.

In Liu[85] an approach based on adaboost decision trees is shown. After OM
calculation and image segmentation, the singular points are extracted using com-
plex filters. Different measurements of the SPs are used to obtain 16 dimensional
feature vector. The outputs of the decision tree are further normalized, so that
they can be interpreted as class probabilities. Testing results on the NIST-SD4
show CCRs of 95.7% (4 classes) and 94.1% (5 classes).

3.3.5. Other Classification Approaches

In the approach of Chong [86], a geometric representation of the fingerprint is used
for classification. Therefore, they group the ridgelines within the skeletonized im-
age to receive the global geometric shape of the fingerprint. By analyzing its
curvature they classify the sample into one of five classes. The algorithm was able
to achieve good results (96.6% CCR) on a small database containing 89 images.
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A Genetic Algorithm is used in Qi’s approach [87] to improve the performance
of the stated Probablistic Neural Network (PNN) by using a feedback mechanism.
With respect to a registration point, the directions of the OM are used as feature
vector for the PNN. With help of the genetic algorithm, the probabilities within
the net are updated to improve performance. Tests on the NIST-SD14 give CCRs
of 94% for five classes and 99% with 20% rejections. When decision is made
between four classes, 94.4% CCR are achieved.

Hu and Xie[88] show a similar approach to [87]. They use genetic programming
to optimize the distinctiveness of primitive features derived from the OM. After
that, a BPN is used to classify input fingerprints and return the two most probable
classes. If the output is reliable the class is directly determined. Otherwise, a SVM
is used for the distinction of the two classes. They results on the FVC2004 DB1
and DB2 show good CCRs of 96.4% for distinguishing four classes at 7.2% rejection
and 93.6% (with no rejection) as well as 96.2% (with 15% rejection) for five classes.

Park and Park [89] describe an approach using kernel discriminant analysis for
classification. With the help of Discrete Fourier Transformation (DFT) and direc-
tional filters, the image is preprocessed, before FFT is used to retrieve the OM.
The a core point is retrieved and directional vectors around the core point are
used for the discriminant analysis and class derivation. The tests were performed
on NIST-SD4. For the 4 class problem, the CCRs are 94% and 97.9% (at 20%
rejection) and for five classes 90.7% and 95.3% (at 20% rejection).

The approach of Tan et al. [90] uses genetic programming for feature learning.
The feature vector consists of the OM itself as well as additional information de-
rived from it. After the learning algorithm finished, a Bayesian classifier is used to
do class detection. The NIST-SD4 was used for testing and the classifier achieved
93.3% CCR for four and 91.6% for five classes.

Leung and Leung [91] make use of a simplified FINGERCODE as feature. They
use block wise filter responses around the registration point as features that are
reduced by applying Fisher’s discriminant analysis for creating the test data. A
Bayes classifier is used to classify the fingerprints based on the filter responses.
The results given are not in the form to be comparable to the other results stated
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here.

Vitello et al. [92] presented a method based on k-Means and naïve Bayes clas-
sifier. The feature for classification is derived from the OM using fuzzy c-means
algorithm. The classification is done by applying the c-means algorithm, using the
probe and training set as input and use its output to decide class with naïve Bayes
classifier. The approach was tested on a subset of PolyU Database (100 images)
and received 91% CCR.

Jung and Lee[93] proposed a new algorithm based on statistical analysis of the
ridge directions within a detected core block. The OM is derived by clustering the
input image and applying FFT to the blocks. Then MM that is trained to detect
core points is used to select the reference point for the center of a core block. Ori-
entation histograms are created for 4 regions within the core block and so called
local models are created. The classifier than calculates the probabilities of the
local models to belong to one of four classes. Results on the databases FVC2000,
FVC2002 and FVC2004 show CCR of 97.1%, 97.8% and 97.3% respectively.

3.3.6. Multi Classifier Approaches

Within this section, all approaches are mentioned that use a combination of mul-
tiple classifiers in order to improve the classification performance. It is tried to
achieve the improvement by using (hopefully) uncorrelated features for different
classifiers, so that they produce uncorrelated errors. With that, they can set up
decision rules for combining the classifier[94] results like hierarchical/rule based or
voting based (majority votes, weighted votes).

A direct successor of [22, 56] is the definition of Pattern-Level Classification
Automation System (PCASYS)[95] as a reference system whose source code is
freely-available. The system applies image enhancement in the first step, before
extracting the OM. KL-Transformation is used to reduce the 1680 directional fea-
tures to 64. In contrast to [22, 56], they use a PNN for learning the features. An
additional line tracing algorithm is taken into account for detecting whorls with a
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high precision. By combining both, PNN and line tracer output, the system can
achieve a CCR of 92.2% without rejection and 96.5% at 10% rejection rate on the
NIST-SD14.

Based on the PCASYS approach Lumini [96] extended the idea to a continuous
classification system. In contrast to PCASYS, the outcome of the algorithm is no
an exclusive class but the ranking of the possibilities of belonging to the different
classes. The database search is done incrementally by looking into the batches
of different classes depending on the derived probabilities. This allows handling
ambiguous fingerprints without misclassifying them. Test show that the database
hit rate can be improved on NIST-SD4.

Within [67, 23], Jain et al. described a new representation for fingerprints using
filter responses, named FINGERCODE. In a first step, a reference point needs to
be found. When this reference point is found, it is set as registration point and the
area around this point is divided into 48 sectors. Four different Gabor filters are
applied to the point, so that a feature vector of 192 elements is obtained. They
tested different classifier together with this feature vector on the NIST-SD4. At
first a kNN was testes, which was able to classify 85.4% correctly into 5 and 91.5%
into four classes. By applying rejection-based threshold for neighbors and reject-
ing 19.5% of the fingerprints, the CCRs could be improved to 93.5% and 96.6%
respectively. When using a set of 10 pairwise SVMs and kNN for classification and
combining their outputs using a multiplexer, 90% (five classes) and 94.8% (four
classes) CCR were achieved. A trained neural network was able to classify 86.4%
(five classes) and 92.1% (four classes) correctly.

The purpose of [97][98][99] is to combine the MASKS [81] and Multispace
Karhunen-Loéve Transformation (MKL) based approach[100] for continuous and
multiple MKL based classifiers for exclusive classification. The MKL method uti-
lizes the OM and a registration point as feature input. With that, training data
is partitioned regarding the fingerprint classes and subspaces of the feature vec-
tors are created for each partition. New fingerprints are classified by the distance
to these subspaces. Therefore, they named the method Subspace-based Pattern
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Discrimination (SPD). Two types of classifiers were used in this approach. The
MKL-MIN selects the class with the smallest distance and MKL-KNN by deter-
mining the nearest subspaces. By combining these classifiers using majority voting
system, their test on the NIST-SD14 achieved 94.5% CCR without rejection and
99% when rejecting 17.5% of the fingerprints, with respect to the confidential-
ity of the distances. The combination with the MASKS was done for continuous
classification, where a combined distance to the subspaces served as foundation
of classification. The obtained class was searched for the test sample and search
space was further extended, until either a match was found or the entire database
was searched. In average 3.7% of the database were searched.

Cappelli et al.[101] took up their previous idea of MKL classifier [98] and built a
two-stage classifier from that, together with a so called SPD classifier. The MKL is
used in a first instance to find the two most likely classes of the probe fingerprint.
Based on that, one of the multiple trained SPD classifiers is selected to make the
final decision between the two classes. The SPD uses the OM as base for the
feature vector and it is reduced by KL-Transformation. To differentiate between
two classes, it was trained on the most discriminative features of the two classes.
They were able to achieve 96.6% and 95% CCR for four classes and for five classes
respectively without rejection on the NIST-SD4.

In Pattichis [102] a similar approach to PCASYS is used. It differs in the way of
preprocessing and retrieving the directional information. Preprocessing is done us-
ing Amplitude-Modulation(AM) and Frequency-Modulation(FM) technique. The
obtained image quality is better than the initial approach and the extraction of
FM component gives the features for classification. Using this approach results in
less misclassified fingerprints but unfortunately, no detailed results are given.

In [103][104] Senior and Bolle extend the approach using fiducial lines and HMMs
[80] by fusing the results with an additional Decision Tree classifier. The features
for the second classifier are extracted at salient points on the ridgelines e.g. turning
point in the curve. By using this second classifier, it is supposed to include addi-
tional uncorrelated features to the classification process. Multiple test were per-
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formed on the NIST-SD4. The combination of the two defined classifiers achieved
a CCR of 91% for the four-class problem when taking into account the class priors.
When further merging the PCASYS [95] classification system, the CCR could be
increased to 94.9%.

Marcialis et al.[105] describe a system consisting of a combination of Recur-
sive Neural Network (RNN) output for relational graphs and MLP based on
FINGERCODE[67]. The combination of the classifiers is done by using a kNN.
Tests were performed on the NIST-SD4, which showed CCR of 87.88% for distin-
guishing five classes.

The approach of Yao et al.[106] bases on [105]. They propose a combination
of RNN and SVM classifiers after comparing different classifiers and features. In
this work they contrast the usage of FINGERCODE [67] and relational graphs [81]
as features together with RNN, SVM and MLP as classifiers. They found that a
combination of RNN extracted features from the relational graphs and FINGER-
CODE features together in an ECC SVM system produces the best results. The
approach was tested on the NIST-SD4. At a rejection rate of 1.8%, CCRs of 94.7%
(5 classes) and 90% (4 classes) were achieved. When allowing rejection of 20%,
the CCRs will increase to 98.4% for four and 95.6% for five classes respectively.
Further measurements for the single classifiers are provided in the paper.

The approach of Han [107] fuses the idea of machine learning with a set of rule.
For the machine learning part, a reference point is searched by detecting singular
points (using Poincaré) or maximum curvature. 100 blocks of the OM from around
this point are then used to create a 300-dimensional feature vector by applying
a statistical analysis. The rule-based system is based on the singularity informa-
tion. When fusing both classifiers, they achieve 93.23% CCR for five-class problem
without rejection.

Shah and Sastry[108] designed a line-detector for processing the input image
and obtain the skeletonized fingerprint. They used the OM to create 2 feature
vectors, one based on the directions around the center of the image and the other
one with the direction around a detected center of the fingerprint. The classifiers
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kNN, Fast-Forward Neural Network (FFN) and SVM were compared and found
to produce similar results. SVMs and FFN were set up in a hierarchical structure
to separate arches from the loops and whorls and then distinguish four classes.
The kNN classifier is improved by using the SVM vectors as prototypes. This
decreases the complexity neighbor search. The different setups were tested on
the NIST-SD14 and produced CCRs of 97.07% for the SVMs, 99.29% for kNN
and 97.96% for the PNN. It should be denoted, that the documented results were
achieved with overlapping training and test data.

The combined approach of Cao et al.[109] uses hierarchical combination of rule
based, kNN and SVM classifier. In a first stage, complex filter responses for sin-
gular point detection are used to find arches and whorls. Secondly, a kNN is used
to get the two most likely classes from a combined feature vector consisting of OM
and filter response, reduced by principal component analysis. SVMs are then used
to distinguish between those classes. For the loop and whorl classes, they further
use ridgeline tracing for distinction. The NIST-SD4 was used for testing. CCRs
of 95.9% for five-class and 97.2% for four-class problem were achieved without
rejection.

Depending on the survey of Galar et al.[15], they selected a set of approaches([95,
30, 81, 67, 98, 28, 77, 108, 29, 70, 71, 85, 91, 110]) for testing within a defined
framework[16]. They not only reimplemented the classification approaches from
feature extraction to classifier but also used the feature extraction together with a
bunch of reference classifiers, namely kNN, SVM and C4.5[111]. The evaluation of
the approaches and different classifiers was done on multiple synthetic databases of
different quality, created by SFinGe[112], as well as the NIST-SD4. Since the eval-
uation is very complex and many combinations of the previous named approaches
and classifiers were tested, the original paper should be consulted for detailed in-
formation. In the following, only the best performing combination of the classifiers
is described. It uses multiple SVMs with RBF kernel for each of the features from
Hong 2008[70], Liu 2010[85], Zhang 2004[28] and Cappelli 2002[98]. The output
of the four classifiers is combined after each of them presented its desired class.
Either consensus vote or majority vote was used for combination. It has to be
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taken into account, that the consensus mode leads to a rejection if not all of the
classifier outputs correspond and therefore a higher amount of fingerprints is re-
jected in favor of a better CCR. The tests on the different databases show good
results for combination using consensus mode (98.45% to 99.5%) but also high
rejection rates (ranging from 17.5% up to 43.3%) which could render the classifier
combination not useful, depending on the database. Majority mode could improve
the rejection rate (3.3% to 21.3%) but would also decrease the CCRs (93.4% to
98%).

Peralta et al.[113] propose a identification system, containing fingerprint clas-
sification subsystem based on the findings of [15]. For their system, they tested
different combinations of feature extractors together with random forests and SVM
as classifier. They came up with a two level classification system in order to pre-
vent rejections. Depending on the first feature that is based on [70], the fingerprint
might be rejected or not. If the fingerprint is not rejected, it will be classified us-
ing level 1 and level 2 if the feature extraction fails. The major difference of the
two levels is the feature set used. Level 1 uses features described by Hong[70],
Liu[85], Nyongesa[77] and Leung[91], whereas level 2 leaves out the Hong features.
For both of the levels, a random forest is trained to find the most discriminative
information for the final feature vector of reduced size. With that, the training
data for the SVM classifiers could be extracted. Tests on the databases NIST-SD4,
NIST-SD14 and a SFinGe created database (400,000 fingerprints) revealed CCRs
of 92.97%, 93.76% and 94.38% respectively, without rejecting fingerprints.

3.4. Summary
After reviewing the above- mentioned works, it can be said that the variety of dif-
ferent approaches makes it hard to compare and rate them. This is due to multiple
reasons:
The most important is that the datasets on which the tests were performed differ
in size, quality and distribution. Even if the same databases are used, the dif-
ferent partitioning into test and training data affects the algorithms performance
and comparability, especially for the machine learning approaches. Besides that,
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some of the fingerprints within sensor captured databases can have ambiguities
regarding their class if the ground truth is created by multiple human experts and
the fingerprint does not clearly belong to one of the defined classes. The authors
of the approaches use different strategies to deal with the ambiguous fingerprints
like removing these images from database, accepting only one or multiple ground
truth classes.
Another major point is the number of classes used for classification. It is obvious,
that having an algorithm designed for distinguishing three classes will perform
better compared to those classifying into five or more classes. Since for example
tented arch and loops can have very similar feature distribution, its distinction is a
more challenging task than selecting between whorl and arch. Similar to the find-
ings in [15] it can be said that the authors of the papers offer information on their
approaches at different levels of details. While some of them state each possible
parameter for configuration, other only give a high-level description with a lack of
details. This can lead to problems for reimplementing the stated approaches.

When contrasting the different types of classification approaches some basic ob-
servations can be made. Nearly all of the approaches somehow rely on the OM
in the first step, except those using the raw or at most the preprocessed image.
Preprocessing is another task in most of the proposed methods but it is not clear if
papers without information on preprocessing completely skip this step or just not
mentioned it. Apart from [25] no recent approach was made for using syntactic
classification of fingerprint. Moayer showed that syntactic representation could
serve for this purpose but a complex grammar needs to be defined for automatic
classification. This complexity might be one of the main reasons why so few works
base on syntactic classification to date.
The rule-based classification approaches mentioned in Section 3.3.2 show advan-
tages towards any machine learning approach because they do not necessitate
training data and after the feature extraction, a quick decision can be done based
on a small set of rules. Since most of them somehow rely on the extraction of
singular points from the input fingerprint, this is a crucial step and the classifica-
tion performance can highly rely on its accuracy. Especially those methods using
relative measures between the singular points will suffer from inaccurate feature
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extraction.
The machine learning methods are capable of managing more complex feature
vectors and making their decision based on those. While training of SVMs and
classifying with them can be done very efficiently depending one the learning strat-
egy, the training of neural networks can be a challenging task. Both approaches
are fast in classification in contrast to kNN classifier, thats running time during
classification is highly dependent on the number of prototypes because distance
measurement with the probe has to be done for each prototype. The more proto-
types are used, the better the classification performance will be but it results in
worse classification speed.
The graph matching approaches from Section 3.3.4 tend to have lower classification
accuracy than others. This is because they are primarily designed for continuous
classification approaches instead of exclusive classification. The outcome is the
similarity to the different classes, which is used to define a order in which database
searches are performed.
The most promising works regarding the classification performance make use of
the advantages of different classifiers and features by fusing them. However, the
combination of different approaches requires a good fusion strategy and classifier
selection. Hierarchically arranged classifiers offer opportunities for doing a step-
wise classification based on the reliability of the classifiers output. Without the
definition of hierarchy, the classifier outputs can be fused by applying different vot-
ing schemes like majority or consensus voting which will directly affect the CCR
and rejection rates, as can be seen in [16].

Having in mind that the comparison of the approaches is difficult due to the
before mentioned reasons and information on the different approaches might be
incomplete, is difficult to select possible approaches as a basis for testing within
this thesis. Except the PCASYS system of Candela et al.[95] none of the other
approaches deliver any sources to their papers, what makes it necessary to have a
reimplementation of the approaches. Fortunately Galar et al.[16] performed exten-
sive testing of different feature extraction methods and classification approaches
and therefore reimplemented some of the methods. They provided the source
code together with their paper to enable others building and testing classification
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systems with no need for reimplementation. This work will serve as a basis for
implementation of the classification system in chapter 5.

All reviewed approaches of the previous sections can be found within Table 3.1.
The table states the best testing results as well as the used databases for each
of the approaches. Further information is given regarding the class distribution,
size of the database and the handling of ambiguous class labels. Due to the FBI
requirements of at least 99% CCR at a maximum of 20% rejection rate[30], the
presented results are selected with respect to that. If multiple rejection rates were
reported, then results with the lowest (including 0%) and the first rejection rate,
lower or equal to 20% are presented. The entries are ordered by year and contain
information on the type of approaches, databases used as well as the achieved
CCRs and corresponding rejection rates.

Table 3.1.: Different classification approaches and their best results on different
databases

Ref. Author Year Type DB Classes CCR Reject
[20] Moayer 1975 SYN other 7 92.5% 13%
[21] Moayer 1976 SYN - - - -
[26] Rao 1976 RUL other - - -
[24] Rao 1980 SYN other 7 91.66% -
[27] Kawagoe 1984 RUL other 6 91.48% -
[47] Hughes 1991 ANN other - - -
[48] Bowen 1992 ANN other 4 93.6% -
[22] Wilson 1992 ANN SD4 4 81% / 89.3% - / 10%
[49] Kamijo 1993 ANN other 5 86% -
[59] Moscinska 1993 ANN other 3 80% -
[56] Wilson 1994 ANN SD4 5 90.2% 10%
[95] Candela 1995 MUL SD14 6 92.22% / 96.5% - / 10%
[57] Wilson 1995 ANN SD4 5 92.2% / 96.57% - / 10%
[73] Fitz 1996 NN other 3 85% -
[60] Halici 1996 ANN SD4 5 81% -
[30] Karu 1996 RUL SD4 4 / 5 93.9% / 91.3% 10%

RUL SD9 4 / 5 91.4% / 90.1% 10%
[79] Maio 1996 STR - - - -
[31] Ballan 1997 RUL - - - -
[86] Chong 1997 OTH other s 5 96.6% -
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Table 3.1.: Different classification approaches and their best results on different
databases

Ref. Author Year Type DB Classes CCR Reject
[50] Geng 1997 ANN SD4 2 98.2%
[96] Lumini 1997 MUL SD4 n - continuous -
[80] Senior 1997 STR SD4 r 4 90% -
[87] Qi 1998 - SD14 4 / 5 94.8% / 94%

- SD14 5 99% 20%
[58] Sarbadhikari 1998 MLP other s 5 up to 100% o

[81] Cappelli 1999 STR SD4 n 5 87.1%
STR SD14 r 5 85.7%

[36] Hong 1999 RUL SD4 4 / 5 97.6% / 92.3% 20%
[67] Jain 1999 KNN SD4 4 91.5% / 96.6% - / 19.5%

KNN SD4 5 85.4% / 93.5% - / 19.5%
ANN SD4 4 / 5 92.1% / 86.4% -
MUL SD4 4 / 5 94.8% / 90% -

[97] Cappelli 2000 MUL SD14 5 94.4% / 99% - / 17.5%
[38] Cho 2000 RUL other 4 92.3% -
[61] Bernard 2001 SOM NIST • 4 88% -
[105] Marcialis 2001 ANN SD4 5 87.88% -
[51] Nagaty 2001 ANN other 4 / 5 99%/98.8% b -
[102] Pattichis 2001 MUL SD4 - - -
[103] Senior 2001 MUL SD4 4 94.9% -
[65] Yao 2001 SVM SD4 5 89.3% -
[98] Cappelli 2002 see Cappelli 2000 [97]
[25] Chang 2002 SYN SD4 5 / 7 93.4% / 94.8% 5.1%
[82] Jain 2002 STR SD4 4 91.25% b -
[52] Mohamed 2002 ANN SD4 5 98.5% o -
[74] Wang 2002 KNN SD14 r 4 89.4% -

KNN other 4 91.5%
[101] Cappelli 2003 MUL SD4 4 / 5 96.3% / 95.2% -
[106] Yao 2003 MUL SD4 4 94.7% / 98.4% 1.8% / 20%

MUL SD4 5 90% / 95.6% 1.8% / 20%
[99] Cappelli 2004 see Cappelli 2000 [97]
[39] Dass 2004 RUL SD4 4 94.4% ∗ -
[32] Klimanee 2004 RUL other 6 91.3% 4.5%
[77] Nyongesa 2004 ANN SD4 5 92.55% -
[89] Park 2004 - SD4 4 94% / 97.9% - / 20%

- SD4 5 90.7% / 95.3% - / 20%
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Table 3.1.: Different classification approaches and their best results on different
databases

Ref. Author Year Type DB Classes CCR Reject
[104] Senior 2004 see Senior 2001 [103]
[108] Shah 2004 SVM SD14 r 4 97.07% o -

KNN SD14 r 4 99.29% o -
ANN SD14 r 4 97.96% o -

[40] Wang 2004 RUL SD4 5 82% / 94% b - / 14.4%
[28] Zhang 2004 RUL SD4 4 / 5 92.7% / 84.3% -
[107] Han 2005 MUL SD4 5 93.23% -
[83] Neuhaus 2005 STR SD4 5 80.27% -
[90] Tan 2005 - SD4 4 / 5 93.3% / 91.6% -
[68] Min 2006 SVM SD4 4 / 5 94.9% / 90.4% o

[78] Kristensen 2007 SVM Other s n 4 87% -
MLP Other s n 4 88.8% -

[29] Wang 2007 RUL SD4 5 88.6% -
[42] Fan 2008 RUL SD4 r s 3 97% -
[70] Hong 2008 SVM SD4 4 / 5 94.9% / 90.8% f -
[71] Li 2008 SVM SD4 4 / 5 95% / 93.5% 1.8%
[43] Liu 2008 RUL SD4 4 / 5 94.38% / 91.62% 1.55%

RUL SD14 5 89.15% 3.07%
[53] Jin 2009 ANN SD24 5 91.4% -
[84] Jung 2009 STR FVC00/02 s 4 80.1% -
[37] Liu 2009 RUL SD4 5 95.6% -
[33] Msiza 2009 RUL FVC02-1 4 / 5 84.5% / 83.5% -
[41] Wang 2009 RUL FVC02/04 5 96.96% 0.8%
[88] Hu 2010 MUL FVC04 4 96.4% 7.2%

MUL FVC04 5 93.6% / 96.2% - / 15%
[85] Liu 2010 STR SD4 4 / 5 95.7% / 94.1% -
[69] Min 2010 see Min 2006 [68]
[75] Rajanna 2010 KNN SD4 5 85.85% -
[91] Leung 2011 - FVC00/02 s - - -
[54] Thepade 2012 ANN other s 5 80%
[109] Cao 2013 MUL SD4 4 / 5 97.2% / 95.9% f -
[35] Guo 2014 RUL FVC00/02/04 4 92.74% -
[76] Luo 2014 KNN SD4 4 / 5 96.8% / 94.6% -
[92] Vitello 2014 - PolyU s 4 91% -
[34] Webb 2014 RUL FVC02-1 5 91.1% -

RUL FVC04-1 5 91.8% -
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Table 3.1.: Different classification approaches and their best results on different
databases

Ref. Author Year Type DB Classes CCR Reject
[44] Dorasamy 2015 RUL SD4 5 80.51% 12%

RUL FVC02-1 5 90.11% -
RUL FVC04-1 5 88.98% -

[93] Jung 2015 - FVC00 4 91.1% -
- FVC02 4 97.8% -
- FVC04 4 97.3% -

[45] Chua 2016 RUL SD4 4 / 5 88.3% / 92.13% -
[55] Wang 2016 ANN SD4 4 91.4% / 93.1% -
[62] Borra 2017 ANN FVC2000 - 97.56% -
[113] Peralta 2017 MUL SD4 5 92.97% -

MUL SD14 5 93.76% -
MUL SFinGe 5 94.38% -

• no details on the database
n natural distribution
f for ambiguous labels, only first label assumed correct
b for ambiguous labels, both labels assumed correct
o over-fitting due to overlapping training and test data
s small test set
r reduced database set
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Before setting up a fingerprint classification system based on the previously men-
tioned features and methods, we need to determine if there could be any possible
performance gain for using multiple finger’s classes for database binning. Within
this chapter, the analysis of the fingerprint databases regarding the distribution of
fingerprint classes as well as the correlation of classes between the fingerprints of
a hand is described.

4.1. Datasets
The following section will outline the process of database selection for the planned
analysis. Therefore, the requirements on the fingerprint databases will be outlined
and the available databases are evaluated against these requirements.

4.1.1. Requirements

In order to have a proper selection of the data used for the planned analysis, some
basic requirements were defined. On the one hand, the requirements offer the pos-
sibility to compare the available databases and they also serve as arguments for
or against their usage within the analysis.

The following requirements were defined:

Ground Truth for fingerprint classes
The most important requirement on the data is the presence of ground truth
information on the fingerprint classes in each image. Absence of this infor-
mation renders the dataset useless for the planned analysis since no statistics
can be produced.

48



4. Data Analysis

Natural Class Distribution
A further important point is the class distribution within the database. The
data should represent an extract from a real world database, without any
pre-selection or filtering of the data regarding the fingerprint classes. If this
is not the case, any statistics calculate from the data is useless since it does
not represent natural data.

Number of subjects
In order to receive statistically significant results, the underlying dataset for
the collection of the statistical data should have a large number of subjects.

Multiple adjacent fingers
To be able to analyze the correlation of fingerprint classes between multiple
fingers of a person, the dataset should include fingerprints of more than one
finger per hand.

Both hands
For the comparison of statistics from right and left hand, fingerprints of both
hands of a subject should be included in the dataset.

Image Quality
The images of the database should be of a good quality for later evaluation
purposes. This means that the ridgelines are clearly visible, since the feature
extraction algorithms of proposed system in the next chapter should be able
to work with the images from the dataset.

4.1.2. Dataset Selection

The related work study as well as some additional research led to a list of candi-
date fingerprint databases, often used for scientific research. An overview of the
databases can be found in Table 4.1. It has to be mentioned that during the cre-
ation of this work, the publicly available databases provided by National Institute
for Standards and Technology (NIST) have been withdrawn and are no longer
available to download.
Even though most of the database looked very promising with regard to the num-
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Table 4.1.: Candidate fingerprint databases for statistics calculation
Database Images Subjects Fingers Impres. Res. Format DPI Quality Distrib. Cls.
CASIA
FPV5 20000 500 8 5 328x356 bmp - plain - -

NIST 4 4000 2000 1(mixed) 2 512x512 png 500 scanned/
rolled ink equal 5

NIST 9 54000 2700 10 2 832x768 png 500 scanned/
rolled ink natural 5

NIST 14 same as SD9 wsq see SD9

NIST 10 5520 552 10 1 832x768 png 500 scanned/
rolled ink

selected
classes 5

MCYT 79200 330 10 12 256x400
300x300 bmp 500 plain - -

SFinGe 1 1500000 10000 10 15 416x560 png 500 plain natural 5
SFinGe 2 1500000 10000 10 15 416x560 png 500 plain equal 5

NIST 29 4320 216 10 2 png 500 rolled/
plain - -

NIST 30 see SD29 1000 see SD29

ber of subjects or contained fingers, they lack in providing the required ground
truth for the fingerprint classes. These were namely the CASIA FPV5 [114],
MCYT [115] as well as both NIST databases SD29 and SD30. Therefore none
of them was suitable for the context of this thesis. Further, the author refrained
from the usage of the NIST SD10 database. The problem with this database is the
pre-selection of subjects that own specific fingerprint classes, since it was created
as a supplementary database for the NIST SD9.

The databases named SFinGe consist of algorithmically generated fingerprints
using the ‘Synthetic Fingerprint Generator’ of the University of Bologna [112].
It is obvious that artificial fingerprints are not suitable for a statistical analysis
because their class distribution is either equal for all classes or based a given sta-
tistical distribution. These databases might serve for later evaluation within this
work.

The NIST SD4 database contains one fingerprint of 2000 subjects in 2 impres-
sion. As the database was designed to have equal class distribution to five fin-
ger classes it is not suitable for a statistical analysis but since it offers prepro-
cessed/cropped images, it can be used for training a machine learning classifier
within the proposed system. The equal class distribution allows us to train a clas-
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sifier without any bias towards some class.

Only the NIST databases SD9 and SD14, which are the same datasets with
different image formats (png and wsq), remain out of the determined list. The
database consists of the scans from 5400 ten-print cards of the United States’
FBI. 2 cards from 2700 subjects provide 27,000 different fingerprints, without any
known pre-selection. Its class labels were assigned by examines. That makes it the
only suitable database for analysis. For the statistic calculation, some preparation
had to be done towards to following remarks:

• Since the database contains scans of two ten-print cards, only the first cards
were used for statistics. The second card would be redundant information.

• Few of the fingerprints are classified as Scratches (S), which means they were
not able to assign it to one of the valid classes. Therefore, the fingerprints
of all hands containing such a S class were removed from the statistics.

removed right hands of subjects: 172, 297, 328, 966, 1238, 1479, 1805,
1839, 2591

removed left hands of subjects: 141, 212, 475, 832, 1053, 1253, 1849, 1881,
2525, 2612

Within the scope of an upcoming project of the da/sec Group at HDA, the
‘Federal Criminal Police Office’ of Germany, one of the project partners, kindly
provided an excerpt of information taken from their fingerprint database. At this
point, the author wants to point out that none of the received data contains any
sensitive or person related information.
The received data consist of the class labels from all ten fingerprints of the sub-
jects within their database. It has to be mentioned, that in contrast to the NIST
SD9 database only 4 fingerprint classes are distinguished. Both of the Arch classes
(Arch and Tented Arch) were combined into one class. As the classes were au-
tomatically determined by algorithm, they further provided multiple class labels
with decreasing probability for the case that the detected class is ambiguous. For
our analysis, only the first class label for each finger was used in order to get com-
parable results to the findings of the SD9 database. The presented tables base on
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the class labels of ca. 26,000 subjects.

The results will be presented within the subsequent sections.

4.2. Class Distributions
The subsequent Tables 4.2 and 4.3 provide the information on class distribution
among the NIST SD9 database and the BKA data respectively. The tables show
a relative measurement of each class among all instances of the specified finger.
The values for hand and all fingers represent the combined probabilities of related
fingers. For a more visual comparison of values within the two before mentioned
tables, compare Table 4.4. It consists of a heatmap, which contrasts their values
with different color encodings for higher and lower values. This allows a fast
capturing of the major differences.

Table 4.2.: Fingerprint Class Distribution for SD9
A L R T W

right thumb 3.49% 0.71% 48.94% 0.22% 46.64%
right index 5.61% 14.72% 39.43% 7.06% 33.18%
right middle 4.76% 1.30% 69.49% 2.94% 21.52%
right ring 1.19% 1.41% 49.61% 1.19% 46.60%
right small 0.93% 0.19% 79.41% 0.82% 18.65%
right hand 3.20% 3.66% 57.38% 2.45% 33.32%
left thumb 5.50% 53.31% 0.93% 0.48% 39.78%
left index 5.84% 37.73% 15.17% 9.63% 31.64%
left middle 5.61% 67.36% 1.49% 5.06% 20.48%
left ring 1.90% 58.66% 0.48% 1.67% 37.29%
left small 1.26% 83.94% 0.22% 1.08% 13.49%
left hand 4.02% 60.20% 3.66% 3.58% 28.54%
all fingers 3.61% 31.93% 30.52% 3.01% 30.93%

The first obvious observation, when looking on Table 4.2 is that right loop
(30.52%), left loop (31.93%) and whorls (30.93%) are the most common classes
for the SD9 dataset, where as the both arch classes -arch (3.61%) and tented
arch (3.01%)- have lower occurrence. Similar results can be found for the left loop
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(31.11%) and whorl (31.22%) of the BKA data with the difference that the missing
tented arch classes leads to higher values for right loop (35.77%) and less arches
(1.91%).

Arches The two arch classes have by far the lowest probability among all classes
(∼2-3.5% each), both in BKA and SD9 data. Table 4.2 shows only few occurrences
of tented arches within thumb, ring and middle finger of both hands and higher
values for index and middle finger, whereas the arch has few occurrences only in
ring and small fingers. The total distribution of the arch class is lower within the
BKA data but ratios between fingers are similar.

Whorl Class When comparing the class distributions for whorl class in both
datasets, one can see that for each finger, very similar probabilities exist with a
maximum difference of ∼3% for the index fingers. The combined probabilities for
the left hand, right hand and all fingers differ for only 0.2%-0.6%.

Loop Classes The comparison of the loop classes creates a different impression
regarding the similarity of the datasets in terms of class distribution. As Table 4.2
show, the probabilities for right classes are much higher for fingers of the right
hand than they are for the left hand. Left loops have only low occurrence in right
hands (<2%), except for the right index finger(∼15%). The opposite behavior
can be observed for fingers of the left hand. When comparing this finding to
Table 4.3, it can be seen that the distributions of the loops are somehow swapped.
The communication with the distributor revealed, that its very likely an issue of
the system which makes incorrect use of the class labels. In this case, the class
distributions would match to those presented in Table 4.2 with minor differences
for the right loop (∼3%) and
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Table 4.3.: Fingerprint Class Distribution for BKA data
A L R W

right thumb 1.49% 49.02% 0.57% 48.91%
right index 4.23% 36.62% 22.41% 36.74%
right middle 2.17% 74.24% 2.66% 20.92%
right ring 0.65% 50.84% 1.56% 46.95%
right small 0.38% 83.47% 0.56% 15.59%
right hand 1.79% 58.84% 5.55% 33.82%
left thumb 2.60% 0.42% 57.75% 39.23%
left index 3.60% 16.35% 45.48% 34.57%
left middle 2.66% 1.70% 74.01% 21.63%
left ring 0.81% 0.62% 62.00% 36.57%
left small 0.47% 0.19% 88.08% 11.27%
left hand 2.03% 3.86% 65.46% 28.65%
all fingers 1.91% 31.11% 35.77% 31.22%

NIST SD9 BKA
A L R T W A L R T W

right thumb
right index
right middle
right ring
right small
right hand
left thumb
left index
left middle
left ring
left small
left hand
all fingers

100%
75%
50%
25%
0%

Table 4.4.: Heat Map for Class Distribution of SD9 and BKA data
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4.3. Correlation Analysis and Workload Reduction
This section provides the statistics of the correlation analysis of the NIST SD9
and presents the possible workload reductions based on that. For this analysis,
we had a look on the different combinations of class labels within the different
subjects’ hands and created statistics on its occurrences. Each table describes the
occurrences of combinations for a defined number of adjacent fingers within either
right or left hand. Grouping of the table is done by the used adjacent fingers.
For example, Table 4.6 shows the correlation of two fingers classes on the right
hand. The first probabilities were calculated for the right thumb and index finger,
whereas the second column of probabilities describes right index and middle fin-
ger correlation. The first combination is always starting with the class of thumb
together with its adjacent finger(s). Compare Figure 4.1 for a visualization of ad-
jacent fingers.

a b

Figure 4.1.: The above figures show the adjacent fingers, right index and middle
(a) and left index, middle and ring finger (b)

The size of tables was reduces for the sake of clarity, so that only the top ten class
combinations are included within the tables of this section1. All tables shown here,
base on the information of the SD9 dataset and its 5 fingerprint classes. Further
tables were created by fusing its arch classes and by an analysis on the basis of pro-
vided BKA data. These secondly mentioned tables can be found in the appendix B
and C of this thesis, since they show similar distributions as the following tables do.

1The complete tables will be provided on a CD together with this thesis
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4.3.1. Possible Workload Reduction

For a naïve approach, the average number of comparisons required to identify a
probe within a closed set scenario can be described by

m ∗ n ∗ (n + 1)
2

, where n is the number of enrolled subject and m denotes the number of finger-
prints to be compared for identification. The function fits if we stop comparison
as soon as a comparison scores above a given threshold is retrieved. As an ex-
ample, we take the database SD9. If we define one potential finger that should
be utilized to identify the subject within the database (e.g. right index), then
all the references of all enrolled subjects will be compared subsequently and at
some time a match is found and the search can be stopped. Since the closed set
scenario considers all attempting probes to be enrolled to the database [12], the
stopping point will occur as soon as the index at which the subject is saved within
the database is reached. If we search for each subject within the database, those
indices will be 1, 2, 3, ..., n. For the SD9 database and searching for one finger, the
formula looks as follows:

1 ∗ 2700 ∗ (2700 + 1)
2 = 3, 646, 350

This would be the average number of comparisons done to search all 2700 subjects
for a given fingerprint.

The classification system approach, defined in section 5.3, allows an extension of
this formula by taking into account the binning of the database. Instead of search-
ing the entire database for each attempt, we only search within the database bins,
ordered by their probability regarding classification outcome. For determination
of the maximum possible workload reduction, we assume a perfect classification
and matching algorithm. That means, after the classification step, we will always
search in the correct bin. And due to the perfect matcher, we can stop the search
as soon as we found the subject within that bin.
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Therefore, we can take the previous formula to define the average search times
within each bin and sum up all these search times. Note, that now ni defines the
size of the i-th bin and N the number of bins.

N∑
i=1

(m ∗ ni ∗ (ni + 1)
2 )

The following example will show the possible workload reduction for the case
that the right index finger will be used for comparison and classification is done
using right index and middle finger. The size of bins for the SD9 database regard-
ing this two fingers is given in Table 4.52. If we use the formula above, we get

AA 66 LA 13 RA 26 TA 21 WA 2
AL 0 LL 22 RL 5 TL 3 WL 5
AR 65 LR 278 RR 946 TR 153 WR 430
AT 17 LT 17 RT 27 TT 11 WT 7
AW 3 LW 66 RW 58 TW 3 WW 449

Table 4.5.: Bins for right index and middle finger on SD9

the number of 702,216 comparisons. In relation to the naïve approach, these are
∼80% less comparisons. Since these values require perfect classification they do
not represent actual workload reduction, but it can be used to have a lower bound
for comparison with later tests using real classifiers.

The described method can be used to analyze the possible workload reductions
for all combination of adjacent fingers for the SD9. In the following subsections,
the correlation information is stated together with an analysis of possible workload
reduction using the 5 classes. For the calculations, the above formulas are used.
The naïve approach as a reference and the sum over the average workloads for
searching within the bins as

2Note that the values wont sum up to 2700 since 7 finger combinations contained fingers labeled
as scars. Within a real system, those could be handled by an additional bin for others.
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4.3.2. Workload Reduction for 2 Fingers

If we have a look on Table 4.6 and Table 4.7, we can see that the correlation of
right loops and whorls is very high for right hands. The same applies for left loops
and whorls for the left hand. Other class combinations especially those containing
one of the arch classes, left loops in right hands or right loops in left hands, are
very rare.

Table 4.6.: Two Finger Correlations for right hand fingers on SD9
thumb
index

index
middle

middle
ring

ring
small

WW 26.53% RR 35.12% RR 41.66% RR 46.93%
RR 25.94% WW 16.69% RW 25.75% WR 29.73%
WR 11.82% WR 15.98% WW 19.47% WW 16.76%
RL 8.21% LR 10.33% AR 2.90% RW 1.67%
RW 6.43% TR 5.65% TR 2.30% TR 1.11%
WL 6.02% LW 2.45% WR 2.04% LR 1.04%
RT 5.13% AA 2.45% RL 1.15% AR 0.59%
RA 3.23% AR 2.42% AA 0.93% RT 0.52%
WT 1.64% RW 2.16% RT 0.74% AA 0.41%
AA 1.45% RT 1.00% LR 0.71% RA 0.37%
rest 3.60% rest 5.76% rest 2.34% rest 0.85%

As the tables show, the distribution of subjects among the different bins is very
uneven, what has an impact to the possible workload reduction achieved if the
respective fingers are used for binning. Table 4.8 states the possible workload
reductions for the combinations of fingers as described in the above tables. The
calculation was done using the extended formula from subsection 4.3.1 for the SD9
database. When looking on the results for possible workload reduction, one can
find that the lowest workload is achieved using thumb and index finger of either
of the hands, while the worst reduction is achieved for ring and small finger.

If we compare those results to both correlation tables, then we notice that those
finger combinations showing a high correlation between their finger classes, can
achieve less workload reduction than those with lower correlation (thumb and
index, index and middle finger).
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Table 4.7.: Two Finger Correlations for left hand fingers on SD9
thumb
index

index
middle

middle
ring

ring
small

LL 24.05% LL 32.42% LL 46.51% LL 55.58%
WW 21.56% WW 16.17% LW 19.41% WL 25.69%
WL 11.34% WL 14.91% WW 17.10% WW 11.38%
LR 9.59% RL 10.71% TL 4.13% LW 2.04%
LW 9.48% TL 7.21% AL 3.42% TL 1.49%
LT 7.10% AA 2.94% WL 3.38% AL 0.93%
WR 4.91% LW 2.64% AA 1.38% AA 0.71%
LA 3.09% AL 2.12% RL 1.23% LT 0.48%
AA 2.04% RW 1.45% LT 0.71% LA 0.45%
AL 1.93% RT 1.45% AT 0.56% AT 0.26%
rest 4.91% rest 7.99% rest 2.19% rest 1.00%

Table 4.8.: Possible Workload Reduction for 2 Fingers
first finger Comparisons % of naïve
left thumb 528,524 15%
left index 629,451 17%
left middle 1,044,008 29%
left ring 1415,647 39%
right thumb 619,573 17%
right index 702,216 19%
right middle 1,022,995 28%
right ring 1,230,814 34%
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4.3.3. Workload Reduction for 3 Fingers

Similar to the findings for combinations of two fingerprint classes, we can see that
also for three fingers, some classes seem to strongly correlate. For both hands, these
classes are the whorls as well as the appropriate loop (right loop for right hand
and left loop for left hand). The distributions shown in Table 4.9 and Table 4.10
reveal that the average size of the bins decrease, while there are still some very
probable class combinations.

Table 4.9.: Three Finger Correlations for right hand fingers on SD9
thumb, index

middle
index, middle

ring
middle, ring

small
RRR 23.78% RRR 24.19% RRR 39.69%
WWW 15.01% WWW 15.46% RWR 18.06%
WWR 11.11% WRW 10.89% WWR 10.78%
WRR 10.00% RRW 9.92% WWW 8.70%
RLR 6.61% LRR 6.54% RWW 7.69%
RWR 4.72% WRR 5.02% ARR 2.42%
RTR 4.27% TRR 4.46% TRR 2.19%
WLR 3.42% LRW 3.49% WRR 1.97%
WLW 2.04% LWW 2.04% RRW 1.52%
RWW 1.60% RWW 1.82% RLR 0.82%
rest 17.43% rest 16.16% rest 6.17%

The results for the workload reductions in Table 4.11 show that as the average
bin sizes are getting smaller and more bins of similar size exist, the possible work-
load reduction increases. This is the case for the two first finger combinations,
while the combination of middle, ring and small finger leads to less workload re-
duction, due to the three major bins holding around 75% of the subjects.
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Table 4.10.: Three Finger Correlations for left hand fingers on SD9
thumb, index

middle
index, middle

ring
middle, ring

small
LLL 21.26% LLL 23.35% LLL 44.24%

WWW 12.08% WWW 14.13% LWL 14.28%
WLL 9.37% RLL 8.85% WWL 10.97%
WWL 9.11% LLW 8.62% WWW 6.13%
LRL 7.10% WLW 8.40% LWW 4.94%
LWL 5.43% WLL 6.51% TLL 3.98%
LTL 5.32% TLL 5.99% WLL 3.20%
LWW 3.87% LWW 2.12% ALL 3.01%
WRL 3.20% WWL 2.04% LLW 1.71%
ALL 1.52% ALL 1.82% RLL 1.15%
rest 21.75% rest 18.18% rest 6.39%

Table 4.11.: Possible Workload Reduction for 3 Fingers
first finger Comparisons % of naïve
left thumb 335,227 9%
left index 389,312 11%
left middle 865,634 24%
right thumb 411,156 11%
right index 421,217 12%
right middle 793,815 22%
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4.3.4. Workload Reduction 4 and 5 Fingers

The analysis for the combination of 4 and 5 fingers for database binning shows,
that the trend towards lower average bin sizes when using additional fingers con-
tinues. The distributions in Table 4.12 and Table 4.13 show that less bins of big
size exist, while the majority of bins have similar, smaller size. Again the increas-
ing number of bins of lower size correlate to the possible workload reductions (see
Table 4.14).

Table 4.12.: Four Finger Correlations for right hand fingers on SD9
thumb, index
middle, ring

index, middle
ring, small

RRRR 18.99% RRRR 23.19%
WWWW 14.12% WWWR 8.18%
WWRW 8.10% WWWW 7.28%
WRRW 5.46% RRWR 6.91%
RLRR 5.02% WRWR 6.76%
WRRR 4.31% LRRR 6.21%
RRRW 4.12% WRRR 4.50%
RTRR 3.53% TRRR 4.38%
WWRR 3.01% WRWW 4.12%
RWRW 2.71% LRWR 3.08%
rest 30.62% rest 25.38%

Although the size of bins is further decreasing when using 5 fingers (tables 4.15
and 4.16), the impact on the workload reduction is less strong. The number of
possible bins is 5 times the number of bins for 4 fingers but only 1-2% of additional
workload reduction can be achieved (compare Table 4.17). This shows that a higher
number of fingers used for binning not necessarily leads to lower workload.
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Table 4.13.: Four Finger Correlations for left hand fingers on SD9
thumb, index
middle, ring

index, middle
ring, small

LLLL 16.51% LLLL 22.08%
WWWW 10.86% WWWL 8.85%
LRLL 6.32% RLLL 8.70%
WWLW 5.87% LLWL 6.39%
WLLL 5.61% WLLL 6.10%
LTLL 4.65% WLWL 5.91%
LLLW 4.54% TLLL 5.76%
WLLW 3.64% WWWW 5.28%
WWLL 3.23% WLWW 2.45%
LWWW 3.12% LLWW 2.16%
rest 35.65% rest 26.32%

Table 4.14.: Possible Workload Reduction for 4 Fingers
first finger Comparisons % of naïve
left thumb 220,893 6%
left index 308,007 8%
right thumb 280,130 8%
right index 319,559 9%

Table 4.15.: Five Finger Correlations
for right hand fingers on
SD9

thumb, index, middle
ring, small

RRRRR 18.43%
WWWWR 7.28%
WWWWW 6.84%
WWRWR 4.76%
RLRRR 4.76%
WRRRR 3.86%
RTRRR 3.53%
RRRWR 3.42%
WWRWW 3.34%
WRRWR 3.23%

rest 40.54%

Table 4.16.: Five Finger Correlations
for left hand fingers on SD9

thumb, index, middle
ring, small

LLLLL 16.06%
WWWWL 6.51%
LRLLL 6.25%
WLLLL 4.87%
LTLLL 4.42%

WWWWW 4.35%
WWLWL 3.90%
LLLWL 3.61%
WWLLL 2.94%
LWLLL 2.94%
rest 44.16%
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Table 4.17.: Possible Workload Reduction for 5 Fingers
first finger Comparisons % of naïve
left thumb 177,018 5%
right thumb 211,996 6%

64



4. Data Analysis

4.4. Summary
Within this chapter, we have seen the correlation statistics of fingerprint classes
among adjacent fingers of left and right hands. Starting with the selection of the
datasets in section 4.1, an analysis of the class distribution was created for NIST
SD9 as well as the data provided by BKA in section 4.2. The following remarks
can be made regarding the class distributions of SD9:

• The class distribution for all fingers in SD9 lays at around 31% for whorls
and both loop classes while the arch classes have lower probability of ∼3%
each.

• The right hands contain way more right loops (57.38%) than left loops
(3.66%), while the opposite is true for left hands (3.66% right loops and
60.2% left loops)

• Because of the uneven class distribution among right and left hands, sepa-
rate statistics have to be created if they should be utilized for classification
purposes.

Except from the swapped loop class distribution on the BKA data, which is very
likely an issue of the classification system, the distributions support the findings
of SD9 database. Consequently, this would allow generalizing the findings also for
other databases.

The presented statistics in section 4.3 allow some conclusions for the following
chapters, where this information is going to be used for proposing a new classifi-
cation system with classification error correction:

• The probabilities of different class combination allow a correction of poor
classifier outputs for single fingers.

• For fingers, where classification fails completely, the most probable class can
be determined with help of the statistics.

• The ranked lists allow finding the most promising setup for multi-instance
classification. The binning of the database works best if the bins are of
similar size.
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• By using the formula described in section 4.3, we can calculate the possible
workload reductions for different setups using different combinations of adja-
cent fingers. An overview on the possible workload reductions using 5 classes
was given within the previous subsections. For a compact overview as well
as results using only 4 classes, the tables of Appendix A can be consulted.

• We can see a connection between the distribution of the bins and the possible
workload reductions. If we have few bins holding the majority of subjects,
the reduction is lower than for those distributions where the majority of
subjects is spread over more bins.

In the previous section we have seen, how we can measure the possible workload
reduction for multi instance fingerprint classification.
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Within this chapter, a classification system is proposed, that utilizes the statistic
information to reduce the required comparisons for identification tasks. This in-
cludes the used features, the classifiers and the developed binning algorithm based
on multiple fingerprint classes. A coarse grained overview of the system is depicted
in Figure 5.1.
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Figure 5.1.: Overview on the Proposed System

5.1. Classification Features
Following section describes the features proposed for testing purposes and states
why they were selected. Instead of reimplementing the feature extraction methods
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from scratch, we made use of the software created in the context of the survey done
by Galar et al. [16]. They did a reference implementation for some of the feature
extraction methods proposed in chapter 3, which also includes the Fingercode and
the PCASYS approach.

5.1.1. FingerCode

The features proposed for this system is the Fingercode, which was described first
by Jain et al. [23] for identification purposes and also for classification [67], in a
coarse grained variant. Other classification approaches as [70] are based on this
feature in combination with varying classifiers (compare chapter 3). The basic
workflow of the feature extraction is depicted in Figure 5.2.

Figure 5.2.: Extracting the Fingercode feature from a fingerprint image [70]

The key idea behind the algorithm is to find a global representation of the ridge
curvature around a determined registration by applying Gabor filter[116] of dif-
ferent directions to the area around the registration point. To find a registration
point within the image, at a first stage the orientation map is calculated to find
the point of highest curvature changes, the core point. This point then serves as
the center for circular area to which the Gabor filters for four directions (0deg, 45◦,
90◦, 135◦) are applied. The area is divided into 48 sectors for which the standard
deviations of gray values is then calculated.

The final feature vector includes the standard deviations of all sectors and for
all gabor filter responses, which makes a total of 192 features.
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The reason for the selection of this feature was that the applied filtering and the
use of the gray value variance instead of gray value distribution promised a good
operation even on databases with lower image quality, which is the case for the
SD9 database. A probable drawback of this method is its rejection rule. In case
that the registration point cannot be set properly, the respective fingerprint will
be rejected and no features will be extracted.

5.1.2. PCASYS Feature - Reduced Orientation Features

As an additional feature for testing, the approach of Candela et al. [95] was used.
Within their work, they also used a neural network for classification based on
this feature, as it is intended for this work. The actual feature is calculated after
the segmentation and enhancement of the input image. A ridge-valley detector
is used to determine the orientation map of the image and a registration point is
calculated on this basis. The point is located approximately at the position of the
core point and is used to rearrange the orientation image. This process is depicted
within Figure 5.3.

image segmented enhanced registered arranged

Figure 5.3.: Process of feature extraction for PCASYS feature [95]

After determination of the final registered orientation image, a feature vector
consisting of 1680 elements representing the directions is created out of it. With
the help of Principal Component Analysis, this feature vector can be reduced to
a size of 128 elements. This is the actual feature uses during the classification.
Since there is no rejection of images during the feature extraction, this feature this
feature can be seen as a counterpart towards the Fingercode feature.

69



5. Proposed Classification System

5.2. Neural Network Classifier
Neural Networks are a family of machine learning algorithms that are gaining more
and more attention in a growing field of applications. Some approaches regarding
fingerprint classification have been proposed with a neuronal network as classifier
while achieving good classification results (compare Table 3.1). Therefore we de-
cided to train neural networks for the tests in this thesis.

A neural network consists of multiple layers of interconnected nodes, the neu-
rons. The basic layers of such a network are the input layer and output layer. The
number of nodes within the input layer corresponds to the number of elements of
the feature vector, while the output layer contains the nodes for all class labels.
All nodes of these two layers are interconnected and during the training of the net-
work using classified data, it weights the connections between the nodes in order
to make a correct class prediction. Often so-called hidden layers are established
between the input and output layer. They can be used to separate those two layers
and reduce the number of neurons directly affecting the output by cumulating the
outputs of the input layer.

Setting up such a network is no easy task, since it depends on a variety of param-
eters that influence the learning capabilities of the network. Therefore preliminary
test were performed to find suitable combinations of the parameters and network
architectures. The concrete parameters are described in the test setup.

5.3. Multi-Instance Binning Algorithm
In the following section, one of the core elements of this thesis is described. The
binning algorithm to create an ordered lists of database bins based on the classifier
output for multiple fingerprints. The aim of this algorithm is to enable an identi-
fication system to reduce the number of references to which a captured probe has
to be compared and therefore reduce the systems workload.
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5.3.1. Retrieval Strategies for Database Bins

According to Maltoni [2, Chapter 5], there exist three major strategies, when the
class of a fingerprint was determined. The strategies describe how the information
on the class label should be utilized for traversing the database.

Class Exclusive The idea is to use the obtained class label and do an exclusive
search among the database bin for this class label. As soon as a matching
reference is found, the search can be stopped. Depending on the system
configuration, it might be desirable to extend the search to the rest of the
database. Without extension to the entire database, this method would
require a perfect classifier, which is not very likely.

Fixed Search Order In this approach, predefined orders are used to traverse a
database regarding the fingerprint class. The obtained class label is used to
select one of the fix traversal orders that were defined for the system. The
main intention is to follow a search order that takes the confusion between
fingerprint classes into account. Especially structural similarities between
classes can be used to previously define fixed search orders.

Variable Search Order This traversal technique can be used if the classifier out-
puts the probabilities for each class. The search order can then be changed
with respect to that probabilities and search can be stopped if the appropri-
ate fingerprint was found.

5.3.2. Binning Algorithm

The retrieval strategy within this work follows the approach of an variable search
order, since the bin probabilities are predicted for each request individually. It
would be unfavorable to use the bin probabilities provided in chapter 4 for estab-
lishing a fixed order for searches. If we think of a combination of class labels that
has a low overall probability regarding the statistics than the application of fixed
search rule will force the algorithm to search within all bins having a higher statis-
tical probability, even if the classifier generated a certain output for the class labels.
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The aim is to combine the class predictions of the fingers in such a way, that
we retrieve a list of all database bins in a ranked order, with the most probable
bin in the beginning. A further intention is to overcome the problem of uncertain
classifier outputs by using the statistical information on fingerprint distribution
and bin probabilities to correct these uncertainties and gain values that are more
probable. An overview on the algorithm can be found in Algorithm 1.

The algorithm consists of two major steps:

1. Calculating all possible combinations of bins while preserving the single class
probabilities

2. Checking the probabilities regarding the statistics and do adjustment

Combine Classifier Outputs The first step can be done easily by creating the
Cartesian product of the set of class predictions. This will create all the different
bins including the corresponding class probabilities (see Figure 5.4).

A %
L %
R %
T %
W %

A % A %
A % L %
A % R %

…

W % R %
W % T %
W % W %

A %
L %
R %
T %
W %

1 2
21

X =

Figure 5.4.: Cartesian product for two sets of class predictions

Adjust Probabilities To adjust a class probability within the bin, the statistic
is called to retrieve the class probability under the assumption that the labels of
the other fingers are as is. We can further set up a threshold that establishes an
upper bound for the adjustment of the probabilities. That means for instance, if
the probabilities for the classes, created by the classifier are A-95%, T-4%, R-0.5%,
L-0.4%, W-0.1% and we set our threshold = 0.5%, then the adjustment will only
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applied to the two classes with a predicted probability below the threshold. This
is done to honor the results of the classifier and prevent a completely override of
predicted values. In case that the class prediction failed and no probabilities are
present, this method would adjust all class probabilities for the finger as they lay
below the threshold.

Apply Correction Since the adjustment of the class label could result in high
probabilities depending on the statistics for the specific bin, some kind of justifica-
tion could be done in order prefer high class probabilities obtained by the classifier
over those calculated from the statistics. An example would be the case that the
classifier correctly extracted the class of the first finger but only low probabilities
for the second finger were achieved. Then the adjusted probabilities of the second
finger could overwhelm those of the first one and statistics are weighted higher
than classification outputs.

Therefore, we can think of different values for adjusting the determined proba-
bility from statistics.

0 fixed scale to 50%

1 highest prediction probability within current finger

2 defined threshold for upper bound

3 1 - value of [2]

4 class a priori probability from statistics for the given finger

5 highest prediction probability within all given fingers

6 1 / number of fingers used for binning

73



5. Proposed Classification System

Algorithm 1: Determine Ranked List of Bins
Input: Statistics, threshold, ClassificationResults
Result: Ranked List of Bins
bins = createCartesianProduct(ClassificationResults);
ranked_list = ();
foreach bin in bins do

foreach classprediction in bin do
if classprediction.probability < threshold then

classprediction.probability = Statistics.ClassProbabilityForBin();
classprediction.probability *= maxPredictionProbability;

end
end
ranked_list.add(getBinName, calculateSumOfProbabilities(bin));

end
sortDescending(ranked_list);
return ranked_list;

5.4. Test Setup
This section outlines the test setup, which includes the data used for training and
testing the classifier, information on the parameters used for training the classifiers
as well description of different tests that were performed.

5.4.1. Selected Datasets

All available databases that fit in the context of this work were described before,
in section 4.1. Out of those databases, only the SD4 and SD9 from NIST were
chosen for the test provision. Example images can be found in Figure 5.5.

NIST SD4 The database was selected because the included images are already
cropped and only few images have greater amounts of background information left.
The majority of the images is of good quality and since the class distribution is
equal towards all five classes, it is well suited for classifier training.

NIST SD9 The SD9 database is the only large scale database, containing real
fingerprint data for which a ground truth of class labels exist. Further, there is no
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SD4 512*512 SD9 832*768 SD4 832*768

Figure 5.5.: Example images from the used databases

preselection of class types so that a natural class distribution is expected. In terms
of the workload reduction tests, only the first impressions of the finger prints were
used, since having a subject twice enrolled, would not be appropriate.

5.4.2. Processing Chain

Resizing of SD9 images In order to use the proposed reference implementation
for the feature extraction algorithms by Galar et al. [16], it was necessary to resize
the images to at max 800 pixels of width, since the software fail at loading the
images.

Feature Extraction As stated in section 5.1, Fingercode and PCASYS features
were selected. The extraction was done with the mentioned software provided by
[16]

Fingerprint Classification The classification was done on basis of the extracted
features, using self trained neural networks. The networks were implemented in
Python using the Keras framework for the Tensorflow machine learning library
from Google.

Database Binning In order to test the possible workload reduction for the pro-
posed system on the SD9 database, the subject identifier were put into lists rep-
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resenting the database bins. These bins were created for different starting fingers
and number of adjacent fingers.

5.4.3. Feature Extraction Errors

As stated in the section about the Fingercode feature, the extraction algorithm
provides a rejection rule for fingerprints that fail at detecting a reference point.
This is the case for around 5191 images, which is a proportion of nearly 10% of all
images (54,000). Since possible workload reduction is expected to highly demand
on the classifier performance, it might be interesting to preserve a classifier based
on this feature for comparison towards the classifier based on non rejecting feature
extraction.

5.4.4. Experiments

Determine Baseline Performance for trained Classifiers Before conducting the
actual tests for workload reduction, the baseline performance of the classifiers is
tested for both 4 classes and 5 classes.

Tests different approaches for probability correction As described in section 5.3,
multiple approaches for the correction of the probability adjustments were pro-
posed. In this test, it is intended to compare the effect of these measurements
towards workload reduction under different thresholds for the upper bound.

Test Possible Workload Reduction The last test combines the findings of the
previous ones in order measure possible workload reduction when applying pro-
posed classifiers and most promising probability correction techniques. Therefore,
multiple classification attempts are done for different combinations of adjacent
fingers from left and right hand.
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Within this chapter the evaluation of the proposed system of chapter 5 is done.
The observed results are described and a discussion is done afterward.

6.1. Metrics
In the following, some metrics are presented, that help us to describe the perfor-
mance of the classifiers on the one hand and the possible workload reduction for
identification scenarios on the other hand.

6.1.1. Confusion Matrix

The confusion matrix is used to show an accumulated result for classification tests.
For each possible class, there is one column and on row within the matrix for each
class label. The rows denote the actual classes of the tested fingerprint, while the
values in the columns show how often fingerprint of this class have been confused
to the class of the column label. If the fingerprint is classified correctly, the value
of the corresponding row/column for the class is increased, otherwise the value in
the column to which it was confused.

6.1.2. Correct Classification Rate

The correct classification rate is the measurement of accuracy for a classifier. It can
be calculated with the help of the confusion matrix. After running all classification
tests, we can calculate the sum of each row, which is the number of fingerprints
tested, that contain the class of the row label. If we divide the value of the
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row/column for the actual class by the calculated row sum, we will receive the
correct classification rate for the given class of the row label [2].

6.2. Classifier Baseline Performance
Before we were able to run the tests towards workload reduction, some classifiers
had to be trained and tested. Therefore, different aspects were taken into account
to have a diverse selection of classifiers. This includes the feature used by the
classifier, the database it was trained on as well as the number of classes, the clas-
sifier has to distinguish. Especially the training database is an interesting point
here because one might be interested to train classifier on a smaller database, con-
taining images of higher quality and later use that classifier for another database.
In the following, the different classifiers and their performance measurements are
presented.

The baseline performance of the trained classifiers was measured against a set
of test data after the training phase. During the 10-fold cross-validation, the
database was randomly separated into training and testing set for ten times. This
was done using a defined random seed for each split, which is the same for all
classifiers. Then the classifier was trained and tested for all combinations and the
confusion matrices for the tests were created. With that, an average measure of
the classifiers accuracy can be given, by calculating the confidence interval [12] at
confidence value of 95%. The interval is calculated for the single class prediction
accuracies among all ten confusion matrices for one classifier, which enables a finer
view on the per class accuracy of the classifier. Its outcome is the mean accuracy
over all tests, as well as the mean-interval and mean+interval.

6.2.1. Fingercode Feature Classifier 1 - Trained/Tested on SD4

The first trained classifier used Fingercode as a feature. It was trained and tested
on the SD4 database for the four class problem (combined arches). Table 6.1 shows
the confidence interval for the ten training and testing attempts. One can see that
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the average CCR for the different classes lays between 88% and 90% while the
upper and lower bound of the confidence interval state, that the classification rate
is relatively stable among the tests. One has to note, that the feature extractor
has rejected 724 fingerprints (18.1% of all images), for that, no classification can
be done. Those are also not part of training and testing. To measure the certainty

Table 6.1.: Confidence Interval - Classifier 1
Class Mean Lower Bound Upper Bound

A 88.23 % 86.41 % 90.04 %
L 88.83 % 87.84 % 89.82 %
R 87.66 % 86.09 % 89.22 %
W 89.93 % 88.66 % 91.19 %

of the classifier for a database that is different to the training database, the re-
sulting classifier was then tested on all fingerprints of the SD9 database and the
corresponding confusion matrix as well as CCRs were calculated (see Table 6.2).
We can see that the correct classification rates drop for all classes for at least
15%. Further, the feature extractor rejected 6763 fingerprints (12.5%) of the SD9
database, which might be problematic for workload reduction tests, besides low
CCRs.

Table 6.2.: Confusion Matrix - Classifier 1: Test on SD9
A L R W Accuracy

A 837 248 308 290 49.73%
L 978 9395 1248 3767 61.05%
R 793 725 9884 3352 66.99%
W 191 1516 2012 11693 75.87%
Rejected 6763(12.5%)

Because of the high rejection rate for fingerprints of the SD9 database (see
Table 6.2) as well as the low CCRs, the classifier was later used in comparison to
another classifier, having better CCRs.
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6.2.2. Pcasys Feature Classifier 2 - Trained/Tested on SD4

The subsequent classifiers including the one described below are all based on the
Pcasys feature, which has no rejection rule and therefore allows to classify all
tested fingerprints.

The classifier described here was trained and tested on the SD4 database. The
intention is to show the possible CCRs that the classifier is able to achieve in
contrast to the following classifiers tested on the SD4.
As we can see in Table 6.3, the selected feature seems to be well suited for classi-
fication. The CCRs are between 86% and 90% and the confidence interval states,
that the values are quiet stable among multiple tests. In contrast to the Classifier
1, the accuracy represents the actual accuracy of the classifier, since no fingerprints
were rejected during feature extraction.

Table 6.3.: Confidence Interval - Classifier 2
Class Mean Lower Bound Upper Bound

A 90.37% 88.00% 92.73%
L 88.32% 86.68% 89.97%
R 88.90% 87.69% 90.11%
W 86.60% 85.34% 87.86%

6.2.3. Pcasys Feature Classifier 3 - Trained/Tested on SD9

Classifier 3 was trained and tested on the SD9 database. The database split
for each test was 20% of the fingerprints for training and 80% for testing. The
confidence interval in Table 6.4 reveals that the classification accuracy of loops
(90%-91%) and whorls (∼87%) is quite accurate and stable among the training
and testing attempts. It is striking, that the CCR for arches is much lower than
those of the other classes and also the interval boundaries deviate more strongly.
Which raises the question why this is the case. The most obvious assumption
is, that the natural distribution of the fingerprint classes (compare section 4.2)
entails that only few arches can be randomly selected for the training sets and the
classifier becomes biased towards the recognition of the other classes.
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Table 6.4.: Confidence Interval - Classifier 3
Class Mean Lower Bound Upper Bound

A 63.50% 61.02% 65.98%
L 90.95% 90.11% 91.78%
R 90.19% 89.50% 90.88%
W 86.73% 85.69% 87.78%

6.2.4. Pcasys Feature Classifier 4 - Trained on SD4/Tested on
SD9

Similar to the Classifier 1 using the Fingercode features, the intention of this an-
alyze the impact of training the classifier on the SD4 database, which has equal
class distribution and do the testing on SD9. In contrast to Classifier 1, we now
evaluate the classification performance using the Pcasys feature. Another inten-
tion is to evaluate the impact of unbiased training data towards the classification
accuracy, since Classifier 3 seems to suffer from unequal class distribution.

Table 6.5 shows the confidence interval created for this classifier. We can see,
that in comparison to Classifier 2 (trained/tested on SD4), all CCRs except those
for the whorls are lower and also the confidence interval is wider. When comparing
it to Classifier 3, we can see that not only whorls have similar CCR but also the
mean CCRs for arches are close together. This leads to two assumptions: 1. The
feature seem to be stable for recognizing whorls even if databases for training
and testing are different. 2. The recognition performance of the other classes is
influenced largely by training data and probably also their quality.

Table 6.5.: Confidence Interval - Classifier 4
Class Mean Lower Bound Upper Bound

A 59.39% 56.43% 62.35%
L 75.28% 73.30% 77.25%
R 62.03% 58.91% 65.16%
W 86.34% 85.44% 87.25%
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Pcasys Feature Classifier 5 (5 classes) - Trained/Tested on SD9

After training some models for four classes, an attempt was made to train a neural
network similar Classifier 3, while using the Pcasys feature.

The findings for this classifier tests (see Table 6.6) overlap somehow with those
from Candela et al. [95]. They also used the Pcasys feature and a neural network
for classification and stated low classification accuracy towards tented arches for
tests in SD9/14. In contrast to their results, also the CCR for arches is extremely
low, and the confidence interval shows that none of the training and testing at-
tempts seem to have good CCRs for the arch classes, whereas accuracy for loops
is slightly higher than for the other tested classifiers.

Table 6.6.: Confidence Interval - Classifier 5
Class Mean Lower Bound Upper Bound

A 0.36% 0% 1.16%
L 93.10% 92.23% 93.98%
R 92.20% 91.53% 92.86%
T 0.03% 0% 0.09%
W 85.28% 84.38% 86.18%

6.2.5. Classifier Discussion

All the before mentioned tests seem to supply the theory, that the classifiers have
better CCRs on the databases they were trained on, in contrast to varying test-
ing databases. But as mentioned in the test setup, the image quality of the used
databases for training and testing, was not consistently good, so that this could
have had some impact to the quality of the extracted classification features. If we
have a closer look to the Fingercode features, the relatively high rejection rates
of fingerprints during feature extraction for SD4 (18.1%) and SD9 (12.5%) might
support the supposed suboptimal image quality.

Another interesting observation are the very similar whorl CCRs among the
classifiers 2-5. In any case, the values are constantly around 85%-86% even if the
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accuracies for the other classes diverge among the classifiers. Either the Pcasys
features allows describe whorls independently from the dataset with a constant
CCR or the findings are by chance, which seems less probable due to the 40 tests
of the 4 classifiers.

Unfortunately, the expected better classification accuracy when training on the
unbiased SD4 database was not given. The most probable reason for that seems
to be the diverging image quality, so that features of same classes are not very
comparable among databases of different image quality. Even the Fingercode fea-
ture was sensitive to that, although its usage of filter responses and gray value
variances was expected to be more robust.

Reviewing the CCRs of the different trained classifiers leads to the conclusion,
that the classifier with the best performance on the SD9 database, which is used
for workload reduction tests, is Classifier 3. Therefore, this classifier will be used
within various tests towards workload reduction. The classifier 1 with the high
rejection rate and moderate accuracy will be used to test the different adjustment
approaches for correcting the classifier output.

6.3. Workload Reduction
Within the following section, some results regarding the workload reduction for
identification scenarios are presented. At first, we will enlarge upon the results
for testing different approaches for adjusting class probabilities obtained from the
statistics. This is followed by some examples contrasting the probable workload
reduction while using classifier 1 and 3. For each tests, the bins of the database
were created with respect to the class of the first used finger together with the
class(es) of its adjacent finger(s).
The workload reduction is measured by comparing the number of visited subjects
against the naïve approach mentioned in subsection 4.3.1. For workload reduc-
tion tests, an additional column was entered, which shows the maximum possible
reduction for the respective setup, calculated in subsection 4.3.1.
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6.3.1. Probability Correction

In section 5.3 different approaches for the correction of predicted class probabil-
ities were proposed. The results in here will show the impact of those values on
the number of subjects, that have to be visited, when we are searching for all the
subjects in the database once. Four examples for these impacts are presented in
Table 6.7 - created using Classifier 1- and Table 6.8 -created using Classifier 3-.
The tables contain the evaluation for the index and middle finger of the right and
left hand.

Table 6.7.: Influence of correction value on the number of visited subjects - Clas-
sifier 1

visited
batches

visited
subjects % of naive

correction
value

right 8,215 2,206,864 60.5% -1
index & 8,262 2,170,183 59.5% 0
middle 8,533 1,833,457 50.3% 1

8,379 2,148,842 58.9% 2
8,375 2,197,449 60.3% 3
8,276 2,169,374 59.5% 4
8,546 2,111,850 57.9% 5
8,262 2,170,183 59.5% 6

left 8,977 2,188,406 60.0% -1
index & 9,012 2,136,673 58.6% 0
middle 8,850 1,711,740 46.9% 1

9,119 2,094,487 57.4% 2
9,119 2,177,769 59.7% 3
9,078 2,156,219 59.1% 4
9,124 2,040,612 56.0% 5
9,012 2,136,673 58.6% 6

The depicted data is sufficient to show that the correction of the adjusted class
probabilities can have an influence (see bold values) to the number subjects that
were visited during the search. Table 6.7 shows that using the highest prediction
probability within a finger (correction value 1) to adjust the changed class proba-
bilities, can lower the number of visited subjects by around ten percent over the
unadjusted probabilities (value -1) for the right hand and up to 13% for the left
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hand. These values were obtained by using the Classifier 1 with a lot of rejections
and moderate classification accuracy.

The same was done for Classifier 3, which has better classification accuracy and
no rejection. In contrast to the findings of Classifier 1, no major improvements
were achieved by an additional adjustment of the probabilities.

Table 6.8.: Influence of correction value on the number of visited subjects - Clas-
sifier 3

visited
batches

visited
subjects % of naive

correction
value

right 4,003 1,038,096 28,5% -1
index & 4,009 1,036,241 28.4% 0
middle 4,013 1,037,944 28.5% 1

4,025 1,036,029 28.4% 2
4,014 1,036,011 28.4% 3
4,007 1,035,427 28.4% 4
4,010 1,037,611 28.5% 5
4,009 1,036,241 28.4% 6

left 4,202 1,064,290 29.2% -1
index & 4,204 1,062,095 29.1% 0
middle 4,200 1,062,748 29.1% 1

4,212 1,060,186 29.1% 2
4,212 1,061,954 29.1% 3
4,202 1,060,939 29.1% 4
4,202 1,063,828 29.2% 5
4,204 1,062,095 29.1% 6
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6.3.2. Workload reduction - Classifier 3

For the workload reduction tests, the determined parameter from the section be-
fore was used for both, Classifier 1 and 3. The subsequent tables show the number
of visited bins and subject when using classifier 1 within the multi-instance clas-
sification system. The workload reduction is denoted by giving the proportion of
visited subjects for this test and the naïve search strategy.

Tables 6.9, 6.10, 6.11 and 6.12 show the results for using the classes of two,
three, four and five fingers respectively.

We can see that for two fingers, the workload reduction for the combination
of right hand fingers tends to be better than for those of the left hand, although
the possible workload reduction suggests the opposite. We can reduce workload
to at least 51.6% of naïve approach and at max to 25.5% using classifier 1. If we
compare the achieved reduction to the possible reduction, we can see that we are
able to come as close as around 11% or better to what is possible.

Table 6.9.: Workload Reduction for 2 Fingers - Classifier 3

first finger
visited
batches

visited
subjects % of naive

best
possible

right thumb 3,973 943,363 25.9% 17.9%
right index 4,026 1,039,215 28.5% 20.2%
right middle 3,726 1,348,713 37.0% 28.3%
right ring 3,602 1,577,563 43.3% 33.8%
left thumb 4,060 931,553 25.5% 15.4%
left index 4,202 1,059,422 29.1% 18.3%
left middle 3,947 1,472,067 40.4% 29.4%
left ring 3,874 1,881,160 51.6% 39.1%

Using 3 adjacent fingers not only increases the theoretical workload reduction,
but also the achieved reduction is higher than for two fingers. Table 6.10 states,
that we can reach a workload of only 18.8% of the naïve and the reduction using
right index, middle and ring finger differs only for around 7% from possible work-
load reduction.
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Table 6.10.: Workload Reduction for 3 Fingers - Classifier 3

first finger
visited
batches

visited
subjects % of naive

best
possible

right thumb 5,726 707,142 19.4% 12.1%
right index 5,772 718,312 19.7% 12.4%
right middle 4,962 1,133,061 31.1% 22.0%
left thumb 5,847 686,249 18.8% 10.0%
left index 6,358 781,817 21.4% 11.6%
left middle 5,646 1,332,235 36.5% 24.4%

Tables 6.11 and 6.12 show that taking additional fingers into account can not
only reduce the theoretical workload further, but also the actual reduction can
be improved. In comparison to the results for three fingers, we can improve for
at maximum 5% to ca. 15% of the workload from the naive approach. The step
towards five fingers is much smaller. The additional finger leads to only 2% less
workload for both actual and possible.

Table 6.11.: Workload Reduction for 4 Fingers - Classifier 3

first finger
visited
batches

visited
subjects % of naive

best
possible

right thumb 10,298 537,659 14.7% 8.5%
right index 9,955 613,202 16.8% 9.5%
left thumb 11,029 533,667 14.6% 7.0%
left index 11,371 705,933 19.4% 9.3%

Table 6.12.: Workload Reduction for 5 Fingers - Classifier 3

first finger
visited
batches

visited
subjects % of naive

best
possible

right thumb 22,558 463,427 12.7% 6.6%
left thumb 25,420 493,455 13.5% 5.8%

A general observation of the presented tables is that also for real classifiers, an
improvement of workload can be achieved. Since the classifier accuracy is far from
perfect, none of the achieved workload reductions matches to the possible values.
Nevertheless, additional fingers used for binning imply less visited subjects during
the identification. But with each additional finger the differences in the received
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workload reductions decrease. The means using 3 fingers instead of 2 produces a
higher reduction than going from 3 to 4 fingers.

6.3.3. Workload reduction - Classifier 1

After we have seen the workload reduction for the well working classifier, we
want to have a look on what improvements regarding workload reduction can
be achieved, if we only use a classifier of moderate accuracy. Therefore, in the fol-
lowing the results for classifier 1 are presented in the same manner as for classifier 3.

As we can see in the tables 6.13, 6.14, 6.15, 6.16, the worse classification accuracy
has a big impact on the workload reduction compared. Because the correct bins
for searching cannot be reliably determined, more subjects have to be visited
before the matching subject was found. In comparison to the results obtained
with classifier 3, the workload is at least 20% higher.

Table 6.13.: Workload Reduction for 2 Fingers - Classifier 1

first finger
visited
batches

visited
subjects % of naive

best
possible

right thumb 8,363 1,685,599 46.2% 17.9%
right index 9,007 1,807,461 49.6% 20.2%
right middle 8,787 2,193,993 60.2% 28.3%
right ring 10,532 2,610,202 71.6% 33.8%
left thumb 8,128 1,512,571 41.5% 15.4%
left index 9,189 1,677,837 46.0% 18.3%
left middle 9,320 2,121,008 58.2% 29.4%
left ring 10,388 2,560,526 70.2% 39.1%

Comparing Table 6.13 and Table 6.14, we can see that the additional finger leads
to lower workload. In comparison to classifier 1, the improvement in similar. This
holds also when we use even more fingers. But none of the resulting workload
reductions is comparable to those with the better classifier.

An interesting observation made for tables 6.15 and 6.16 is, that going from
4 to 5 fingers will not improve workload but instead it will be impaired slightly.
Another interesting point is the maximum achieved reduction. It is 33.9% of the
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Table 6.14.: Workload Reduction for 3 Fingers - Classifier 1

first finger
visited
batches

visited
subjects % of naive

best
possible

right thumb 21,074 1,457,818 40.0% 12.1%
right index 24,760 1,666,411 45.7% 12.4%
right middle 27,012 2,146,190 58.9% 22.0%
left thumb 23,080 1,323,417 36.3% 10.0%
left index 26,527 1,534,187 42.1% 11.6%
left middle 29,405 2,070,302 56.8% 24.4%

workload for naive approach and achieved using 4 fingers. The better classifier
reaches similar results with only 2 fingers. This findings show, that for worse
classifiers, we will need more fingers to reach similar workload reductions. But at
a certain point, when more fingers are used, the high rate of false classifications
seems to make the prediction of the correct bins much harder, so that no further
improvement can be achieved or like in this example the workload is higher for
more fingers.

result in no more improvements

Table 6.15.: Workload Reduction for 4 Fingers - Classifier 1

first finger
visited
batches

visited
subjects % of naive

best
possible

right thumb 65,878 1,376,783 37.8% 8.5%
right index 85,893 1,666,676 45.7% 9.5%
left thumb 75,494 1,237,612 33.9% 7.0%
left index 95,358 1,526,894 41.9% 9.3%

Table 6.16.: Workload Reduction for 5 Fingers - Classifier 1

first finger
visited
batches

visited
subjects % of naive

best
possible

right thumb 244,091 1,384,941 38.0% 6.6%
left thumb 285,293 1,243,026 34.1% 5.8%
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6.3.4. Discussion

In the following, we will cover some discussion points, that arose during the project
and that might be of interest, when thinking of a real world application.

Classifier Accuracy If we compare the results obtained in the previous section,
we can see that the accuracy of a classifier has a huge impact on the possible
workload reductions. While we achieved the best result for classifier 1 when using
4 fingers, similar workload reduction can be achieved for only 2 fingers, when using
classifier 3. And also better results are possible depending on the used fingers.

Correction of statistically derived class probabilities In subsection 6.3.1, we
saw that the use of a correction value for the class probabilities which have been
set by the system based on statistical data can have a noticeable impact on the
workload reduction. Since this was only the case, when the moderate Classifier 1
was used and not for the results of Classifier 2, one can conclude that a bad classifier
can benefit from that correction, while a better classifier stays unaffected.

Applicability Multi-instance classification is capable of decreasing the number
of subjects to be visited in identification scenarios, in the event that the search
is stopped as soon as the matching algorithm finds a subject exceeding a given
threshold. If the system follows another strategy, e.g. searching the subjects with
the ten highest matching scores, then multi-instance classification would not bring
any benefit, since in this case all subjects in the database have to be visited for
the list creation.

Possible Modifications In identification systems that stop searching at a given
threshold for matching scores, the number of fingerprints used for the matching
could be increased in order to tighten security. If the database for example is
constructed using the classes of two or three fingers and subjects are enrolled with
four fingers of a hand starting with the index finger then it is possible to use all of
the fingers for identification to get higher level of certainty that the subject where
the algorithm stops searching is a correct match.
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Used Fingers In real world scenarios, could think about the used fingers for
multi-instance classification. Since the evaluation shows, that it might be a good
idea to use the thumb and its adjacent fingers for database binning, this is maybe
not the case from a practical point of view. Because the displacement of the thumb
in contrast to the index finger is really high, the user of the system is either forced
to present his fingers one by one to the system or he has to make unnatural posture
in order to present his plain fingertips to the sensor. A better idea in this case
would be the usage of a combination of the other fingers. Since they are positioned
side-by-side, it would be more convenient to present those fingers but we might
have to take a loss of workload reduction into account.
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As the introductory example of the large scale FBI biometric database shows, the
impact of steadily growing databases sizes and increasing number of subjects en-
rolled to the biometric systems is very high in terms of the response times of those
systems. Without a proper method to improve the number of comparisons during
identification tasks, it is a problem for time critical request to be processed in
time. Therefore, this thesis targets to contribute a method for workload reduction
for fingerprint recognition systems.

One approach for reducing the number of comparisons within biometric finger-
print systems is the use of classification techniques, which allow the separation of
fingerprints within the database into bins according to predefined classes. With
respect to RQ1 defined in chapter 1, chapter 3 presents a state of the art survey on
classification approaches based on various features and classifiers. Since no com-
mon framework was used to test the approaches, they often differ in the databases
used for testing, definition of testing and training data as well as the handling
of ambiguous fingerprint classes. Besides the descriptions within the chapter, Ta-
ble 3.1 was created to allow a quick overview on the specifics of each approach.

In chapter 4, an analysis regarding fingerprint class distribution was performed.
In the context of RQ2, a statistical analysis was done for the NIST SD9, which
turned out to be the only free available database of sufficient size, that fulfill all
the given requirements from section 4.1. While class distribution among all fingers
of both hands reveal a similar probability of right loops, left loops and whorls
of around ∼30% as well as ∼3% for both of the arch classes, the obtained results
show that the distribution of loops highly differs between right and left hand. This
is important, as soon as statistics on class distributions and correlation should be

92



7. Conclusion and Future Work

used for classification systems because they need to respect those differences when
operating on a specific hand.

To answer RQ3, database binning was done several times on the basis of dif-
ferent combinations of fingers and their class labels. An analysis of the possible
workload reductions for those setups is given in section 4.3 of the Analysis chapter.
It shows that the possible workload reduction depends not only on the number of
fingers used for binning, but also the distribution of the subjects among that bins.
Considering the usage of two fingers for binning, it can be shown that, if only few
bins include the majority of subjects, the possible workload reduction is smaller
(< 70%) as for distributions where they are spread over higher number of bins (up
to 83%).

Since the previously described workload reduction was calculated under the as-
sumption of a perfect classification, chapter 5 presents a proposal for a classification
system that utilizes multiple fingerprints for classification. The system is intended
to enable multi-instance classification for any classifier and takes into account
classification errors. In the context of RQ4, we trained some neural networks
for classification, which showed different classification accuracies. This allowed us
to analyze and compare different workload reductions based on those classifiers.
The results of chapter 6 show, that for instance the usage of three fingers for
database binning can lead to lower workload (∼ 20% of the naïve approach) when
using a classifier with average classification accuracy. And even with a classifier of
moderate accuracy, the workload could be reduced to 36% of the naïve approach.

The results show that fusing the classes of multiple adjacent fingers can be used
to improve the workload for identification scenarios by applying database binning.
Further, the presented findings and approaches can be utilized for some future
work. This could target to further improvements for the binning algorithm used
or testing on additional databases of better quality than the SD9.

93



Appendix

94



Appendix

A. Tables: Workload Prediction assuming Perfect
Classifier

The workload prediction was done by ignoring class combinations that contain the
‘scar’ class, which exists in the database to indicate fingerprints where no class label
could be assigned. This was done because subject containing those combinations
are stored in an ‘others’ bin that is searched after all regular bins were searched.
Including those combination would have increased number of comparisons by 2700
per containing subject.

Table 1.: Workload Prediction for 4 Classes (arch and tended arch combined)

first finger
adjacent
fingers Comparisons % of naïve

left thumb 2 508,879 17%
left index 2 607,601 22%
left middle 2 1,037,344 33%
left ring 2 1,414,683 41%
right thumb 2 608,952 20%
right index 2 689,414 23%
right middle 2 1,020,711 30%
right ring 2 1,230,209 35%
left thumb 3 322,634 12%
left index 3 374,146 14%
left middle 3 859,439 28%
right thumb 3 403,329 14%
right index 3 412,804 14%
right middle 3 791,697 24%
left thumb 4 211,428 8%
left index 4 293,982 11%
right thumb 4 274,673 9%
right index 4 311,502 11%
left thumb 5 168,391 6%
right thumb 5 206,635 7%
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Table 2.: Workload Prediction for 5 Classes

first finger
adjacent
fingers Comparisons % of naïve

left thumb 2 528,524 15%
left index 2 629,451 17%
left middle 2 1,044,008 29%
left ring 2 1415,647 39%
right thumb 2 619,573 17%
right index 2 702,216 19%
right middle 2 1,022,995 28%
right ring 2 1,230,814 34%
left thumb 3 335,227 9%
left index 3 389,312 11%
left middle 3 865,634 24%
right thumb 3 411,156 11%
right index 3 421,217 12%
right middle 3 793,815 22%
left thumb 4 220,893 6%
left index 4 308,007 8%
right thumb 4 280,130 8%
right index 4 319,559 9%
left thumb 5 177,018 5%
right thumb 5 211,996 6%
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B. Correlation Tables BKA

Table 3.: Two Finger Correlations for right hand fingers on BKA data
thumb
index

index
middle

middle
ring

ring
small

LL 26.31% LL 36.66% LL 46.58% LL 49.70%
WW 25.35% WL 19.14% LW 26.00% WL 30.93%
WL 12.33% WW 17.04% WW 18.74% WW 14.69%
LR 11.57% RL 14.89% WL 1.81% LW 1.47%
LW 11.11% AL 3.01% RL 1.79% RL 1.13%
WR 7.14% RW 2.07% AL 1.76% AL 0.54%
LA 2.64% RR 1.62% RW 1.02% LR 0.40%
WA 0.99% LW 1.53% LR 0.94% LA 0.37%
AL 0.88% AA 1.28% AA 0.54% WR 0.28%
AA 0.71% LR 1.02% RR 0.31% RR 0.20%
rest 0.96% rest 1.76% rest 0.51% rest 0.28%

Table 4.: Two Finger Correlations for left hand fingers on BKA data
thumb
index

index
middle

middle
ring

ring
small

RR 32.50% RR 40.77% RR 52.45% RR 58.05%
WW 20.83% WW 17.17% RW 18.74% WR 27.18%
RW 13.13% WR 16.60% WW 18.34% WW 10.41%
WR 11.99% LR 12.53% WR 4.01% RW 1.60%
RL 9.44% RW 3.32% AR 2.69% LR 0.83%
WL 5.69% AR 2.32% LR 1.09% AR 0.63%
RA 2.58% LW 1.95% RL 0.74% RA 0.43%
AR 1.32% AA 1.83% AA 0.69% AA 0.31%
AA 0.86% RA 1.29% LW 0.34% LW 0.20%
WA 0.72% LL 0.69% RA 0.29% RL 0.14%
rest 0.94% rest 1.55% rest 0.63% rest 0.20%

97



Appendix

Table 5.: Three Finger Correlations for right hand fingers on BKA data
thumb, index

middle
index, middle

ring
middle, ring

small
LLL 24.47% LLL 25.43% LLL 44.77%

WWW 14.09% WWW 15.76% LWL 19.05%
WLL 11.34% WLW 11.14% WWL 10.94%
WWL 11.00% RLL 10.86% WWW 7.77%
LRL 9.84% LLW 10.63% LWW 6.72%
LWL 8.00% WLL 7.91% WLL 1.67%
WRL 4.82% RLW 3.74% RLL 1.64%
LWW 2.89% ALL 2.38% ALL 1.62%
LAL 1.90% RWW 1.70% LLW 1.30%
WRW 1.36% LWW 1.28% RWL 0.79%
rest 10.29% rest 9.16% rest 3.71%

Table 6.: Three Finger Correlations for left hand fingers on BKA data
thumb, index

middle
index, middle

ring
middle, ring

small
RRR 29.64% RRR 31.50% RRR 50.82%
WWW 12.36% WWW 14.54% RWR 14.85%
WRR 9.99% LRR 10.27% WWR 11.87%
WWR 8.27% RRW 8.67% WWW 6.47%
RWR 8.13% WRR 8.64% RWW 3.83%
RLR 8.07% WRW 7.87% WRR 3.75%
RWW 4.81% WWR 2.55% ARR 2.46%
WLR 4.18% RWW 2.40% RRW 1.34%
WRW 1.66% LRW 2.06% LRR 1.03%
RRW 1.57% ARR 2.03% RLR 0.63%
rest 11.33% rest 9.47% rest 2.95%
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Table 7.: Four Finger Correlations for right hand fingers on BKA data
thumb, index
middle, ring

index, middle
ring, small

LLLL 18.34% LLLL 24.35%
WWWW 13.21% RLLL 10.69%
LRLL 7.80% WWWL 8.70%
WWLW 6.92% LLWL 7.97%
WLLL 6.44% WLWL 7.57%
LLLW 5.61% WLLL 7.54%
WLLW 4.82% WWWW 7.03%
LWLW 4.14% WLWW 3.52%
WWLL 4.05% RLWL 3.09%
LWLL 3.80% LLWW 2.58%
rest 24.87% rest 16.95%

Table 8.: Four Finger Correlations for left hand fingers on BKA data
thumb, index
middle, ring

index, middle
ring, small

RRRR 24.15% RRRR 30.70%
WWWW 10.79% LRRR 9.99%
RLRR 6.87% WWWR 9.36%
WRRR 6.44% WRRR 8.21%
RRRW 5.04% RRWR 7.18%
RWRR 4.58% WRWR 5.89%
WWRW 4.29% WWWW 5.18%
WWRR 3.95% WWRR 2.43%
RWWW 3.75% WRWW 1.95%
WRRW 3.49% ARRR 1.92%
rest 26.67% rest 17.20%
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Table 9.: Five Finger Correlations for right hand fingers on BKA data
thumb, index, middle

ring, small
LLLLL 17.75%
LRLLL 7.68%

WWWWL 6.97%
WWWWW 6.21%
WLLLL 6.10%
WWLWL 4.28%
LLLWL 4.20%
WWLLL 3.83%
LWLLL 3.66%
WLLWL 3.57%

rest 35.75%

Table 10.: Five Finger Correlations for left hand fingers on BKA data
thumb, index, middle

ring, small
RRRRR 23.58%
RLRRR 6.72%

WWWWR 6.61%
WRRRR 6.21%
RWRRR 4.41%
RRRWR 4.29%

WWWWW 4.18%
WWRRR 3.69%
WWRWR 3.29%
WLRRR 3.00%

rest 34.02%
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C. Correlation Tables SD9 4 Classes

Table 11.: Two Finger Correlations for right hand fingers on SD9 (4 classes)
thumb
index

index
middle

middle
ring

ring
small

WW 26.53% RR 35.12% RR 41.66% RR 46.93%
RR 25.94% WW 16.69% RW 25.75% WR 29.73%
WR 11.82% WR 15.98% WW 19.47% WW 16.76%
RA 8.36% LR 10.33% AR 5.20% AR 1.71%
RL 8.21% AR 8.06% WR 2.04% RW 1.67%
RW 6.43% AA 4.27% AA 1.45% LR 1.04%
WL 6.02% LW 2.45% RL 1.15% RA 0.89%
WA 2.27% RW 2.16% RA 0.93% AA 0.67%
AA 1.75% RA 1.97% AW 0.85% LW 0.22%
AR 1.49% LA 1.11% LR 0.71% RL 0.11%
rest 1.19% rest 1.86% rest 0.78% rest 0.26%

Table 12.: Two Finger Correlations for left hand fingers on SD9 (4 classes)
thumb
index

index
middle

middle
ring

ring
small

LL 24.05% LL 32.42% LL 46.51% LL 55.58%
WW 21.56% WW 16.17% LW 19.41% WL 25.69%
WL 11.34% WL 14.91% WW 17.10% WW 11.38%
LA 10.19% RL 10.71% AL 7.55% AL 2.42%
LR 9.59% AL 9.33% WL 3.38% LW 2.04%
LW 9.48% AA 5.65% AA 2.38% AA 1.15%
WR 4.91% LW 2.64% RL 1.23% LA 0.93%
AA 3.09% RA 2.30% LA 1.12% RL 0.26%
AL 2.16% LA 2.27% AW 0.63% RA 0.15%
WA 1.97% RW 1.45% LR 0.33% WA 0.11%
rest 1.67% rest 2.16% rest 0.37% rest 0.30%

101



Appendix

Table 13.: Three Finger Correlations for right hand fingers on SD9 (4 classes)
thumb, index

middle
index, middle

ring
middle, ring

small
RRR 23.78% RRR 24.19% RRR 39.69%
WWW 15.01% WWW 15.46% RWR 18.06%
WWR 11.11% WRW 10.89% WWR 10.78%
WRR 10.00% RRW 9.92% WWW 8.70%
RLR 6.61% LRR 6.54% RWW 7.69%
RAR 5.69% ARR 5.91% ARR 4.61%
RWR 4.72% WRR 5.02% WRR 1.97%
WLR 3.42% LRW 3.49% RRW 1.52%
RAA 2.53% AAR 2.60% AAR 0.93%
WLW 2.04% LWW 2.04% RLR 0.82%
rest 15.09% rest 13.94% rest 5.24%

Table 14.: Three Finger Correlations for left hand fingers on SD9 (4 classes)
thumb, index

middle
index, middle

ring
middle, ring

small
LLL 21.26% LLL 23.35% LLL 44.24%

WWW 12.08% WWW 14.13% LWL 14.28%
WLL 9.37% RLL 8.85% WWL 10.97%
WWL 9.11% LLW 8.62% ALL 6.99%
LRL 7.10% WLW 8.40% WWW 6.13%
LAL 6.54% ALL 7.81% LWW 4.94%
LWL 5.43% WLL 6.51% WLL 3.20%
LWW 3.87% AAL 3.75% LLW 1.71%
LAA 3.35% LWW 2.12% AAL 1.45%
WRL 3.20% WWL 2.04% RLL 1.15%
rest 18.70% rest 14.42% rest 4.94%
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Table 15.: Four Finger Correlations for right hand fingers on SD9 (4 classes)
thumb, index
middle, ring

index, middle
ring, small

RRRR 18.99% RRRR 23.19%
WWWW 14.12% WWWR 8.18%
WWRW 8.10% WWWW 7.28%
WRRW 5.46% RRWR 6.91%
RLRR 5.02% WRWR 6.76%
RARR 4.38% LRRR 6.21%
WRRR 4.31% ARRR 5.80%
RRRW 4.12% WRRR 4.50%
WWRR 3.01% WRWW 4.12%
RWRW 2.71% LRWR 3.08%
rest 29.77% rest 23.97%

Table 16.: Four Finger Correlations for left hand fingers on SD9 (4 classes)
thumb, index
middle, ring

index, middle
ring, small

LLLL 16.51% LLLL 22.08%
WWWW 10.86% WWWL 8.85%
LRLL 6.32% RLLL 8.70%
WWLW 5.87% ALLL 7.36%
LALL 5.69% LLWL 6.39%
WLLL 5.61% WLLL 6.10%
LLLW 4.54% WLWL 5.91%
WLLW 3.64% WWWW 5.28%
WWLL 3.23% AALL 3.35%
LWWW 3.12% WLWW 2.45%
rest 34.61% rest 23.53%
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Table 17.: Five Finger Correlations for right hand fingers on SD9 (4 classes)
thumb, index, middle

ring, small
RRRRR 18.43%

WWWWR 7.28%
WWWWW 6.84%
WWRWR 4.76%
RLRRR 4.76%
RARRR 4.38%
WRRRR 3.86%
RRRWR 3.42%
WWRWW 3.34%
WRRWR 3.23%

rest 39.69%

Table 18.: Five Finger Correlations for left hand fingers on SD9 (4 classes)
thumb, index, middle

ring, small
LLLLL 16.06%

WWWWL 6.51%
LRLLL 6.25%
LALLL 5.46%
WLLLL 4.87%

WWWWW 4.35%
WWLWL 3.90%
LLLWL 3.61%
WWLLL 2.94%
LWLLL 2.94%
rest 43.12%
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D. Results - Correction of Probabilities
In the following, you can find the complete table for testing different correction
measurement. The table shows the results for the right index finger and different
numbers of adjacent fingers.

Table 19.: Results for different probability correction approaches and two adjacent
fingers

adjacent
fingers searches hit

db bins
hit
subjects

% of
avg. threshold correction

type
2 2700 8387 1582026 43% 0.01 -1
2 2700 8385 1581014 43% 0.01 0
2 2700 8386 1581960 43% 0.01 1
2 2700 8388 1580494 43% 0.01 2
2 2700 8386 1580459 43% 0.01 3
2 2700 8385 1581894 43% 0.01 4
2 2700 8386 1581960 43% 0.01 5
2 2700 8385 1581014 43% 0.01 6
2 2700 8370 1585897 43% 0.025 -1
2 2700 8372 1584155 43% 0.025 0
2 2700 8373 1585492 43% 0.025 1
2 2700 8376 1583045 43% 0.025 2
2 2700 8375 1583982 43% 0.025 3
2 2700 8370 1585122 43% 0.025 4
2 2700 8371 1585040 43% 0.025 5
2 2700 8372 1584155 43% 0.025 6
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Table 20.: Results for different probability correction approaches and three adja-
cent fingers

adjacent
fingers searches hit

db bins
hit
subjects

% of
avg. threshold correction

type
3 2700 24350 1343831 37% 0.01 -1
3 2700 24339 1343763 37% 0.01 0
3 2700 24347 1343874 37% 0.01 1
3 2700 24343 1342504 37% 0.01 2
3 2700 24343 1342927 37% 0.01 3
3 2700 24340 1343873 37% 0.01 4
3 2700 24346 1343798 37% 0.01 5
3 2700 24337 1343801 37% 0.01 6
3 2700 24214 1344698 37% 0.025 -1
3 2700 24235 1347054 37% 0.025 0
3 2700 24223 1345092 37% 0.025 1
3 2700 24260 1343629 37% 0.025 2
3 2700 24240 1345163 37% 0.025 3
3 2700 24237 1347436 37% 0.025 4
3 2700 24211 1344551 37% 0.025 5
3 2700 24240 1346799 37% 0.025 6
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Table 21.: Results for different probability correction approaches and four adjacent
fingers

adjacent
fingers searches hit

db bins
hit
subjects

% of
avg. threshold correction

type
4 2700 87661 1285028 35% 0.01 -1
4 2700 87653 1283947 35% 0.01 0
4 2700 87647 1285011 35% 0.01 1
4 2700 87693 1282117 35% 0.01 2
4 2700 87695 1282334 35% 0.01 3
4 2700 87672 1284426 35% 0.01 4
4 2700 87656 1285031 35% 0.01 5
4 2700 87667 1282915 35% 0.01 6
4 2700 87258 1288761 35% 0.025 -1
4 2700 87341 1287779 35% 0.025 0
4 2700 87306 1288412 35% 0.025 1
4 2700 87493 1283823 35% 0.025 2
4 2700 87443 1284870 35% 0.025 3
4 2700 87378 1288317 35% 0.025 4
4 2700 87269 1288742 35% 0.025 5
4 2700 87428 1286463 35% 0.025 6

107



Bibliography

[1] Federal Bureau of Investigation, “Ngi sytsem fact sheet,” Federal
Bureau of Investigation, Tech. Rep., 2018. [Online]. Available: https:
//www.fbi.gov/file-repository/ngi-monthly-fact-sheet/view

[2] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint
Recognition. Springer London, 2009.

[3] A. Mani and M. Nadeski, “Processing solutions for biometric systems,”
Texas Instruments, Tech. Rep., 2015. [Online]. Available: http:
//www.ti.com/lit/wp/spry289/spry289.pdf

[4] U. D. of Justice and N. I. of Justice, The Fingerprint Sourcebook. CreateS-
pace Independent Publishing Platform, 2012.

[5] M. Kücken and A. C. Newell, “Fingerprint formation,” Journal of
Theoretical Biology, vol. 235, no. 1, pp. 71 – 83, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022519304006198

[6] A. K. Jain, R. Bolle, and S. Pankanti, Eds., Biometrics: Personal Identifica-
tion in Networked Society. Norwell, MA, USA: Kluwer Academic Publishers,
1998.

[7] H. C. Lee, R. Ramotowski, and R. E. Gaensslen, Advances in Fingerprint
Technology, Second Edition. CRC Press, 2001.

[8] A. K. Jain, A. A. Ross, and K. Nandakumar, “Fingerprint recognition,” in
Introduction to Biometrics. Springer US, 2011, ch. Fingerprint Recognition,
pp. 51–96.

108

https://www.fbi.gov/file-repository/ngi-monthly-fact-sheet/view
https://www.fbi.gov/file-repository/ngi-monthly-fact-sheet/view
http://www.ti.com/lit/wp/spry289/spry289.pdf
http://www.ti.com/lit/wp/spry289/spry289.pdf
http://www.sciencedirect.com/science/article/pii/S0022519304006198


Bibliography

[9] S. Pankanti, S. Prabhakar, and A. Jain, “On the individuality fingerprints,”
in Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001. IEEE Comput. Soc, 2001.

[10] S. Yoon and A. K. Jain, “Longitudinal study of fingerprint recognition,”
Proceedings of the National Academy of Sciences, vol. 112, no. 28, pp. 8555–
8560, jun 2015.

[11] ISO/IEC TC JTC1 SC37 Biometrics, “ISO/IEC 2382-37:2017 Information
technology – Vocabulary – Part 37: Biometrics (Preview),” International
Organization for Standardization and International Electrotechnical Com-
mittee, 2017. [Online]. Available: https://www.iso.org/standard/66693.html

[12] ——, “ISO/IEC 19795-1:2006 Information Technology - Biomet-
ric Performance Testing and Reporting - Part 1: Principles
and Framework,” International Organization for Standardization and
International Electrotechnical Committee, 2006. [Online]. Available:
https://www.iso.org/standard/41447.html

[13] ——, “ISO/IEC 19794-2:2011 Information Technology - Biometric Data
Interchange Formats - Part 2: Finger Minutiae Data,” International Orga-
nization for Standardization and International Electrotechnical Committee,
2011. [Online]. Available: https://www.iso.org/standard/41447.html

[14] ——, “ISO/IEC 29794-4:2017 Information technology – Biometric sample
quality – Part 4: Finger image data,” International Organization
for Standardization and International Electrotechnical Committee, 2017.
[Online]. Available: https://www.iso.org/standard/41447.html

[15] M. Galar, J. Derrac, D. Peralta, I. Triguero, D. Paternain, C. Lopez-Molina,
S. García, J. M. Benítez, M. Pagola, E. Barrenechea, H. Bustince, and
F. Herrera, “A survey of fingerprint classification part i: Taxonomies on fea-
ture extraction methods and learning models,” Knowledge-Based Systems,
vol. 81, no. Supplement C, pp. 76–97, jun 2015.

109

https://www.iso.org/standard/66693.html
https://www.iso.org/standard/41447.html
https://www.iso.org/standard/41447.html
https://www.iso.org/standard/41447.html


Bibliography

[16] ——, “A survey of fingerprint classification part ii: Experimental analysis
and ensemble proposal,” Knowledge-Based Systems, vol. 81, no. Supplement
C, pp. 98–116, jun 2015.

[17] I. Kavati, M. V. N. K. Prasad, and C. Bhagvati, “Search space reduction
in biometric databases: A review,” in Developing Next-Generation Counter-
measures for Homeland Security Threat Prevention. Hershey, PA, USA: IGI
Global, 2017, pp. 236–262.

[18] F. Galton, Finger Prints. Macmillan and Co., 1892. [Online]. Available:
http://galton.org/books/finger-prints/galton-1892-fingerprints-1up.pdf

[19] E. Henry, Classification and uses of finger prints. George Routledge
and Sons, Limited, 1900. [Online]. Available: http://resource.nlm.nih.gov/
1306026

[20] B. Moayer and K. Fu, “A syntactic approach to fingerprint pattern recogni-
tion,” Pattern Recognition, vol. 7, no. 1-2, pp. 1–23, 1975.

[21] ——, “An application of stochastic languages to fingerprint pattern recogni-
tion,” Pattern Recognition, vol. 8, no. 3, pp. 173–179, 1976.

[22] C. L. Wilson, G. T. Candela, P. J. Grother, C. I. Watson,
and R. A. Wilkinson, “Massively parallel neural network fingerprint
classification system,” NIST, techreport 4880, 1992. [Online]. Available:
https://archive.org/stream/massivelyparalle4880wils#page/60/mode/2up

[23] A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti, “FingerCode: a fil-
terbank for fingerprint representation and matching,” in Proceedings. 1999
IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (Cat. No PR00149), vol. 2. IEEE Comput. Soc, 1999, p. 193 Vol.
2.

[24] K. Rao and K. Balck, “Type classification of fingerprints: A syntactic ap-
proach,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. PAMI-2, no. 3, pp. 223–231, 1980.

110

http://galton.org/books/finger-prints/galton-1892-fingerprints-1up.pdf
http://resource.nlm.nih.gov/1306026
http://resource.nlm.nih.gov/1306026
https://archive.org/stream/massivelyparalle4880wils#page/60/mode/2up


Bibliography

[25] J.-H. Chang and K.-C. Fan, “A new model for fingerprint classification by
ridge distribution sequences,” Pattern Recognition, vol. 35, no. 6, pp. 1209–
1223, 2002.

[26] T. M. Rao, “Feature extraction for fingerprint classification,” Pattern Recog-
nition, vol. 8, no. 3, pp. 181–192, 1976.

[27] M. Kawagoe and A. Tojo, “Fingerprint pattern classification,” Pattern
Recognition, vol. 17, no. 3, pp. 295–303, Jan. 1984.

[28] Q. Zhang and H. Yan, “Fingerprint classification based on extraction and
analysis of singularities and pseudo ridges,” Pattern Recognition, vol. 37,
no. 11, pp. 2233–2243, 2004.

[29] L. Wang and M. Dai, “Application of a new type of singular points in finger-
print classification,” Pattern Recognition Letters, vol. 28, no. 13, pp. 1640–
1650, 2007, verbesserung von Zang_04.

[30] K. Karu and A. K. Jain, “Fingerprint classification,” Pattern Recognition,
vol. 29, no. 3, pp. 389–404, Mar. 1996.

[31] M. Ballan, F. Sakarya, and B. Evans, “A fingerprint classification technique
using directional images,” in Conference Record of the Thirty-First Asilo-
mar Conference on Signals, Systems and Computers (Cat. No.97CB36136),
vol. 1. IEEE Comput. Soc, 1997, pp. 101–104 vol.1.

[32] C. Klimanee and D. T. Nguyen, “Classification of fingerprints using singular
points and their principal axes,” in 2004 International Conference on Image
Processing, 2004. ICIP’04., vol. 2. IEEE, 2004, pp. 849–852 Vol.2.

[33] I. S. Msiza, B. Leke-Betechuoh, F. V. Nelwamondo, and N. Msimang, “A
fingerprint pattern classification approach based on the coordinate geometry
of singularities,” in 2009 IEEE International Conference on Systems, Man
and Cybernetics, Oct 2009, pp. 510–517.

[34] L. Webb and M. Mathekga, “Towards a complete rule-based classification
approach for flat fingerprints,” in 2014 Second International Symposium on
Computing and Networking. IEEE, dec 2014, pp. 549–555.

111



Bibliography

[35] J.-M. Guo, Y.-F. Liu, J.-Y. Chang, and J.-D. Lee, “Fingerprint
classification based on decision tree from singular points and orientation
field,” Expert Systems with Applications, vol. 41, no. 2, pp. 752–764, feb
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0957417413006003

[36] L. Hong and A. Jain, “Classification of fingerprint images,” in PRO-
CEEDINGS OF THE 11TH SCANDINAVIAN CONFERENCE ON IMAGE
ANALYSIS, KANGERLUSSUAQ, 1999, pp. 7–11.

[37] W. Liu, Z. Ye, H. Chen, and H. Li, “Ridgeline based 2-layer classifier in fin-
gerprint classification,” in 2009 International Workshop on Intelligent Sys-
tems and Applications. IEEE, may 2009, pp. 1–4.

[38] B.-H. Cho, J.-S. Kim, J.-H. Bae, I.-G. Bae, and K.-Y. Yoo, “Core-based fin-
gerprint image classification,” in Proceedings 15th International Conference
on Pattern Recognition. ICPR-2000, vol. 2, 2000, pp. 859–862 vol.2.

[39] S. C. Dass and A. K. Jain, “Fingerprint classification using orientation field
flow curves,” in In Proc. Indian Conference on Computer Vision, Graphics
and Image Processing, 2004, pp. 650–655.

[40] X. Wang and M. Xie, Fingerprint Classification: An Approach Based on
Singularities and Analysis of Fingerprint Structure. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 324–329. [Online]. Available:
https://doi.org/10.1007/978-3-540-25948-0_45

[41] X. Wang, F. Wang, J. Fan, and J. Wang, “Fingerprint classification based on
continuous orientation field and singular points,” in 2009 IEEE International
Conference on Intelligent Computing and Intelligent Systems, vol. 4, Nov
2009, pp. 189–193.

[42] L. Fan, S. Wang, H. Wang, and T. Guo, “Singular points detection based
on zero-pole model in fingerprint images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 30, no. 6, pp. 929–940, 2008.

112

http://www.sciencedirect.com/science/article/pii/S0957417413006003
http://www.sciencedirect.com/science/article/pii/S0957417413006003
https://doi.org/10.1007/978-3-540-25948-0_45


Bibliography

[43] L.-m. Liu, C.-y. Huang, and D. C. D. Hung, “A directional approach to
fingerprint classification,” International Journal of Pattern Recognition and
Artificial Intelligence, vol. 22, no. 02, pp. 347–365, mar 2008.

[44] K. Dorasamy, L. Webb, J. Tapamo, and N. P. Khanyile, “Fingerprint clas-
sification using a simplified rule-set based on directional patterns and sin-
gularity features,” in 2015 International Conference on Biometrics (ICB).
IEEE, may 2015, pp. 400–407.

[45] S. C. Chua, E. Wong, and A. Tan, “A fuzzy rule-based fin-
gerprint image classification,” International Journal of Applied Engi-
neering Research, vol. 11, pp. 7920–7925, 01 2016. [Online]. Avail-
able: https://www.researchgate.net/publication/306226059_A_fuzzy_
rule-based_fingerprint_image_classification

[46] K. Pearson, “On lines and planes of closest fit to systems of points in space,”
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, vol. 2, no. 11, pp. 559–572, nov 1901.

[47] P. A. Hughes and A. D. P. Green, “The use of neural networks for fingerprint
classification,” in 1991 Second International Conference on Artificial Neural
Networks, Nov 1991, pp. 79–81.

[48] J. D. Bowen, “The home office automatic fingerprint pattern classification
project,” in IEE Colloquium on Neural Networks for Image Processing
Applications, Oct 1992, pp. 1/1–1/5. [Online]. Available: http://ieeexplore.
ieee.org/document/193709/

[49] M. Kamijo, “Classifying fingerprint images using neural network: deriving
the classification state,” in IEEE International Conference on Neural Net-
works. IEEE, 1993, pp. 1932–1937 vol.3.

[50] Z. J. Geng and W. Shen, “Fingerprinting classification using fuzzy cerebellar
model arithmetic computer neural networks,” Journal of Electronic Imaging,
vol. 6, no. 3, p. 311, jul 1997.

113

https://www.researchgate.net/publication/306226059_A_fuzzy_rule-based_fingerprint_image_classification
https://www.researchgate.net/publication/306226059_A_fuzzy_rule-based_fingerprint_image_classification
http://ieeexplore.ieee.org/document/193709/
http://ieeexplore.ieee.org/document/193709/


Bibliography

[51] K. A. Nagaty, “Fingerprints classification using artificial neural networks:
a combined structural and statistical approach,” Neural Networks, vol. 14,
no. 9, pp. 1293–1305, 2001.

[52] S. M. Mohamed and H. Nyongesa, “Automatic fingerprint classification sys-
tem using fuzzy neural techniques,” in 2002 IEEE World Congress on Com-
putational Intelligence. 2002 IEEE International Conference on Fuzzy Sys-
tems. FUZZ-IEEE’02. Proceedings (Cat. No.02CH37291), vol. 1. IEEE,
2002, pp. 358–362.

[53] C. Jin and P. Jin, “Fingerprint classification in dct domain us-
ing rbf neural networks,” Journal of Information Science and
Engineering, vol. 25, pp. 1955–1962, 11 2009. [Online]. Avail-
able: https://www.researchgate.net/publication/220587154_Fingerprint_
Classification_in_DCT_Domain_using_RBF_Neural_Networks

[54] S. Thepade, D. Parekh, and V. Tiwari, “LBG algorithm for fingerprint
classification,” in International Journal of Advances in Engineering &
Technology, Nov. 2012. [Online]. Available: https://www.semanticscholar.
org/paper/Lbg-Algorithm-for-Fingerprint-Classification-Thepade-Parekh/
f14323f5d09d1e974a631806f17969520f363325?tab=abstract

[55] R. Wang, C. Han, and T. Guo, “A novel fingerprint classification method
based on deep learning,” in 2016 23rd International Conference on Pattern
Recognition (ICPR). IEEE, dec 2016, pp. 931–936.

[56] C. L. Wilson, G. T. Candela, and C. I. Watson, “Neural network fingerprint
classification,” Journal of Artificial Neural Networks, vol. 1, no. 2, pp. 203–
228, 1994.

[57] C. L. Wilson and J. L. Blue, “Improving neural network performance for
character and fingerprint classification by altering network dynamics,” NIST,
techreport 5695, 1995.

[58] S. N. Sarbadhikari, J. Basak, S. K. Pal, and M. K. Kundu, “Noisy finger-
prints classification with directional fft based features using mlp,” Neural
Computing & Applications, vol. 7, no. 2, pp. 180–191, Jun 1998.

114

https://www.researchgate.net/publication/220587154_Fingerprint_Classification_in_DCT_Domain_using_RBF_Neural_Networks
https://www.researchgate.net/publication/220587154_Fingerprint_Classification_in_DCT_Domain_using_RBF_Neural_Networks
https://www.semanticscholar.org/paper/Lbg-Algorithm-for-Fingerprint-Classification-Thepade-Parekh/f14323f5d09d1e974a631806f17969520f363325?tab=abstract
https://www.semanticscholar.org/paper/Lbg-Algorithm-for-Fingerprint-Classification-Thepade-Parekh/f14323f5d09d1e974a631806f17969520f363325?tab=abstract
https://www.semanticscholar.org/paper/Lbg-Algorithm-for-Fingerprint-Classification-Thepade-Parekh/f14323f5d09d1e974a631806f17969520f363325?tab=abstract


Bibliography

[59] K. Moscinska and G. Tyma, “Neural network based fingerprint
classification,” in 1993 Third International Conference on Artificial
Neural Networks, May 1993, pp. 229–232. [Online]. Available: http:
//ieeexplore.ieee.org/document/263221/

[60] U. Halici and G. Ongun, “Fingerprint classification through self-organizing
feature maps modified to treat uncertainties,” Proceedings of the IEEE,
vol. 84, no. 10, pp. 1497–1512, Oct 1996.

[61] S. Bernard, N. Boujemaa, D. Vitale, and C. Bricot, “Fingerprint classifica-
tion using kohonen topologic map,” in Proceedings 2001 International Con-
ference on Image Processing (Cat. No.01CH37205), vol. 3. IEEE, 2001, pp.
230–233 vol.3.

[62] S. R. Borra, G. J. Reddy, and E. S. Reddy, “Classification of
fingerprint images with the aid of morphological operation and agnn
classifier,” Applied Computing and Informatics, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2210832717301576

[63] V. N. Vapnik, Statistical Learning Theory. JOHN WILEY & SONS
INC, 1998. [Online]. Available: http://www.ebook.de/de/product/3602628/
vladimir_naumovich_vapnik_statistical_learning_theory.html

[64] C. J. Burges, “A tutorial on support vector machines for pattern recogni-
tion,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, Jun
1998.

[65] Y. Yao, P. Frasconi, and M. Pontil, “Fingerprint classification with
combinations of support vector machines,” in Audio- and Video-Based
Biometric Person Authentication: Third International Conference, AVBPA
2001 Halmstad, Sweden, June 6–8, 2001 Proceedings, J. Bigun and
F. Smeraldi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp.
253–258. [Online]. Available: https://doi.org/10.1007/3-540-45344-X_37

[66] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via
error-correcting output codes,” J. Artif. Int. Res., vol. 2, no. 1, pp. 263–286,

115

http://ieeexplore.ieee.org/document/263221/
http://ieeexplore.ieee.org/document/263221/
http://www.sciencedirect.com/science/article/pii/S2210832717301576
http://www.ebook.de/de/product/3602628/vladimir_naumovich_vapnik_statistical_learning_theory.html
http://www.ebook.de/de/product/3602628/vladimir_naumovich_vapnik_statistical_learning_theory.html
https://doi.org/10.1007/3-540-45344-X_37


Bibliography

Jan. 1995. [Online]. Available: http://dl.acm.org/citation.cfm?id=1622826.
1622834

[67] A. Jain, S. Prabhakar, and L. Hong, “A multichannel approach to finger-
print classification,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 21, no. 4, pp. 348–359, 1999.

[68] J.-K. Min, J.-H. Hong, and S.-B. Cho, “Effective fingerprint classification
by localized models of support vector machines,” in Advances in Biometrics:
International Conference, ICB 2006, Hong Kong, China, January 5-7, 2006.
Proceedings, D. Zhang and A. K. Jain, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 287–293.

[69] ——, “Fingerprint classification based on subclass analysis using multiple
templates of support vector machines,” Intelligent Data Analysis, vol. 14,
pp. 369–384, 01 2010. [Online]. Available: https://www.researchgate.net/
publication/220571687_Fingerprint_classification_based_on_subclass_
analysis_using_multiple_templates_of_support_vector_machines

[70] J.-H. Hong, J.-K. Min, U.-K. Cho, and S.-B. Cho, “Fingerprint classification
using one-vs-all support vector machines dynamically ordered with naive
bayes classifiers,” Pattern Recognition, vol. 41, no. 2, pp. 662–671, 2008.

[71] J. Li, W.-Y. Yau, and H. Wang, “Combining singular points and orientation
image information for fingerprint classification,” Pattern Recognition, vol. 41,
no. 1, pp. 353–366, 2008.

[72] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparamet-
ric regression,” The American Statistician, vol. 46, no. 3, pp. 175–185, aug
1992.

[73] A. Fitz and R. Green, “Fingerprint classification using a hexagonal fast
fourier transform,” Pattern Recognition, vol. 29, no. 10, pp. 1587 – 1597,
1996. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0031320396000180

116

http://dl.acm.org/citation.cfm?id=1622826.1622834
http://dl.acm.org/citation.cfm?id=1622826.1622834
https://www.researchgate.net/publication/220571687_Fingerprint_classification_based_on_subclass_analysis_using_multiple_templates_of_support_vector_machines
https://www.researchgate.net/publication/220571687_Fingerprint_classification_based_on_subclass_analysis_using_multiple_templates_of_support_vector_machines
https://www.researchgate.net/publication/220571687_Fingerprint_classification_based_on_subclass_analysis_using_multiple_templates_of_support_vector_machines
http://www.sciencedirect.com/science/article/pii/0031320396000180
http://www.sciencedirect.com/science/article/pii/0031320396000180


Bibliography

[74] S. Wang, W. W. Zhang, and Y. S. Wang, “Fingerprint classification by
directional fields,” in Proceedings. Fourth IEEE International Conference on
Multimodal Interfaces, 2002, pp. 395–399.

[75] U. Rajanna, A. Erol, and G. Bebis, “A comparative study on feature ex-
traction for fingerprint classification and performance improvements using
rank-level fusion,” Pattern Analysis and Applications, vol. 13, no. 3, pp.
263–272, 2010.

[76] J. Luo, D. Song, C. Xiu, S. Geng, and T. Dong, “Fingerprint classification
combining curvelet transform and gray-level cooccurrence matrix,” Mathe-
matical Problems in Engineering, vol. 2014, pp. 1–15, 2014.

[77] H. O. Nyongesa, S. Al-Khayatt, S. M. Mohamed, and M. Mahmoud, “Fast
robust fingerprint feature extraction and classification,” Journal of Intelli-
gent and Robotic Systems, vol. 40, no. 1, pp. 103–112, 2004.

[78] T. Kristensen, J. Borthen, and K. Fyllingsnes, “Comparison of neural net-
work based fingerprint classification techniques,” in 2007 International Joint
Conference on Neural Networks. IEEE, 2007, pp. 1043–1048.

[79] D. Maio and D. Maltoni, “A structural approach to fingerprint classifica-
tion,” in Proceedings of 13th International Conference on Pattern Recogni-
tion, vol. 3. IEEE, 1996, pp. 578–585 vol.3.

[80] A. Senior, “A hidden markov model fingerprint classifier,” in Conference
Record of the Thirty-First Asilomar Conference on Signals, Systems and
Computers (Cat. No.97CB36136), vol. 1. IEEE Comput. Soc, 1997, pp.
306–310 vol.1.

[81] R. Cappelli, A. Lumini, D. Maio, and D. Maltoni, “Fingerprint classification
by directional image partitioning,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 21, no. 5, pp. 402–421, 1999.

[82] A. K. Jain and S. Minut, “Hierarchical kernel fitting for fingerprint classi-
fication and alignment,” in Object recognition supported by user interaction
for service robots, vol. 2. IEEE Comput. Soc, 2002, pp. 469–473 vol.2.

117



Bibliography

[83] M. Neuhaus and H. Bunke, A Graph Matching Based Approach to Fin-
gerprint Classification Using Directional Variance. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 191–200.

[84] H. W. Jung and J. H. Lee, “Fingerprint classification using the stochastic
approach of ridge direction information,” in 2009 IEEE International Con-
ference on Fuzzy Systems. IEEE, 2009, pp. 169–174.

[85] M. Liu, “Fingerprint classification based on adaboost learning from singu-
larity features,” Pattern Recognition, vol. 43, no. 3, pp. 1062–1070, 2010.

[86] M. M. Chong, H. N. Tan, L. Jun, and R. K. Gay, “Geometric framework
for fingerprint image classification,” Pattern Recognition, vol. 30, no. 9, pp.
1475–1488, 1997.

[87] Y. Qi, J. Tian, and R.-W. Dai, “Fingerprint classification system with feed-
back mechanism based on genetic algorithm,” in Proceedings. Fourteenth In-
ternational Conference on Pattern Recognition (Cat. No.98EX170), vol. 1.
IEEE Comput. Soc, 1998, pp. 163–165 vol.1.

[88] J. Hu and M. Xie, “Fingerprint classification based on genetic program-
ming,” in 2010 2nd International Conference on Computer Engineering and
Technology, vol. 6. IEEE, 2010, pp. 193–196.

[89] C. H. Park and H. Park, “Fingerprint classification using fast fourier trans-
form and nonlinear discriminant analysis,” Pattern Recognition, vol. 38,
no. 4, pp. 495–503, 2004.

[90] X. Tan, B. Bhanu, and Y. Lin, “Fingerprint classification based on learned
features,” IEEE Transactions on Systems, Man and Cybernetics, Part C
(Applications and Reviews), vol. 35, no. 3, pp. 287–300, 2005.

[91] K. C. Leung and C. H. Leung, “Improvement of fingerprint retrieval by
a statistical classifier,” IEEE Transactions on Information Forensics and
Security, vol. 6, no. 1, pp. 59–69, 2011.

118



Bibliography

[92] G. Vitello, F. Sorbello, G. I. M. Migliore, V. Conti, and S. Vitabile, “A
novel technique for fingerprint classification based on fuzzy c-means and
naive bayes classifier,” in 2014 Eighth International Conference on Complex,
Intelligent and Software Intensive Systems. IEEE, jul 2014, pp. 155–161.

[93] H.-W. Jung and J.-H. Lee, “Noisy and incomplete fingerprint classification
using local ridge distribution models,” Pattern Recognition, vol. 48, no. 2,
pp. 473–484, 2015.

[94] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classifiers,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20,
no. 3, pp. 226–239, Mar 1998.

[95] G. T. Candela, P. J. Grother, C. I. Watson, R. A. Wilkinson,
and C. Wilson, “Pcasys - a pattern-level classification automa-
tion system for fingerprints,” NIST Research Library, techreport
5647, 1995. [Online]. Available: https://www.nist.gov/publications/
pcasys-pattern-level-classification-automation-system-fingerprints

[96] A. Lumini, D. Maio, and D. Maltoni, “Continuous versus exclusive classifi-
cation for fingerprint retrieval,” Pattern Recognition Letters, vol. 18, no. 10,
pp. 1027–1034, oct 1997.

[97] R. Cappelli, D. Maio, and D. Maltoni, “Combining fingerprint classifiers,” in
Multiple Classifier Systems. Springer Berlin Heidelberg, 2000, pp. 351–361.

[98] ——, “A multi-classifier approach to fingerprint classification,” Pattern
Analysis & Applications, vol. 5, no. 2, pp. 136–144, 2002.

[99] R. Cappelli and D. Maio, The State of the Art in Fingerprint Classification.
New York, NY: Springer New York, 2004, pp. 183–205. [Online]. Available:
https://doi.org/10.1007/0-387-21685-5_9

[100] R. Cappelli and D. Maltoni, “Multispace KL for pattern representation and
classification,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 23, no. 9, pp. 977–996, 2001.

119

https://www.nist.gov/publications/pcasys-pattern-level-classification-automation-system-fingerprints
https://www.nist.gov/publications/pcasys-pattern-level-classification-automation-system-fingerprints
https://doi.org/10.1007/0-387-21685-5_9


Bibliography

[101] R. Cappelli, D. Maio, D. Maltoni, and L. Nanni, “A two-stage fingerprint
classification system,” in Proceedings of the 2003 ACM SIGMM workshop on
Biometrics methods and applications - WBMA 03, ser. WBMA ’03. New
York, NY, USA: ACM, 2003, pp. 95–99.

[102] M. S. Pattichis, G. Panayi, A. C. Bovik, and S.-P. Hsu, “Fingerprint classi-
fication using an AM-FM model,” IEEE Transactions on Image Processing,
vol. 10, no. 6, pp. 951–954, 2001.

[103] A. Senior, “A combination fingerprint classifier,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1165–1174, 2001.

[104] A. Senior and R. Bolle, Fingerprint Classification by Decision Fusion. New
York, NY: Springer New York, 2004, pp. 207–227.

[105] G. L. Marcialis, F. Roli, and P. Frasconi, Fingerprint Classification
by Combination of Flat and Structural Approaches. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 241–246. [Online]. Available:
https://doi.org/10.1007/3-540-45344-X_35

[106] Y. Yao, G. L. Marcialis, M. Pontil, P. Frasconi, and F. Roli, “Combining flat
and structured representations for fingerprint classification with recursive
neural networks and support vector machines,” Pattern Recognition, vol. 36,
no. 2, pp. 397–406, 2003, biometrics.

[107] Z. Han and C.-P. Liu, “Fingerprint classification based on statistical
features and singular point information,” in Advances in Biometric Person
Authentication: International Wokshop on Biometric Recognition Systems,
IWBRS 2005, Beijing, China, October 22-23, 2005. Proceedings, S. Z. Li,
Z. Sun, T. Tan, S. Pankanti, G. Chollet, and D. Zhang, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 119–126. [Online].
Available: https://doi.org/10.1007/11569947_15

[108] S. Shah and P. Sastry, “Fingerprint classification using a feedback-based line
detector,” IEEE Transactions on Systems, Man and Cybernetics, Part B
(Cybernetics), vol. 34, no. 1, pp. 85–94, 2004.

120

https://doi.org/10.1007/3-540-45344-X_35
https://doi.org/10.1007/11569947_15


Bibliography

[109] K. Cao, L. Pang, J. Liang, and J. Tian, “Fingerprint classification by a
hierarchical classifier,” Pattern Recognition, vol. 46, no. 12, pp. 3186–3197,
2013.

[110] T. H. Le and H. T. Van, “Fingerprint reference point detection for
image retrieval based on symmetry and variation,” Pattern Recognition,
vol. 45, no. 9, pp. 3360–3372, 2012, best Papers of Iberian Conference on
Pattern Recognition and Image Analysis (IbPRIA’2011). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320312000957

[111] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1993.

[112] R. Cappelli, “SFinGe: an Approach to Synthetic Fingerprint Generation,” 01
2004. [Online]. Available: http://biolab.csr.unibo.it/research.asp?organize=
Activities&select=&selObj=12&pathSubj=111%7C%7C12&Req=&

[113] D. Peralta, I. Triguero, S. García, Y. Saeys, J. M. Benitez, and
F. Herrera, “Distributed incremental fingerprint identification with
reduced database penetration rate using a hierarchical classification
based on feature fusion and selection,” Knowledge-Based Systems, vol.
126, no. Supplement C, pp. 91 – 103, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S095070511730134X

[114] Chinese Academy of Sciences’ Institute of Automation (CASIA), “Casia-
fingerprintv5,” Nov. 2016, last Accessed: 2017-10-12. [Online]. Available:
http://english.ia.cas.cn/db/201611/t20161101_169922.html

[115] J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez, M. Faundez-
Zanuy, V. Espinosa, A. Satue, I. Hernaez, J. J. Igarza, C. Vivaracho,
D. Escudero, and Q. I. Moro, “Mcyt baseline corpus: a bimodal biomet-
ric database,” IEE Proceedings - Vision, Image and Signal Processing, vol.
150, no. 6, pp. 395–401, Dec 2003.

[116] J. Daugman, “High confidence visual recognition of persons by a test of sta-
tistical independence,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 15, no. 11, pp. 1148–1161, 1993.

121

http://www.sciencedirect.com/science/article/pii/S0031320312000957
http://biolab.csr.unibo.it/research.asp?organize=Activities&select=&selObj=12&pathSubj=111%7C%7C12&Req=&
http://biolab.csr.unibo.it/research.asp?organize=Activities&select=&selObj=12&pathSubj=111%7C%7C12&Req=&
http://www.sciencedirect.com/science/article/pii/S095070511730134X
http://english.ia.cas.cn/db/201611/t20161101_169922.html

