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ABSTRACT Recently, researchers found that the intended generalisability of (deep) face recognition
systems increases their vulnerability against attacks. In particular, attacks based on morphed face images
pose a severe security risk to face recognition systems. In the last few years, the topic of (face) image
morphing and automated morphing attack detection has sparked the interest of several research laboratories
working in the field of biometrics and many different approaches have been published. In this work,
a conceptual categorisation and metrics for an evaluation of such methods is presented, followed by a
comprehensive survey of relevant publications. Additionally, technical considerations and trade-offs of the
surveyed methods are discussed along with open issues and challenges in the field.

INDEX TERMS Biometrics, face morphing attack, face recognition, image morphing, morphing attack
detection.

I. INTRODUCTION
Automated face recognition [1], [2] represents a longstanding
field of research in which a major break-though has been
achieved by the introduction of deep neural networks [3],
[4]. Due to the high generalization capabilities of deep neural
networks specifically and recognition systems in general,
the performance of operational face recognition systems
in unconstrained environments, e.g., regarding illumination,
poses, image quality or cameras, improved significantly. Re-
sulting performance improvements paved the way for deploy-
ments of face recognition technologies in diverse application
scenarios, ranging from video-based surveillance and mobile
device access control to Automated Border Control (ABC).
However, recently researchers found that the generalizability
of (deep) face recognition systems increases their vulner-
ability against attacks, e.g., spoofing attacks (also referred
to as presentation attacks) [5]. An additional attack vector
enabled by the high generalization capabilities is a specific
attack against face recognition systems based on morphed
face images, as introduced by Ferrara et al. [6].

A. FACE MORPHING ATTACK
Image morphing has been an active area of image processing
research since the 80s [7], [8] with a wide variety of appli-
cation scenarios, most notably in the film industry. Morphing

(a) Subject 1 (b) Morph (c) Subject 2

FIGURE 1: Example for a morphed face image (b) of subject
1 (a) and subject 2 (c). The Morph was manually created
using FantaMorph.

techniques can be used to create artificial biometric samples,
which resemble the biometric information of two (or more)
individuals in image and feature domain. An example of a
morphed face image as the result of two non-morphed, i.e.,
bona fide [9], face images, is depicted in Fig. 1. The created
morphed face image will be successfully verified against
probe samples of both contributing subjects by state-of-the-
art face recognition systems. This means, if a morphed face
image is stored as reference in the database of a face recog-
nition system, both contributing subjects can be successfully
verified against this manipulated reference. Thus, morphed
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FIGURE 2: Example for the face morphing attack: different
instances of face images of both subjects contributing to a
face morph are successfully matched against it using a COTS
face recognition software with a default decision threshold of
0.5, resulting in an FMR of 0.1%.

face images pose a severe threat to face recognition systems,
as the fundamental principal of biometrics, the unique link
between the sample and its corresponding subject, is violated.

In many countries, the face image used for the ePassport
issuance process is provided by the applicant in either analog
or digital form. In a face morphing attack scenario, a wanted
criminal could morph his face image with one of a lookalike
accomplice. If the accomplice applies for an ePassport with
the morphed face image, he will receive a valid ePassport
equipped with the morphed face image. It is important to
note, that morphed face images can be realistic enough to
fool human examiners [10], [11]. Both, the criminal and
the accomplice could then be successfully verified against
the morphed image stored on the ePassport, as visualized in
Fig. 2. This means, the criminal can use the ePassport issued
to the accomplice to pass ABC gates (or even human in-
spections at border crossings). The risk posed by this attack,
referred to as face morphing attack, is amplified by the fact
that realistic morphed face images can be generated by non-
experts employing easy-to-use face morphing software which
is either freely available or can be purchased at a reasonable
price, e.g., FaceMorpher1, WinMorph2 or FantaMorph3.

1FaceMorpher, Luxand: http://www.facemorpher.com/
2WinMorph, DebugMode: http://www.debugmode.com/winmorph/
3FantaMorph, Abrasoft: http://www.fantamorph.com/

B. CONTRIBUTION AND ORGANIZATION
In 2014, Ferrara et al. [6] were the first to thoroughly investi-
gate the vulnerability of commercial face recognition systems
to attacks based on morphed face images. Up to now, a sig-
nificant amount of literature related to face morphing attacks
and their detection has already been published, while only
a rather brief overview has been given in [12]. This survey
provides a comprehensive overview and critical discussion
of published literature related to said topics. This survey
primarily addresses biometrics researchers and practitioners.
The remainder of this article is organized as follows: the
fundamentals of (face) image morphing and quality assess-
ment of face morphs are described in Sect. II and Sect. III,
respectively, along with an overview of available software
tools in Sect. IV. Subsequently, relevant metrics to assess
the vulnerability of face recognition systems against said
attack and the performance of morphing attack detection
methods are summarized in Sect. V. Proposed approaches for
automated morphing attack detection are surveyed and dis-
cussed in Sect. VI. Open issues and challenges are outlined
in Sect. VII. Finally, a conclusion is given in Sect. VIII.

II. MORPHING OF FACE IMAGES
Image morphing in general represents a well-investigated
field of research, for comprehensive surveys the reader is
referred to [7], [8]. In this section, surveyed approaches are
limited to morphing techniques, which have been explicitly
applied to (frontal) face images. Face images used to create a
morph should meet certain requirements. The best results can
be achieved with frontal images exhibiting a neutral facial
expression. In the context of the face morphing attack it
should be expected that not only for the input face images
(provided by the photographer) but also for the resulting
morph the prerequisites of the International Civil Aviation
Organization (ICAO) [13] for the production of passport
portrait photos have to be met. These specifications ensure
that all faces are represented equally with respect to res-
olution, exposure, etc. Semi-profile recordings can indeed
be partially corrected, but then there is usually information
missing of the far side of the face. Furthermore, the quality
of the source images has a direct influence on the result. The
quality of the morph cannot be expected to be higher than
that of the source images. Distortions and scaling usually
negatively affect quality during the process chain. The quality
of morphed face images is further discussed in Sect. III.

In general, the morphing process of face images can be
divided into three steps. First, a correspondence between the
contributing samples is determined. In a second step, called
warping, both images are distorted, such that the correspond-
ing elements of both samples are geometrically aligned.
Finally, the colour values of the warped images are merged,
referred to as blending, in order to create the morphed face
image. Said processing steps are described in detail in the
following subsections, along with post-processing, studies on
human perception of morphed face images and a summary of
available research resources.
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FIGURE 3: Examples of detected landmarks (using dlib
landmark detector) and corresponding Delaunay triangles.

A. CORRESPONDENCE
The most common way of determining correspondences
between face images is by determining salient points in
both images, so-called landmarks. The simplest way is to
manually define the coordinates of prominent characteristics,
e.g., eyes, eyebrows, tip of the nose, etc., as for instance done
in the morphing process of [6] and [14]. The manual anno-
tation of images is very accurate (if done properly), but time
consuming. More convenient is the automated detection of
landmarks. The established approach for landmark detection
is to detect each point separately, e.g., utilizing geometric fea-
tures [15]. A more sophisticated solution is to fit a predefined
model, e.g., active shape models [16] or elastic bunch graph
models [17], [18] to the face image, whereas the fitting of
the model is the key issue. Zanella and Fuentes propose an
untrained generic model, which is fit to the contours of a
binary image using evolutionary strategies [19]. Saragih et
al. [20] propose a principled optimization strategy where a
non-parametric representation of the landmark distributions
is maximized within a hierarchy of smoothed estimates.
Further algorithms train multiple regression trees for land-
mark detection [21], [22], of which the method of Kazemi
and Sullivan [22] was further implemented in the widely
used dlib landmark detector [23]. For detailed information
and benchmarks of different automated landmark detection
approaches the reader is referred to [24].

B. WARPING
If the landmarks are determined, the image should be dis-
torted in a manner, that corresponding landmarks are aligned.
A straight forward method for morphing is scattered data
interpolation [25]. The landmarks, also called control points,
are moved to a new position, the new position of all interven-
ing pixels is interpolated based on the nearby control points.
More advanced morphing techniques take the correlation
between the landmarks into account. For example, Sederberg
et al. [26] propose a grid or mesh-based warping technique
called Free-Form Deformation (FFD), which was extended
by Lee et al. to multi-level FFD [27]. The whole image is
considered as a grid, which is deformed by the flow of the
landmarks. Another approach is field morphing introduced
by Beie and Neely [28], where grid lines are controlling
the metamorphosis of the image in the transformation. In
particular, for manual morphing this approach has advan-
tages, as the user can position lines instead of points. For
automatic morphing the lines can be derived from detected
landmarks. In the work of Schäfer et al. [29] the moving least
squares are minimized in order to estimate the optimal affine
transformation. This approach can be employed to optimize
different warping methods based on landmarks or lines. Choi
et al. proposes a morphing process by simulating the image
as a mass spring system [30]. Thus, each translated landmark
influences nearby pixels and landmarks.

Most state-of-the-art morphing algorithms, e.g., as used
for the morph-creation in [31]–[38], do not consider the
image as a grid, but apply a Delaunay triangulation on the
landmarks in order to determine non overlapping triangles,
as depicted in Fig. 3. Delaunay triangulations maximize the
minimum angle of each triangle in the triangulation and can
be calculated efficiently. Subsequently, the triangles of both
contributing images are distorted, rotated and shifted until an
alignment is achieved.

The first step in traditional approaches for creating a morph
between a pair of face images I0 and I1 is to define a
map φ from I0 to I1. The contribution of each subject to
the warping process is defined by an αw-value, whereas an
αw = 0 would be the landmark-position of the first subject,
αw = 1 the landmark-position of the second subject and an
αw between 0 and 1 any combination of both. The impact of
different αw-values on the resulting face morph can be seen
by analysing the first versus the last row of Fig. 4. One issue
that might occur are disocclusions which refers to regions in
the object space that are visible in I0, but disappear in I1
as described by Liao in [39]. For disocclusions in I0, the
map φ is typically undefined, for disocclusions in I1 it is
discontinuous. To obtain a more complete representation, one
can introduce a second map from I1 back to I0. Maintaining
consistency between the two maps during an optimization
process becomes quite expensive [39]. One approach solving
this issue is proposed by Wu et al. [40]. The images are
warped forward and backward in order to obtain a complete
mapping φ. In addition, to obtain a more natural warping,
the face images are projected into a 3D space and an energy
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FIGURE 4: Matrix of the two variables in a morphing process (blending and warping). This morph sequence was created using
dlib for landmark detection, Delaunay triangulation and linear affine transformation for warping and linear blending.

function is minimized to avoid ghost and blur artefacts. Seitz
et al. [41] also proposes a projection into 3D-space, in order
to consider perspective effects during the morphing process.
Another technique for morphing in 3D-space is given by
Yang et al. in [42]. In order to recover the face geometry, the
2D face image is projected on a pre-learned 3D face mask. In
particular, for variances in pose and expression this approach
promises a higher quality.

Further, some warping algorithms do not need previously
detected landmarks. Bichsel et al. [43] propose to employ
the Bayesian framework in order to determine the optimal
mapping function.

C. BLENDING
After the alignment of the two contributing images, the two
arranged textures are combined using blending, usually over
the entire image region. The most frequent way of blending
for face morph creation is linear blending, i.e. all colour

values at same pixel positions are combined in the same
manner. Similar to the warping process the contribution to
the blending of each image can be weighted by an αb-value,
e.g. αb = 0.5 for averaging. The impact of a changing αb-
value to the morphed image can be seen in Fig. 4 on the
vertical axis.

D. FURTHER APPROACHES

There are, however, some morphing algorithms, where a sub-
division into the steps described above is not feasible. In [44],
a morphing approach is proposed using generative morphing
to combine warping and blending. The resulting morphed
image is regenerated from small pieces of the source images.
Korshunova et al. [45] propose to train a Convolutional
Neural Network (CNN) to swap the face image of one subject
with the face of a second one. A huge disadvantage of this
method is, that a new network has to be trained for each
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subject.
Beside the morphing of samples in image domain, it is

possible to morph in feature domain, as e.g., shown in [46]
for minutiae sets and in [47] for iris-codes. It would be
feasible to also morph face representations in feature domain,
e.g., by averaging the feature vector of a CNN [48]. In
order to use the morphed feature vector in a face recognition
system, a face image can be reconstructed from the feature
domain, as shown in [49]. However, it is most likely, that
the reconstructed morphed face image only works for the
same feature space, meaning an attack against the same face
recognition system, as used for creation of the morphed
feature vector.

E. POST-PROCESSING
After the creation of the morphed face image, the image
might be further processed and altered. In order to obscure
the image manipulation, the image quality might be enhanced
or reduced on purpose.

In particular, the automated creation of morphed face
images can lead to morphing artefacts. Missing or misplaced
landmarks might cause shadow or ghost artefacts, as they
can be seen in Fig. 5 (a). This issue can be tackled by
swapping the facial area of the morphed face image with an
adapted outer area of one of the subjects [35], [50]. Artefacts
in the hair region can be concealed by an interpolation of
the hair region as proposed by Weng et al. [51]. Further,
unnatural colour gradients and edges might occur, due to
inappropriate interpolation methods, which can be removed
by blurring or sharpening. Due to the averaging during the
blending process, the histograms of the colour values might
get narrow. This artefact can be avoided by an adaptation of
the colour histogram, e.g. by using histogram equalization
or an adaption of lumination, in order to achieve realistic
histogram shapes. Examples for sharpening and histogram
equalization are depicted in Fig. 5 (b) and (c).

In addition to the removal or reduction of morphing arte-
facts, further post-processing steps might be carried out,
which can sometimes be unavoidable, i.e., printing and scan-
ning of the image, in order to use it as a passport photo. Even
with high-end photo printer in the processing pipeline, some
information contained in the face image signal will always be
lost in the process, masking or reducing morphing artefacts,
as described in [36]. Once the image has been submitted to a
passport application office, it has to be scanned again. Again,
information can be lost, helping to hide or reduce erroneous
artefacts.

Further, information from or trace of the morphing process
can be lost when the image format is changed. By storing
the image in a lossy format, high-frequency information
is eliminated from the signal permanently. If the image is
loaded and stored multiple times as part of the process chain,
the accumulated compression error can significantly degrade
the image quality.

(a) original morph (b) sharpness (c) hist. equlization

FIGURE 5: Examples of different post-processing methods
likely to be applied by an attacker to conceal the morphing
process.

III. QUALITY ASSESSMENT OF FACE MORPHS
Generally speaking, automatically generated databases of
morphed face images are expected to differ in quality from
real world attack scenarios. Automatically generated morphs
might reveal artefacts, which can be avoided when the at-
tacker is producing only one single high quality morph be-
tween himself and his accomplice and manually optimising
the resulting image. When aiming to develop a robust detec-
tion algorithm on such an automatically generated database,
it is crucial to assure high quality of morphed face images.
Otherwise, it is likely that a trained classifier might strongly
rely on these specific artefacts.

As described by Scherhag et al. [52] it is difficult to define
objective metrics for quality assessment of face morphs due
to the large number of contributing factors. Basically, the
output image of the algorithms can be evaluated according
to the criteria summarized in the following subsections.

A. IMAGE QUALITY
Each processing step affects the quality of an image. In
particular, factors such as image size, sharpness, colour satu-
ration, aspect ratio and the overall natural appearance of the
face image should be influenced as little as possible by the
morphing algorithm. The minimum requirements for these
factors can be found in the specifications for passport images
of the ICAO [13]. Thus, for example, the minimum resolution
of the facial image is set to an inter eye distance of 90 pixels.
If a picture deviates from these minimum requirements, it
is no longer accepted in countries that comply with ICAO
recommendations to produce a passport or other machine
readable travel documents (e.g., citizen cards). Furthermore,
the image quality may be affected by compression of the
image. In the case of lossy compression, the storage of high-
frequency information is deliberately omitted in order to
increase the compression rate. At high compression rates,
however, this can lead to elimination of details and compres-
sion artefacts in the image. Since poor image quality usually
results from lack of information, for example, too few pixels
or too little high-frequency information, it is often difficult to
improve the quality later.
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(a) BRISQUE: 21 (b) BRISQUE: 29 (c) BRISQUE: 50

FIGURE 6: Examples of BRISQUE scores for quality es-
timation (low values indicate high image quality). The
BRISQUE score of bona fide (a) and uncompressed morphed
images (b) are close to each other, the score of a JPEG
compressed morphed image (c) is noticeably higher.

Quality metrics for images can be used to objectively
evaluate the output images based on quality measures derived
from the signal. Since no reference image is available in the
evaluation of the output image, the classical image quality
determination methods, such as signal-to-noise ratio or mean
square deviation, are not feasible. For the selection of the
quality metric, the quality properties to be considered have to
be determined. The metric proposed by Farias and Mitra [53]
evaluates the occurrence of image artefacts, such as block
artefacts, blur or noise. If the authentic appearance of a
submitted passport image is to be evaluated for the human
observer, then metrics are recommended that take into ac-
count the human perception, i.e., factors like sharpness [54]
or perceptual quality [55] of the image. Another option is the
automated assessment of the naturalness of the image using
some no-reference image quality metrics, e.g., Blind / Refer-
enceless Image Spatial Quality Evaluator (BRISQUE) [56].
Fig. 6 shows examples of BRISQUE values where low values
indicated high quality and vice versa. On the left a non-
morphed face image is shown, the associated BRISQUE
value of 21 corresponds to a high quality. The middle image
is a high quality morph without compression, the BRISQUE
value is slightly worse. The image on the right shows the
same morph with JPEG compression. Even if no artefacts
are visible, the BRISQUE value is strongly influenced by the
compression.

B. MORPHING ARTEFACTS

Morphing artefacts as illustrated in Fig. 7 (right) can appear
in the image during the multi-step morph process. Within
landmark-based methods artefacts are usually caused by the
absence or misplacement of landmarks. As a result, the
corresponding image areas are not transformed correctly so
that they do not completely overlap. This creates shadow-
like, semi-transparent areas, so-called ghost artefacts. Fig. 7
depicts a manual morphed face image and an automatically
generated morph comprising said artefacts. On the right,
one can see a morphed facial image with poorly placed

FIGURE 7: Comparison between a manually created high
quality (left) and an automatically created low quality face
morph (right).

landmarks. Especially, in the region of the neck, but also
on the hair and ears, strong ghost artefacts can be observed.
The iris proved to be particularly susceptible to artefacts
because algorithms for automatic landmark determination are
usually not able to provide the iris with correct landmarks.
As a workaround, the located left and right eye corner could
approximate the iris center half way between the two corners.
Furthermore, shadow effects may occur in facial hair (e.g.,
beards and eyelashes), in differently pigmented areas (e.g.,
liver spots, tattoos), or by glasses and jewellery. Morph
artefacts, which are caused by landmark-based morphing,
can usually be remedied by manual post-processing in image
processing programs as shown by Ferrara et al. [6]. An addi-
tional cause of artefacts may be the differences in the source
images or inappropriate interpolation methods, which can
lead to unnatural colour gradients and overly hard edges in
the target images. Further artefacts induced by morphing may
be low contrast and blur of the images, which may result from
the averaging and interpolation of pixel positions and colour
values. Another type of morph artefact may be generated
using machine learning to create the morphed facial images.
Due to the opacity of the process of the training algorithms,
the errors might be difficult to narrow down or classify.
Some of the potential mistakes are missing or deformed facial
features, blurred areas and ghost artefacts. The emergence
of such artefacts can be reduced by appropriate learning
methods and a large number of training data. Due to the high
agility of the relevant research area, a rapid improvement
in the quality of morph images that can be achieved by the
application of machine learning can also be expected.

C. PLAUSIBILITY OF FACE MORPHS
The quality of a morph can also be assessed by how plausible
the image appears as a facial image. Here, on the one hand,
the natural appearance of the produced image plays a role,
and on the other hand, the similarity of the morph with
the contributing data subject. The natural appearance can
be adversely affected by strong artefacts. In addition, the
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TABLE 1: Overview of publicly available morphing tools.
Developer Software Platform Method Automatic Manual Effort Required Skills Parameters Expected Quality

Commercial Software

Morpheus Photo Morpher Win 7 / MacOS landmarks no medium
positioning

of landmarks α
no outer region

minor shadow artefacts

DebugMode WinMorph Win 7 probably landmarks no medium
positioning

of landmarks α
minor shadow artefacts
issues in hair regions

Abrasoft FantaMorph
Win 7-10
MacOS landmarks landmark detection low no α

high quality for
manual morphs

minor shadow artefacts

Luxand Inc. FaceMorpher Win 7-10 landmarks landmark detection low no α
shadow artefacts

blurry

Adobe
After Effects
+ RE:flex

Win 7-10
MacOS lines no very high

operate Adobe
After Effects αb, αw

very high quality
minor shadow artefacts

Adobe
Photoshop
+ Morph
Animation

Win 7-10
MacOS landmarks rough shape high

operate Adobe
Photoshop αb, αw

high quality
minor shadow artefacts

PiVi & Co. MixBooth Android / iOS swapping no low no no
low resolution

unrealistic morphs

Moment Media FaceFusion iOS landmarks morph process very low no no
limited by

landmark detection
issues e.g., for pupils

Open Source Software

The blender project blender
Win 7-10
MacOS
Linux

manual mesh warping via plugins high operate blender inf.
nearly faultless

(manual morphing)

OpenCV team OpenCV
Win 7-10
MacOS
Linux

landmarks
+ triangulation

+ warping
full automatic implementation

Python
commandline

OpenCV
inf.

limited by
landmark detection

issues e.g., for pupils

Alyssa Quek Face Morpher MacOS / Linux
landmarks

+ triangulation
+ warping

full automatic low
Python

commandline α, blur
good quality

no outer region

The GIMP-Team GIMP + GAP
Win 7-10
MacOS
Linux

landmarks
+ triangulation

+ warping
automation via API medium (if manual)

positioning
of landmarks
(if manual)

α
good quality

easy to postprocess

Atsushi Nitanda VAEGAN
Theano

+ Python DNN full automatic very low
Theano

+ Python no
deep learning artefacts

low resolution

Michael Gourlay gtkmorph
Win 7-10
MacOS
Linux

landmarks
+ mesh warping no medium

positioning
of landmarks α

very detailed
partly too sharp

similarity of the contributing subjects, e.g., with respect to
gender, ethnicity or age group, influences the plausibility of
the resulting morph. e.g., the morph depicted in Fig.1 appears
less plausible since the age gap between the two contributing
subjects is more than 20 years. Thus, it is recommended
to select similar subjects as a basis. An approach for an
automatic selection of suitable subjects is given in [57].

D. HUMAN PERCEPTION OF MORPHED FACE IMAGES

The issue of morphed face images in face comparison scenar-
ios (e.g., border control) does not only affect automated face
recognition systems, but also human observers. In general,
humans are rather weak in recognizing unfamiliar faces as
reported by Megreya and Burton [58] and Bruce et al. [59],
independent of comparing two face images or a face image to
a live data subject [60]–[62]. In particular, for border control
scenarios, it is of relevance, that the difficulty to successfully
verify a subject against its reference face image increases
with the age of the taken image [63]. Depending on the
individual, the face comparison capabilities vary. Hereby it
is not relevant, if the human examiner is a border guard
or an untrained student, the ratio of false negative to false
positive remains the same [64], thus, it is uncertain whether
a human expert can effectively detect morphed face images
unless he is explicitly trained on morphing attacks. Recently,

it has been shown that training makes a huge difference for
a human observer. In [65], Robertson et al. showed, that
without the knowledge of the morphing issues, a human
observer would accept 68% of morphed images created with
an α factor of 0.5. After a briefing, the false acceptance
rate of morphed images dropped as low as 21%. Further,
examiners that are better in distinguishing faces have a higher
success chance to detected morphed face image [11]. Another
parameter to consider is the weight (α) of the two subjects
contributing to the morphed face image which represents
a key factor in morphing attack scenario [66]. The role of
the two subjects could be asymmetric, since the accomplice
has to fool a human examiner, e.g., at the passport applica-
tion office, and the criminal must fool the face verification
algorithm, e.g., at an ABC gate. A higher weight of the
accomplice is expected to hamper a successful detection
of the morphed face image by a human examiner during
presentation at enrolment, e.g., at the time of the passport
issuance.

IV. MORPHING SOFTWARE

Table 1 lists available proprietary/open source morphing
software and their properties. Applications were considered
for the common desktop operating systems (Windows, Linux,
Mac) and mobile operating systems (Android, iOS). Ex-
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cluded from the list are web services available on the internet.
These web services provide an easy way to manually create
morphed images. However, firstly, an automated generation
of face morphs is difficult and secondly, it is unclear how
the uploaded images are processed and stored, which would
make it impossible for researchers to upload face images of
their models/volunteers and to comply with privacy regula-
tions at the same point in time.

In order to enable well-founded and efficient experiments,
it is generally advisable to use applications that can produce
morphs in an automated manner in good quality without
manual post-processing. Open source algorithms have the ad-
vantage that they can be much better automated and adapted
to the needs than commercial applications. For commercial
programs, automation is generally more difficult to achieve.

A. MORPHING MORE THAN TWO FACE IMAGES
The procedures described above for morphing two face im-
ages are easily extended to any number of source images.
The contributing images may be weighted similarly to the
α-factor, each image having its own factor such that the
sum of the factors is 1. The more images included in an
equally weighted morph, the smaller the weights will be. The
more subjects are contributing to the image, the higher is the
risk of quality issues described in Sect. III. Furthermore, the
morphing of more than two images can also be done itera-
tively in pairs, i.e. the morphs are used as source images for
the next morph process. Generally, no difference is visually
discernible between the morphs created by both methods, i.e.,
the difference between artefacts resulting from a direct or
iterative morphing process is below the perception threshold
of a human observer. For this reason, the representation of
sample images is omitted.

V. METRICS FOR MORPHING ATTACK EVALUATIONS
Standardized metrics are vital to enable direct benchmarks
and comparative assessments of proposed methods. Regard-
ing the topic of face morphing attacks efforts to define evalu-
ation metrics for morphing attack detection and vulnerability
analysis have already been made, e.g., in [33], [52]. Metrics
suggested by Scherhag et al. [52] are briefly summarized in
the following subsections.

A. VULNERABILITY ASSESSMENT
In their well-established guidelines Mansfield and Way-
man [67] recommended that all comparisons in a biometric
system’s evaluation should be uncorrelated. That is, the sam-
ples compared to the morphed face images should not be the
same as the ones used for the morphing process since such a
comparison would ignore the natural biometric variance.

Regarding evaluation metrics the Impostor Attack Presen-
tation Match Rate (IAPMR) introduced in ISO/IEC 30107-3
on Presentation Attack Detection evaluation [9] represents a
standardized metric for attack success evaluation:

IAPMR: in a full-system evaluation of a verification
system, the proportion of impostor attack presen-

tations using the same Presentation Attack Instru-
ment (PAI) species in which the target reference is
matched.

However, for the evaluation of face morphing attacks, the
aforementioned IAPMR metric presents some drawbacks, as
a morphing attack might only be considered successful if
all contributing subjects are successfully matched against the
morphed face image. The comparison of a morphed sample
to another independent sample of one contributing subject
is referred to as mated morph comparison. Motivated by
the ISO/IEC 30107-3 [9], the impact of a morphing attack
in a full-system evaluation is referred to as Mated Morph
Presentation Match Rate (MMPMR) as introduced in [52].

As the morphing attack succeeds if all contributing sub-
jects are verified successfully, only the minimum (for similar-
ity scores) or maximum (for dissimilarity scores) of all mated
morph comparisons of one morphed sample are of interest.
The MMPMR for similarity scores is defined as:

MMPMR =
1

M
·
M∑
m=1

{[
min

n=1,...,Nm

Snm

]
> τ

}
, (1)

where τ is the decision threshold, Snm is the mated morph
comparison score of the n-th subject of morph m, M is
the total number of morphed images and Nm the total
number of subjects constituting to morph m. Decisions of
human examiners could be integrated to the above equation
to evaluate a scenario with human inspection in the loop.
Further, Scherhag et al. [52] proposed adaptations of the
metric for evaluations where multiple samples of one subject
are compared to one morphed face image.
MMPMR, as well as IAPMR, are directly dependent on

the threshold τ of the biometric system. In order to achieve a
more generalized metric in relation to the False Non-Match
Rate (FNMR) of the system, Scherhag et al. propose to
compute the difference between 1 − FNMR and MMPMR
or IAPMR, respectively. The Relative Morph Match Rate
(RMMR) is defined as follows:

RMMR(τ) = 1 + (MMPMR(τ)− (1− FNMR(τ)))

= 1 + (MMPMR(τ)− TMR(τ)).
(2)

Different relevant examples for combinations of score
distributions, thresholds and resulting RMMR values are
depicted in Fig. 8.

Gomez-Barrero et al. [68], [69] proposed a theoretical
framework to predict the vulnerability of biometric systems
to attacks based on morphed biometric samples. Further,
key factors which take a major influence on a system’s
vulnerability to such attacks have been identified, e.g., the
shape of mated (genuine) and non-mated (impostor) score
distributions or the False Match Rate (FMR) the system is
operated at.

B. DETECTION PERFORMANCE REPORTING
Given multiple procedures for preparing morphed images
and/ or multiple morph detectors these can be benchmarked
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FIGURE 8: Behaviour of RMMR for different decision thresholds and score distributions.

employing metrics defined in [9], in particular, Attack Pre-
sentation Classification Error Rate (APCER) and Bona
Fide Presentation Classification Error Rate (BPCER). The
APCER is defined as the proportion of attack presenta-
tions using the same presentation attack instrument species
incorrectly classified as bona fide presentations in a spe-
cific scenario. The BPCER is defined as the proportion
of bona fide presentations incorrectly classified as presenta-
tion attacks in a specific scenario. Further, the BPCER-10
and BPCER-20 representing the operation points related
to an APCER of 10% and 5%, respectively, can be used
to rank the tested morphing attack detection mechanisms.
Additionally, it is recommend to plot the BPCER over the
APCER in a Detection Error Tradeoff (DET) curve. In
order to achieve reproducible and comparable performance
evaluations of morphing attack detection systems, a common
comprehension of the training and testing methodology is
needed. In general, the standards defined in ISO/IEC 19795-1
on biometric performance testing and reporting [70] should
be followed, e.g., a disjoint subdivision of the data into
training and testing set. In particular a strict separation of
the morphed samples with respect to the originating subjects
is important, in order to avoid an unrealistic high detection
performance. It should be noted, that one morphed sample
is related to at least two subjects and each subject might
contribute to several morphing samples.

VI. FACE MORPHING ATTACK DETECTION
Proposed approaches can be coarsely categorized with re-
spect to the considered morphing attack detection scenario.
The two classes of detection methods, i.e., no-reference and
differential, are described in the following subsection. Subse-
quently, the state-of-the-art with respect to morph detection
algorithms is surveyed.

A. DETECTION SCENARIOS
Two automated morph detection scenarios depicted in Fig. 9
can be distinguished:

• No-reference morphing attack detection: the detector
processes a single image, e.g., an off-line authenticity
check of an electronic travel document (this scenario
is also referred to as single image morphing attack
detection or forensic morphing attack detection);

Morph
detection

Pre-processing and
feature extraction

Morph
(reject)

Bona fide
(accept)

(a) no-reference morphing attack detection

Morph
detection

Pre-processing and
feature extraction

Morph
(reject)

Bona fide
(accept)

Pre-processing and
feature extraction

trusted live
capture

(b) differential morphing attack detection

FIGURE 9: Morphing attack detection scenarios.

• Differential morphing attack detection: a trusted live
capture from an authentication attempt serves as addi-
tional source of information for the morph detector, e.g.,
during authentication at an ABC gate (this scenario is
also referred to as image pair-based morphing attack
detection). Note that all information extracted by no-
reference morph detectors might as well be leveraged
within this scenario [38].

B. STATE-OF-THE-ART

In the past years, numerous approaches to automated face
morphing attack detection have been proposed. Published
methods and their properties are summarized in Table 2. In
some works, more than one system was presented, in such
cases only those approaches, which were reported to reveal
best morphing attack detection performance are listed. The
majority of works assume the challenging no-reference sce-
nario while some implement a differential morphing attack
detection. Despite promising results reported in many works,
a reliable detection of morphed face images still represents
an open research challenge. It is important to note that the
generalizability/robustness of published approaches has not
been shown. So far, there are no publicly available large-
scale databases of bona fide and morphed face images and no
publicly available morph detection algorithms, which allow
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for a comprehensive experimental evaluation. Hence, the
vast majority of methods has been mostly trained and tested
on different in-house databases. In addition, face morph
detection methods are mostly trained and tested on a single
database using a single morph generation algorithm. Further,
the likely appliance of image post-processing techniques by
an attacker, e.g., image sharpening, is neglected in most
works. Due to these facts, a comparison of published ap-
proaches in terms of reported detection performance would
potentially be misleading and is purposely avoided in this
survey. However, planned benchmark tests, e.g., by the Na-
tional Institute of Standards and Technology (NIST) [71], are
expected to facilitate a meaningful quantitative comparison
of published approaches in the near future.

1) No-reference morphing attack detection
Several researchers have suggested the use of gen-
eral purpose image descriptors, e.g., Local Binary Pat-
terns (LBP) [102] or Binarized Statistical Image Features
(BSIF) [103], which have been employed widely for bio-
metric recognition. Ramachandra et al. [14] proposed a no-
reference detection system based on a Support Vector Ma-
chine (SVM) trained on extracted BSIF-features of gray-
scale images. For training and evaluation of the SVMs an
in-house database of morphed face images was created. On a
derivate version of the same database, Scherhag et al. [36] in-
vestigated the accuracy of morphing detection on printed and
scanned images employing the proposed algorithm. Further,
a Probabilistic Collaborative Representation Classifier (Pro-
CRC) [104] trained on LBP-feature extracted from the colour
channels was proposed in [72]. As database an in-house
database based on FRGCv2 [73] was used. The authors focus
on the differences between morphed and averaged images
in the evaluation. In [48] the suitability of LBP features for
the detection of morphs generated by Generative Adversarial
Networks (GANs) was tested.

The features extracted by texture descriptors can be further
processed. A more complex method for morphing detection
is proposed in [75], [76], where a Vietoris–Rips complex is
built of the responses of uniform LBP extractors on the im-
age. In [100], a high detection performance was shown for a
linear SVM trained on high-dimensional LBP features [105]
extracted from the FEI database [?]. Agarwal et al. [74]
propose to train an SVM with Weighted Local Magnitude
Pattern. Similar to LBP, the proposed descriptor encodes
the differences between a center pixel and it’s neighbors.
However, instead of binarizing them, it assigns the weights
inversely in proportion to the difference from the center pixel.
Depending on the feature representation of texture descrip-
tors the inputs of classifiers have to be adapted. E.g., for
Scale-Invariant Feature Transform (SIFT) [106] the number
of extracted keypoints has been shown to be suitable for the
task of morph detection [38], [78]. A score-level fusion of
multiple image descriptors might even improve the detection
rate [79]. Therefore, LBP, BSIF, SIFT, Speeded Up Robust
Features (SURF) [107], Histogram of Oriented Gradients

(HOG) [108] and the deep features of Openface [109] were
fused and evaluated in [79].

In particular, in the no-reference scenario, classifiers may
overfit to distinct micro texture features. These can be
dataset-specific features, which are altered or introduced by
the applied morphing process. In particular the combination
of features reflecting different information, e.g., LBP and
SIFT, leads to improvements. It has been shown that the per-
formance of morph detectors based on general purpose image
descriptors might significantly decrease if training and test
images stem from a different source, i.e., face database [37],
[82]. In order to adapt the no-reference general purpose
image descriptors a differential scenario, differences between
feature vectors can (additionally) be employed [38].

During the morphing process, not only the texture, but the
whole signal of the image is manipulated. Thus, a further
detection approach is to analyze the changes in noise pat-
terns, e.g., Photo Response Non-Uniformity (PRNU) [84].
Therefore, the PRNU-patterns, that are originating from the
camera and which are distinct not only for each model but
for each single camera, are extracted from a face image, the
discrete Fourier magnitudes are computed. Subsequently, the
mean and variance are derived from the resulting histogram.
A very similar approach was presented in [86]. Recently,
an improved version of this scheme based on PRNU vari-
ance analysis across image blocks was proposed in [85].
Morphing attack detection methods based on continuous
image degradation have been proposed in [78], [110], [111].
The basic idea behind these methods is to continuously
degrade the image quality, e.g., by using JPEG compres-
sion, to create multiple artificial self-references of a face
image. The distances from these references to the original
image are then analysed for morph detection. Ramachandra
et al. [89] proposes the analysis of high frequencies in
grayscale images. Therefore, the images are converted to
grayscale according their luminance, a steerable pyramid is
build and a Collaborative Representation Classifier (CRC)
is trained on the high frequencies. The employed database
was printed and scanned, but no further post-processing was
tested. An alternative to handcrafted feature extractors is
to employ statistical machine learning on the unprocessed
image in order to distinguish between morphed and bona
fide images. Ramachandra et al. [94] proposed to adapt
two CNNs (VGG19 [112] and AlexNet [113]) by transfer-
learning and combine the intermediate features to train a
CRC. In [35], three CNNs, namely VGG19, AlexNet and
GoogLeNet [114], are benchmarked as pre-trained and non-
pre-trained models regarding their morph detection capabili-
ties. Again, with these methods there is a potential problem of
overfitting. In particular, resulting deep classifiers may favour
image locations where artefacts, e.g., shadows around the iris
region, are likely to appear due to an imperfect automated
morph creation process, as described in Sect. III-B. As an
attempt to avoid overfitting, Seibold et al. [95] trained a
VGG19-net on a set of diverse images with two different
databases, morphing algorithms and post-processings (mo-
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TABLE 2: Overview of published morph detection algorithms.
Publication Approach Scenario Morph Algorithms Source Face Database Post-Processing Remarks
[14] BSIF + SVM no-reference GIMP/GAP in-house - -
[36] BSIF + SVM no-reference GIMP/GAP in-house print and scan fixed database of [14]
[72] multi-channel-LBP + Pro-CRC no-reference OpenCV FRGCv2 [73] print and scan -
[74] WLMP + SVM no-reference Snapchat in-house - -
[75], [76] ULBP + RIPS + KNN no-reference [32] Utrecht [77] - -

[78] image degradation no-reference
triangulation
+ blending

(+ swapping)
in-house, Utrecht [77] - -

[38] BSIF + SVM
no-reference,
differential

triangulation
+ blending FRGCv2 [73] - -

[79]
general purpose image descriptors
+ score-level fusion no-reference

triangulation
+ blending FRGCv2 [73] - -

[37] HOG + SVM no-reference
triangulation
+ blending

FRGCv2 [73],
FERET [80],
ARface [81]

-
cross database

performance evaluation

[82] LBP + SVM no-reference
triangulation
+ blending FRGCv2 [73], FERET [80] -

cross database
performance evaluation

[48] LBP + SVM no-reference MorGan [48] CelebA [83] - -

[84], [85] PRNU analysis no-reference
triangulation
+ blending FRGCv2 [73]

hist. equalization,
scaling, sharpening -

[86] SPN analysis no-reference
triangulation
+ blending

(+ swapping)
Utrecht [77], FEI [87] - -

[32] double-compression artefacts no-reference
triangulation
+ blending

(+ swapping)
Utrecht [77], FEI [87] - -

[33] double-compression artefacts no-reference [32] Utrecht [77], FEI [87] - -

[88] reflection analysis no-reference
triangulation
+ blending

(+ swapping)
in-house - -

[89]
luminance component
+steerable pyramid + ProCRC no-reference unclear [72] extended print and scan -

[90] landmark angles differential OpenCV ARface [81] - -
[91] Demorphing differential GIMP/GAP ARface [81] - -

[92] Demorphing differential GIMP/GAP
ARface [81],

CAS-PEAL-R1 [93] -
CAS-PEAL-R1

contains images with
pose variations

[94] VGG19 + AlexNet + ProCRC no-reference [36] in-house print and scan -

[95] VGG19 no-reference
triangulation
+ blending

(+ swapping)

BU-4DFE [96], CFD [97],
FEI [87], FERET [80],
PUT [98], scFace [99],
Utrecht [77], in-house

motion blur, Gaussian blur,
salt-and-pepper noise,

Gaussian noise

trained on all
combinations

(no unseen attack classes)

[100] high-dim. LBP + SVM no-reference
triangulation
+ blending
+ swapping

Multi-PIE [101] - -

tion blur, Gaussian blur, salt-and-pepper noise, Gaussian
noise). To avoid a focusing of the CNN on specific regions,
images with specific regions covered (eyes, nose, mouth)
were added to the training set. As the CNN was trained
on all kind of databases, morphing algorithms and post-
processings a statement about the resulting robustness of the
classifier is difficult. Wandzik et al. [100] proposed to employ
pre-trained face recognition networks, e.g. VGG-Face [4] or
FaceNet [3], for morphing attack detection. The high-level
features generated by the networks are classified using a
linear SVM.

Focusing on the no-reference scenario diverse approaches
related to media forensics have been presented. In differ-
ent works, the detection of JPEG double-compression arte-
facts has been suggested for the purpose of morph detec-
tion [32], [33]. However, the presence of such artefacts im-
plies a strong assumption on the image format of face images
used for morph generation as well as the resulting morphed
face image. The ICAO suggests face image data to be stored
in accordance with the specifications established by the Inter-

national Standard ISO/IEC 19794-5 [115]. More specifically,
the ICAO requires face images to be stored in electronic
travel documents at an average compressed sizes of 15kB to
20kB in JPEG or JPEG 2000 format [13]. However, JPEG
2000 is the de-facto-standard for electronic travel documents,
as it maintains a higher quality when compressing face
images to 15 kB. Hence, depending on the image size and
the employed compression algorithm the detection of JPEG
double-compression artefacts might not be feasible. In [88],
a morph detection method based on reflection analysis in
face images is presented. The lightning direction is estimated
based on reflections detected in the eyes of a potentially
morphed image. Subsequently, reflections on the nose of the
face are analysed. However, ISO/IEC standard requires hot
spots and specular reflections to be absent in face images
used in electronic travel documents. In particular, diffused
lighting, multiple balanced sources or other lighting methods
shall be used, i.e., a single bare “point” light source like a
camera mounted flash is not acceptable for imaging [115].
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2) Differential morphing attack detection
Morphing detection algorithms based on general purpose
image descriptors, signal or quality analysis are mostly no-
reference algorithms, but can be adapted to differential mor-
phing attack detection scenarios. However, there are some
algorithms, that can solely be used in differential scenarios,
as they require a trusted live capture. In [90], a morph
detection algorithm based on landmark positions and angles
is introduced. Therefore, the landmarks between both, the
passport image and the trusted live capture are determined,
the angle between all combinations of landmarks per image
are computed and compared over both images. Due to the
high intra-class variance of landmarks, the detection perfor-
mance of this algorithm is rather moderate.

Another differential morph detection method referred to
as de-morphing was proposed by Ferrara et al. [91]. In this
approach a trusted live capture is aligned to a potential morph
and “subtracted” from it in the image domain by applying
a reverse morphing operation. The resulting image is then
compared against the trusted live capture. The assumption is,
that, if two subjects are morphed into one image, and one of
the subjects is subtracted, the second subject remains. If there
is only one subject in the image, this subject will remain after
the subtraction. Thus, a morph is detected if the biometric
decision changes from “accept” to “reject” when using the
de-morphed image as reference. Robustness of de-morphing
against slight face pose variations has been confirmed in [92].
Nevertheless, the authors indicate that in an ABC scenario the
performance of de-morphing might degrade due to potential
variations of quality and environmental conditions.

VII. ISSUES AND CHALLENGES
Several open issues and challenges exist in research related
to face morphing and face morphing attack detection. The
most relevant issues and challenges, which have already been
pointed out throughout this survey, can be briefly summa-
rized as follows:

• Quality: the automated generation of high-quality face
morphs remains a challenging issue and of utmost
importance in order to enable statistically significant
testing of developed morphing attack detection methods
under realistic conditions, see Sect. III.

• Comparability/benchmarks: the lack of publicly avail-
able large-scale databases comprising bona fide as well
as morphed face images and open-source face morphing
attack detection software prevents from a meaningful
comparative benchmark of the current state-of-the-art in
this field, see Sect. V.

• Result reporting: while first efforts have been made
to apply standardized metrics for reporting the perfor-
mance of morphing attack detection mechanisms equiv-
alent measures for the vulnerability of face recogni-
tion systems w.r.t morphing attacks are non-existent;
however, these would be vital in order to enable an
unambiguous comparisons of proposed approaches, see
Sect. V.

• Over-fitting/robustness analysis: like any other image-
based classification task, approaches to morphing attack
detection are prone to overfitting, i.e., rigorous eval-
uations including face morphs from unseen databases
created by unseen morphing techniques are necessary,
see Sect. VI.

• Print-scan databases: to simulate real-world scenarios
where potentially morphed portrait images are printed
and scanned, publicly available large-scale databases of
printed and scanned bona fide and morphed face images
are required, see Sect. VI.

VIII. CONCLUSION
This survey provides a comprehensive overview of published
literature in the field of (face) image morphing and face
morphing attack detection as well as a detailed discussion
of open issues and challenges. The research in this important
field is only in its infancy while not being limited to face
recognition systems. The feasibility of morphing biometric
samples has also been shown for other biometric character-
istics, e.g. fingerprint [46], [116] or iris [47], which might
as well be morphed in feature domain. The possibility of
morphing biometric features and subsequently reconstructing
a biometric sample from morphed feature vectors underlines
the importance of data protection mechanisms, i.e. biomet-
ric template protection [117], [118] or conventional crypto-
graphic techniques [119], [120]. Similar to face, for other
characteristics certain aspects require more in-depth analy-
sis, e.g., biometric quality estimation of (morphed) finger-
print [121], [122] or iris samples [123], [124], respectively.
The reported face image morphing attack detection accuracy
is yet not reflecting generalization to datasets incorporating
the real world variety of capture conditions. This will change,
once benchmark portals such as the NIST Face Recognition
Vendor Test (FRVT) MORPH competition [71] are estab-
lished. Nevertheless, robust algorithms must also anticipate
the large variety of image post-processing as well as printing
and scanning technology that could be used in the govern-
mental procedures for the application of electronic travel
documents. Morphing attack detection mechanisms that are
robust against all those factors, will require a significant
amount of future research.
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