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A B S T R A C T

Nowadays, biometrics is revolutionizing the on-line payment system,
creating an extra layer of security as part of a two-factor authenti-
cation process. Especially, voice biometric authentication is attrac-
tive to mobile banking and payment, since it provides consistency
across multiple channels, works in real-time and is widely accepted
by end-users. However, biometric data is highly sensitive. Hence,
verification systems must protect biometric templates in order to pre-
vent any disclosure of sensitive information about the user. In this
thesis, a system architecture for protecting of biometric templates in
terms of voice recognition is proposed. Using properties of homomor-
phic encryption, the system provides equal biometric performance as
unprotected systems, thereby also fulfilling the requirements of the
ISO/IEC 24745 standard on biometric information protection. Addi-
tionally, data of system vendors, such as expensively trained models,
is handled in the same secure manner, assuring the needs of biometric
system users and providers.

Z U S A M M E N FA S S U N G

Heutzutage werden Onlinebezahlsysteme durch die Verwendung
von Biometrie revolutioniert, welche als zusätzliche Sicherheitsebe-
ne einer Zwei-Faktor-Authentifizierung dient. Vor allem die Verwen-
dung der Stimme als biometrisches Merkmal ist für mobile Banking-
und Bezahlunganwendungen attraktiv, da sie über verschiedenste
Kanäle verwendet werden kann, echtzeitfähig ist und auf hohe Ak-
zeptanz seitens der Anwender stößt. Da biometrische Daten hoch
sensitive Informationen über den Anwender enthalten, muss ein bio-
metrisches System diese Daten vor jedlichem unberechtigtem Zugriff
schützen. In dieser Thesis wird eine Architektur zum Schutz bio-
metrischer Templates im Rahmen der Sprechererkennung vorgestellt.
Durch die Verwendung von Homomorphic-Encryption, bietet das
System die gleiche Performanz wie ungeschützte Systeme und erfüllt
dabei die Vorgaben des ISO/IEC 24745 Standard zum Schutz biome-
trischer Informationen. Auf die gleiche Weise werden die Daten der
Anbieter Systeme, wie deren trainierte Modelle, verarbeitet und so-
mit sichergestellt, dass sämtliche Anforderungen an das biometrische
System sowohl der Anwender, als auch der Anbieter erfüllt werden.
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1
I N T R O D U C T I O N

Secure authentication systems are crucial e.g., mobile banking and
payment solutions. Therefore, biometrics provides security and user
convenience at hand.

1.1 motivation

Data privacy and information security are two relevant terms used
in context of data. Nowadays, with the concept of digital data, both
are gaining in importance. Data security is impersonal and basically
dealing with the security of the data (personal or non-personal) from
accessibility of unauthorized users in general, data privacy is personal
and used for protecting right respect to the processing of personal
data. According to the definition in [1], personal data means any in-
formation relating to an identified or identifiable natural person, that
makes it relevant for biometric systems in terms of collection, process-
ing and use of data.

The term biometrics refers to "automated recognition of individuals
based on their behavioural and biological characteristics" [2]. Bio-
metric characteristics, such as fingerprints, face, voice, iris etc., rep-
resented by a biometric sample, are extracted then to biometric tem-
plates in order to be used for the biometric verification or identifica-
tion process. For instance, in terms of security of electronic payments,
biometric recognition is consumer-friendly, works in real-time and ad-
dresses the Payment Services Directive (PSD2) [3] requirement for more
accurate validation, maximizing the privacy of personal data.

However, the above mentioned characteristics are irreplaceable in
case of leaked information. This fact makes biometric systems vul-
nerable to any kind of attacks, that decrease the level of security of
the biometric systems and disclose very sensitive information about
the subjects.

In order to guarantee data privacy, biometric template protection
schemes need to fulfil major requirements of biometric information
protection [4]. However, the biometric templates cannot be encrypted
with conventional encryption techniques, because the biometric sam-
ples captured from the same subject are not identical due to the num-
ber of variabilities influencing the sample. The most emerging topic
in terms of security is the homomorphic encryption, where public
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key cryptography is used. A similarity score is computed in the en-
crypted domain, so neither client nor server can learn any additional
information about the other side template.

Placing focus on speaker recognition, the area of biometric template
protection is an emerging topic. For the purpose of transferring
data privacy methods from face and signature recognition to speaker
recognition, recently proposed biometric information protection sche-
mes are examined on i-vector speaker recognition approaches.
Thereby, the focus of this work is initially put on comparing of i-
vectors by two-covariance comparator in the encrypted domain.

1.2 research questions

The purpose of this thesis is to transfer the concept of homomorphic
encryption to the i-vectors model:

1. Is it possible to transfer homomorphic encryption concepts to the i-
vector/2Cov approach?
In order to answer this question, the biometric verification sche-
mes based on homomorphic encryption, as well the homomor-
phic properties in general will be examined.

2. How does homomorphic encryption influence the performance of 2Cov
models and models using cosine-scoring technique regarding EER,
Cmin

llr and Cllr? Is the performance loss by using homomorphic en-
cryption more than 5%?
The performance of the implemented systems will be measured
evaluating various metrics.

3. Is compliance of ISO/IEC IS 24745 in terms of irreversibility and un-
linkability given?
The metrics of the ISO/IEC 24745 standard will be applied to
check the security of biometric templates, according to the es-
tablished requirements.

1.3 organisation of work

This thesis is divided into four parts. The first part describes bio-
metric systems in general and gives an overview on homomorphic
encryption in biometrics. In the second part the schemes and tech-
niques for the comparison of i-vectors in the encrypted domain are
introduced. The third part evaluates the proposed methods in terms
of various metrics and complexity. Finally, the last part provides a
summary and discussion of the main results.



2
F U N D A M E N TA L S

2.1 biometric systems

The term biometrics is defined in [5] as "automated recognition of
individuals based on their behavioural and biological characteristics".
Thus, biometric system are implemented for that purpose, using for
recognize either the biological (related to the structure of the body)
or behavioural (related to the functions of the body) characteristics as
an input.

2.1.1 Components of the biometric System

A biometric system consists of five subsystems. The functions of each
subsystem are defined in [2] and shown in fig. 2.1.

Figure 2.1: Components of the biometric system, see [2].

Data Capture Subsystem: A data capture subsystem collects cap-
tured biometric sample, converted from the biometric characteristics.
A biometric capture device (e.g. sensor) collects characteristics as
(digital) samples. The biometric sample is used as an input for a sig-
nal processing subsystem.

Signal Processing Subsystem: The signal processing subsystem can
be divided into three modules:
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1. Segmentation: The purpose of segmentation algorithm is to iden-
tify the parts of the biometric sample which contain regions of
interest and the parts which contain background noise in order
to erase the last ones.

2. Quality Control. The quality control processes predict the per-
formance of the captured biometric samples. Samples of too
low quality are expected to cause poor recognition performance,
and are thus rejected, encouraging sample recaptures.

3. Feature Extraction: Biometric features are extracted from cap-
tured biometric samples. Depending on the systems mode, fea-
tures are defined as reference or probe, respectively. References
are stored in a data storage subsystem, and probes are used for
comparison against loaded references.

Data Storage Subsystem: A data storage subsystem is responsible
for storing of references of each enrolled user. For identification tasks
the subsystem provides all references, associated to a biometric claim.
In case of verification, a certain reference is retrieved for comparison.

Comparison Subsystem: A comparison subsystem receives a probe
from a signal processing subsystem and a reference, stored in data
storage subsystem. Comparison results are the numerical values,
called comparison scores, indicating the degree of similarity or dis-
similarity between reference and probe. In terms of this work, solely
similarity scores are used for comparison.

Decision Subsystem: A decision subsystem uses a comparison score,
given by a comparison subsystem, and, based on threshold and other
decision policies, transform it into a binary yes or nor decision.

2.1.2 Transactional Workflows in the biometric System

The biometric system can operate in three different modes: enrol-
ment, verification, identification, according to [2].

2.1.2.1 Enrolment

Enrolment is the process of creating a data record in the biometric
enrolment database to serve for the comparison with a probe in verifi-
cation and identification modes. Enrolment requires the data capture
subsystem to collect captured biometric sample(s) and dependently
extracted features. The usability of the generated biometric data is to
ensure by testing verification or identification attempt.
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2.1.2.2 Verification

Verification is the process of confirming a biometric claim in the com-
parison subsystem through (1:1) biometric comparison of a reference,
stored in the biometric enrolment database of the data storage sub-
system, with a probe of the claimed identity, generated in the sig-
nal processing subsystem. A comparison score, resulting from the
comparison, is used in the decision subsystem to accept or reject the
biometric claim, according to the pre-defined threshold.

2.1.2.3 Identification

Identification is the process of searching against a biometric enrol-
ment database to find and return the biometric reference identifier(s)
associated to an individual. For this purpose, a (1:n) comparison be-
tween a probe, provided by the data capture and signal processing
subsystems, and all references from the database of the data storage
subsystem is performed. The comparison scores for all references are
calculated, generating a biometric candidate list. The scores of all ref-
erence identifiers (candidates) should exceed a pre-defined threshold.
The decision subsystem uses the score to decide, if the individual is
identified or not.

2.1.3 Biometric Performance

Performance of biometric systems can be measured in a variety of
ways. One of those ways is analyzing with error estimation, since
biometric systems encounters different types of failures.

2.1.3.1 Biometric system error rates

Failure-to-Capture(FTC): The proportion of failures of the biometric
capture process to produce a captured biometric sample that is ac-
ceptable for use [5], calculated as:

FTC =
Ntca + Nnsq

Ntot
, (2.1)

where Ntca is a number of terminated capture attempts, Nnsq is the
number of images created with insufficient sample quality and Ntot

is the total number of capture attempts. FTC occurs in data capture
subsystem.

Failure-to-Extract(FTX): proportion of failures of the feature extrac-
tion process to generate a biometric template from the captured bio-
metric sample, calculated as:

FTX =
Nngt

Nsub
, (2.2)
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where Nngt is the number of templates, that were failed to generated
and Nsub is the total number of biometric samples being submitted
from data capture subsystem. FTX occurs in signal processing sub-
system.

Failure-to-Enroll(FTE): The proportion of failures of the enrolment
process to create and store an enrolment data record for a biometric
data subject [5], calculated as:

FTE =
Nnec

N
, (2.3)

where Nnec is the number of subjects, that were failed to enrolled and
N is the total number of subjects. FTE occurs in data storage subsys-
tem.

Failure-to-Acquire(FTA): proportion of a specified set of probe ac-
quisitions that failed to create a biometric probe[5], calculated as:

FTA = FTC + FTX ∗ (1− FTC). (2.4)

2.1.3.2 Algorithmic verification error rates

False-Match-Rate(FMR): proportion of the completed biometric non-
mated (impostor) comparison trials that result in a false match [5],
calculated as:

FMR(t) =
∫ 1

t
Φ(s|HA)ds, (2.5)

where t is a decision threshold, HA defines the statement, where refer-
ence and probe come from different users, Φ is a probability density
function, and s is a similarity score.

False Non-Match Rate(FNMR): proportion of the completed biomet-
ric mated (genuine) comparison trials that result in a false non-match
[5], calculated as:

FNMR(t) =
∫ 1

t
Φ(s|H0)ds, (2.6)

where H0 defines the statement, where reference and probe come
from the same user.
FMR100 is a special case of FNMR when FMR is 1%.

Equal-Error-Rate (EER): the point where FNMR(t) = FMR(t).
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Figure 2.2: FMR and FNMR.

2.1.3.3 Overall system performance

False Rejection Rate (FRR): a proportion of verification transactions
with truthful claims of identity that are incorrectly denied [2], calcu-
lated as:

FRR = FTA + FNMR ∗ (1− FTA). (2.7)

False Rejection Rate (FAR): a proportion of verification transactions
with wrongful claims of identity that are incorrectly confirmed [2],
calculated as:

FAR = FMR ∗ (1− FTA). (2.8)

2.1.3.4 Comparison scores

Likelihood Ratio (LR): ratio of the probability of the evidence in
genuine or impostor [6], given as:

LR =
p(E|H0)

p(E|HA)
, (2.9)

where E is an observation, H0 is the probabilities of genuine hypoth-
esis and HA is the probabilities of impostor hypothesis.

Example [7]: Given an unknown speech sample X (crime evidence)
and a speech sample Y (exemplar) from a subject (suspect), the ob-
served evidence E can be defined based on certain feature parameters
(e.g. difference of average voice frequency between X and Y). Thus, it
is possible to calculate the probability distribution of this feature pa-
rameter for speech samples of the same subject (H0) and for speech
samples of different subjects (HA). Knowing the hypothesises, the
conditional probabilities p(E|H0) and p(E|HA) are calculated.
The calculation is based on Bayes’ theorem:

p(H0|E)
p(HA|E)

=
p(E|H0)

p(E|HA)
· P(H0)

P(HA)
. (2.10)
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Thus, the posterior probabilities p(H0|E)
p(HA|E) can be only estimated if the

prior probabilities of the hypotheses P(H0) and P(HA) are given.

Log Likelihood Ratio (LLR): logarithmic compressed LRs, typically
using the natural or the base 10 log.

Detection Cost Function (DCF): application dependent metric, rep-
resenting a linear combination of FFR and FAR, weighted by their
costs [8]. DCF is calculated as:

DCF(η) = CFR ∗ FRR(η) ∗ π + CFA ∗ FAR(η) ∗ (1− π), (2.11)

where CFR and CFA are application-dependent cost parameters, repre-
senting the cost weights for FRR and FAR, respectively, π is a target
prior probability, and η is the decision threshold.

DCFmin: DCF for the optimal threshold ηopt, obtained by:

ηopt = arg min
η

DCF(η). (2.12)

Cost of LLR: an application-independent performance metric, proposed
in [9], which is used to measure the goodness of LLR scores and
calculated from genuine and imposter LLR scores by integrating over
all cost functions DCF in eq. 2.11:

Cllr =
∫ 1

0
DCF =

1
2

 1
NH0

NH0

∑
i f or H0=true

log2

(
1 +

1
LRi

)+ (2.13)

1
2

(
1

NHA

NHA

∑
i f or HA=true

log2(1 + LRj)


where NH0 and NHA are the number of mated vs. non-mated trials,
LRi and LRj are the LRs derived from SU and DU comparisons, re-
spectively. For the case the biometric system produces good quality
LRs, all the mated trials should produce LRs greater than 1, and all
the not-mated trials should produce LRs less than 1.

Minimum Cost of LLR: a discrimination loss. Cllr can be split into
a discrimination loss Cmin

llr and a calibration loss Ccal
llr after the system

has been calibrated. For the case that the system is optimal calibrated,
Cmin

llr can be used to show the overall performance of the system.

2.2 privacy in biometrics

Data privacy and information security are two relevant terms used
in context to biometric data. Data security is impersonal and basically
dealing with the security of the data (personal or non-personal) from
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accessibility of unauthorized users in general. Contrastively, data
privacy is personal and used for protecting right respect to the pro-
cessing of personal data. According to the definition in Regulation
(EU) 2016/679 [10], personal data means any information relating to
an identified or identifiable natural person, and since biometric char-
acteristics are unique to individuals, the data privacy issue becomes
relevant for biometric systems in terms of collection, processing and
use of data.

2.2.1 General Data Protection Regulation

Biometric data is categorised by the General Data Protection Regula-
tion (GDPR) [1], that becomes enforceable in 2018, replacing Regula-
tion (EU) 2016/679 [10], even as "sensitive personal data", that follows
to additional protections and restrictions.

The GDPR defines biometric data as "personal data resulting from spe-
cific technical processing relating to the physical, physiological or behaviou-
ral characteristics of a natural person, which allow or confirm the unique
identification of that natural person, such as facial images or dactyloscopic
data2 ([1], Article 4(14)). The processing of biometric data shall be
prohibited ([1], Article 9(1)), except for the cases, mentioned in [1],
Article 9(2):

• if the data subject has given explicit consent for the processing
of his or her biometric data ([1], Article 9(2)(a)),

• the processing is necessary for reasons of substantial public in-
terest ([1], Article 9(2)(f)),

• the processing is requested the frame of court proceedings ([1],
Article 9(2)(g)).

If biometric data is processed on large scale and processing is likely
to result in a high risk to the rights and freedoms of data subjects ([1],
Article 35(1)), data protection impact assessments (DPIAs) are neces-
sary, where data controller needs to "evaluate, in particular, the origin,
nature, particularity and severity" of the risk and inform supervisory
authority, if this risk cannot be mitigate by appropriate technical mea-
sures. When implementing biometric technologies, these measures
can prevent spoofing or alteration of the biometric data (privacy by
design ([1], Article 25(1))). The data controller shall additional en-
sure that, by default, only personal data which is necessary for each
specific purpose of the processing is processed ([1], Article 25(2)).
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2.2.2 Payment Services Directive

PSD2 [3] is the second Payment Services Directive, which will come
into force in 2018, designed in order to improve the existing Euro-
pean rules for electronic payments, thus providing a better protection
of consumers and promoting an innovation in the payment space.

PSD2 requires Third Party Providers (TPPs) to apply strong customer
authentication ([3], Article 4(30)) 1, that must be based on at least two
or more independent elements:

1. knowledge: something only the user knows (a password, a PIN,
etc.),

2. possession: something only the user holds (a card, a token, etc.),

3. inherence: something the user is (biometrics).

The independence of the elements means that if one of them is com-
promised, the reliability of the others is still guaranteed ([11], Chap-
ter 2, Article 9(1)). In addition, they cannot be disclosed (Chapter 2,
Article 6) or replicated ([11], Chapter 2, Article 7), and in terms of
biometrics they must have low false positives ([11], Chapter 2, Article
8). All in all, the elements must be designed in such a way to protect
the confidentiality of the authentication data ([3], Article 4(30)).
PSD2 requires the strong customer authentication, if e.g. a payer ac-
cesses its payment account online or initiates an electronic payment
transaction [3], Article 97(1).

The banks will probably chose the knowledge element as a first factor
of authentication, so inherence could be the second one, since solu-
tions based on possession element are more vulnerable to the fraud
attacks and can not always satisfy the requirements, described in ([11],
Chapter 2, Article 7).

TPPs will be able to access payment accounts and submit payments
only if it has been agreed by the customers. Thus, a consent is a
connection point between GDRP and PSD2.

2.2.3 Privacy demands biometric template protection

Biometric characteristics are irreplaceable in case of leaked informa-
tion. This fact makes biometric systems vulnerable to any kind of
attacks, that decrease the level of security of the biometric systems
and disclose very sensitive information about the users of biometric

1 PSD2 empowers the European Banking Authority (EBA) to develop regulatory tech-
nical standards (RTS) and guidelines, including RTS on SCA and secure communi-
cation [11], that must be released on different times.
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system.

In order to guarantee data privacy, biometric template protection
schemes need to fulfil major requirements of biometric information
protection [4]:

1. irreversibility: a potential attacker should not be unable to re-
construct the original biometric sample from the biometric tem-
plate, since the reconstructed biometric sample can be used for
the unauthorized system access or identity thief.

2. unlinkability: the stored biometric references shall not be link-
able across applications or databases. A potential attacker sho-
uld be unable to retrieve biometric features or gain any secret
information, combining one or more biometric templates (leak-
age amplification). In addition, if the attacker in possession of two
protected templates, it should be difficult for him to identify if
they belong to the same user or not (cross-matching).

3. confidentiality: biometric references shall be kept confidential in
order to protect biometric references against access by an unau-
thorized user resulting in a privacy risk.

2.3 homomorphic encryption

The main motivation to use homomorphic encryption (HE) is that it al-
lows computations to be performed on ciphertexts in encrypted do-
main, thus generating encrypted results which when decrypted, can
match the result of the operations carried out on the plaintexts. In
terms of biometrics, HE approaches can be applied to transform the
score computation into the encrypted domain, keeping the private
biometric data safe and secure.

The other notable feature of HE is the providing of semantic secu-
rity, so that an attacker cannot guess with better probability than
1/2 whether the given ciphertext stems from which plaintext. In case
of RSA [12], the first proposed public-key approach with homomor-
phic property, semantic security can be achieved only by padding of
a message with random bits. This step, however, destroys the homo-
morphism of RSA.

In search of the encryption scheme for this work, the choice is fallen
on the Paillier encryption scheme, since the cryptosystem based on
it, remains semantic secure, fulfilling the homomorphic properties,
described below.
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2.3.1 Definition of Homomorphic Encryption

In abstract algebra, homomorphism is a structure-preserving map be-
tween two algebraic structures of the same type, such as groups. A
group G consists of a set of elements {a, b, c...} and an operation ◦,
such that any two elements of the group can form a third element:
a ◦ b = c, where a, b, c ∈ G. The set an operation must satisfy four
conditions, the group axioms:

1. Closure: For all a,b in G the result of the operation a ◦ b is also
in G.

2. Associativity: For all a, b and c in G, (a ◦ b) ◦ c = a ◦ (b ◦ c).

3. Identity: There exists an element e in G, such that for every
element a in G, the eq. e ◦ a = a ◦ e = a holds.

4. Invertibility: For each a in G, there exists an element b in G,
such that a ◦ b = b ◦ a = e, where e is the identity element.

Given two groups (G, �) and (H, ◦), a group homomorphism from
(G, �) to (H, ◦) can be defined as a function f : G → H such that for
all g and g

′
in G the following eq. holds:

f (g � g′) = f (g) ◦ f (g′) (2.14)

Group homomorphism is demonstrated in fig. 2.3.

Figure 2.3: Group Homomorphism.

Let (P, C, K, enc, dec) be an encryption scheme, where P, C and K
defines the plaintext, ciphertext and key space, respectively, enc and
dec are the corresponding encryption and decryption algorithms. If
the plaintexts build a group (P, �) and the cipertexts build a group
(C, ◦), the encryption algorithm enc undertakes the mapping between
P and C:

enck(a) ◦ enck(b) = enck(a � b), homomorph ∀a, b ∈ P, ∀k ∈ K, (2.15)
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where k is a public key with enck : P→ C.

Given a cryptosystem C with plaintext mn, ciphertext cn and an en-
cryption function enc, such that enc(mn) = cn and some operation ◦:

C is additively homomorphic if:

∃◦ : enc(m1) ◦ enc(m2) = enc(m1 + m2) (2.16)

C is multiplicatively homomorphic if:

∃◦ : enc(m1) ◦ enc(m2) = enc(m1 ·m2) (2.17)

If a cryptosystem shows both additive and multiplicative homomor-
phism, it is called fully homomorphic. Otherwise, it supports only ad-
ditive or multiplicative mechanism and is called partly homomorphic.
Since fully homomorphic is quite limited regarding its computation
capabilities and not practical in a real-life applications [13], the work
will focus on partially homomorphic schemes, that are widely used in
biometric approaches, as described below.

2.3.2 Paillier Homomorphic Encryption Scheme

A number of public-key asymmetric cryptosystems are classed un-
der particular homomorphic schemes. Besides well established schemes
based on a different problem, like RSA [12] or ElGamal [14], another
important approach became significant over the years. In 1999, Pas-
cal Paillier proposed a probabilistic asymmetric algorithm [15]. The
algorithm is described in the next subsection.

2.3.2.1 Key generation

1. Choose two large prime numbers p and q randomly and inde-
pendently of each other, so that:

gcd(pq, (p− 1)(q− 1)) = 1, (2.18)

where gcd represents the largest positive integer that divides pq
and (p− 1)(q− 1) without a remainder.

2. Estimate RSA modulus n and Carmichael’s function λ:

n = p · q

λ =
(p− 1)(q− 1)

gcd(p− 1, q− 1)
(2.19)

3. Select random generator g where g ∈ Z∗n2
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4. Calculate the modular multiplicative inverse to ensure that n
divides the order of g :

µ = (L(gλ mod n2))−1 mod n, (2.20)

where function L is defined as L(x) = x−1
n .

The public key for encryption is pk(n, g), and the secret key for de-
cryption is sk(λ, µ).

2.3.2.2 Encryption

1. Let m be a message to encrypt where m ∈ Zn

2. Select random r where r ∈ Z∗n

3. Compute ciphertext:

c = gm · rn mod n2 (2.21)

2.3.2.3 Decryption

1. Let c be a chipertext to decrypt where c ∈ Z∗n2

2. Compute the plaintext:

m = L
(

cλ mod n2
)
· µ mod n (2.22)

2.3.2.4 Background

Paillier cryptosystem is based on the fact that certain discrete loga-
rithms can be estimated easily, e.g. by using binomial theorem:

(1 + n)x =
x

∑
k=0

(
x
k

)
nk =

(
x
0

)
n0 +

(
x
1

)
n1 +

(
x
2

)
n2 + ...

+

(
x

x− 1

)
nx−1 +

(
x
x

)
nx

= 1 + n · x
(
mod n2) .

(2.23)

If y = (1 + n)x mod n2, then x = y−1
n (mod n).

L
(
(1 + n)x mod n2) = x (mod n), where L(u) = u−1

n for x ∈ Zn.

2.3.2.5 Paillier properties

According to [15], given two ciphertexts enc (m1) = gm1 · rn
1 (mod n)

and enc (m2) = gm2 · rn
2 (mod n), homomorphic addition and multipli-

cation can be defined:
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• The product of two chipertexts will decrypt to the sum of their
corresponding plaintexts:

dec
(
enc (m1) · enc (m2) mod n2) = m1 + m2 mod n. (2.24)

• The product of a ciphertext with a plaintext raising g will de-
crypt to the sum of the corresponding plaintexts:

dec
(
enc (m1) gm2 mod n2) = m1 + m2 mod n. (2.25)

• An encrypted plaintext raised to the power of another plaintext
(constant) will decrypt to the product of the two plaintexts:

dec
(

enc (m)k mod n2
)
= k ·m mod n. (2.26)

2.3.2.6 Security

Ciphertext Indistinguishability (IND) is an important concept in terms
of encryption, and describes an unability of an attacker to distinguish
pairs of ciphertexts based on the message they encrypt. The Pail-
lier encryption provides this property against chosen-plaintext attacks
(IND-CPA). In particular, when an attacker generates two messages,
which are randomly encrypted by a challenger, guessing which en-
crypted messages stems from which chosen-plaintext is at least as dif-
ficult as solving the decisional composite residuosity assumption (DCRA).
DCRA describes that given a composite n and an integer z, it is hard
to compute whether z is a n-residue modulo n2 or not, i.e., whether
there exists y such that:

z = yn mod n2. (2.27)

Bellare et al. [16] demonstrated that no HE scheme can be secure
against adaptive chosen ciphertext attacks (IND-CCA2) (algorithm,
where an adversary can call an encryption or decryption oracle before
and after receiving ciphertext) because of its malleable property. In
case of Paillier cryptosystems, where only the public-key and an en-
cryption of m1 and m2 are given, the malleability would mean, that it
is possible for an adversary to compute a valid encryption of their
sum m1 + m2. In [17], the schema is introduced, where the com-
bined hashing of message m with random r prevents the adversary to
change m in a meaningful way, so the scheme remains secure against
IND-CCA2.

2.3.3 Overview on biometric template protection

The aim of biometric template protection schemes is to prevent the
use of inverse biometrics, that allow the attacker to reconstruct a syn-
thetic biometric sample from the information of the stored biometric
templates, using it later for recognition attempts.
A distinction is usually made between approaches in cancelable biomet-
rics, cryptobiometrics and biometrics in the encrypted domain.
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2.3.3.1 Cancelable biometrics

"Cancelable biometrics consist of intentional, repeatable distortions of
biometric signals based on transforms which provide a comparison
of biometric templates in the transformed domain" [18].

The first group of cancelable biometrics approaches provides non-
reversible transformation of the biometric data, using noninvertible
funtions. The impostor fails to obtain the original feature set even
in possession of transforms. Two drawbacks to be named here are
challenging aspects with alignment during template comparison and
reduce of information during the transformation, causing more com-
plexity in terms of discriminability (similarity structure) and leading
to a corresponding accuracy decrease. Ratha et al. [19] use the tech-
nique of non-reversible transformation to generate cancelable finger-
print templates.

In the second group of cancelable biometrics, biometric salting, a func-
tion, defined by a subject-specific token, is used to create a distorted
biometric template. Because the transformation function is invertible,
the token has to be kept secret and presented by user at authentica-
tion. The token introduces a new source of entropy in the biometric
system and provides better low false accept rates [20], but at the same
time the template becomes insecure, if an impostor compromises the
token. An example of salting approach is presented in [21].

2.3.3.2 Cryptobiometrics

In case of cryptobiometrics public available helper data is generated.
Helper data does not reveal any important information, but is used
during authentication in order to obtain a cryptographic key, leading
to a successful match.

In a key binding cryptobiometric cryptosystem, helper data is gen-
erated after the fusion of biometric data with a cryptographic key
in the binding process. A key retrieval algorithm delivers a key at
authentication. An error correcting code, used additionally in combi-
nation with helper data, proves the error tolerance in the case where
reference and probe templates differ from each other. If the number
of errors is in the tolerance range, a codeword with the similar num-
ber of error can be received and subsequent decoded to estimate the
exact codeword and obtain the key. That improves the tolerance to
intra-user variations of biometric samples, but can reduce the match-
ing accuracy, if error correctness algorithm does not cover all possible
variations of the template [20]. Fuzzy commitment scheme [22] is an
example of key binding technique.
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In a key generation, helper data is obtained only from the biometric
template, and a cryptographic key is generated directly from a bio-
metric sample and helper data at authentication. Chang et al. [23]
and Vielhauer et al. [24] introduced quantization schemes. The inter-
vals for each real-valued feature are calculated and stored as helper
data. At verification, the characteristics of a biometric sample are
mapped into previously defined intervals in order to obtain a key.
Dodis et al. [25] proposed secure sketch and fuzzy extractor tech-
nique. While secure sketch extracts random string from a biometric
sample at enrolment and assists in reconstruction of the template, a
primitive fuzzy extractor is used to generate a key from the biometric
data at verification.
The main limitation in the key generation process gets quickly visible.
The key generation suffers from high false rejection rate because of
the variability of the biometric traits.

2.3.3.3 Biometrics in the encrypted domain

This scheme of biometric template protection provides encryption of
the reference templates and comparison in the encrypted domain. In
encrypted domain, it becomes possible to avoid such limitations of
the above mentioned template protection schemes, as information
loss in the case of cancelable biometrics and some challenging as-
pects in binding and generation processes in the cryptobiometrics ap-
proaches. For the purpose of this work the schemes based on Garbled
Circuits (GC) [26] or Oblivious Transfers [27] are not be observed, and
the focus is set on HE. HE allows computations to be performed on ci-
phertexts, thus generating encrypted results which when decrypted,
matches the result of the operations carried out on the plaintext. Also
no Auxiliary Data, such as a subject-specific token, is required.

In this work, anonymous biometric authentication protocols are empha-
sized on: solely the fact that the user is one of various trusted and
allowed individual are of practical importance, his or her identity is
not relevant for identification purpose. It also means, that the probe
template is compared to all templates from the database, and access
is succeed, if at least one of them matches. Semi Homomorphic Encryp-
tion (SHE) schemes, which only allow a limited number of operations
on encrypted data, are successfully implemented in many biometric
applications, based on anonymous biometric authentication protocols [28–
35].

In [28], an algorithm based on HE and tested on a dataset of iris pat-
terns is presented. Client C sends the private key pk, the encrypted
probe and the encrypted inversed probe to the server S. S provides
a secure computation of Hamming distances between C’s probes and
every reference from a biometric database DB. Comparison between
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the calculated encrypted distance and a plaintext threshold cannot
be measured as a summation or multiplication of two numbers, so
S needs to first use bit extraction to get the encrypted bit represen-
tation of all the distances. S needs C’s assistance in extracting the
bits and decryption the numbers. In order to avoid C to get any in-
formation from encrypted distances, S adds random numbers to the
distances. C decrypts the randomized distances, extracts the individ-
ual bit, sends it encrypted back to S. S is responsible for the threshold
comparison, C assists S only in the secure multiplication, that is used
to minimize the adversarial intention of C. Finally, a collision-resistant
hash function HASH is used to prevent both parties to gain any sig-
nificant information about each other. Output is a single bit for access
or rejection.
This approach uses also so-called k-anonymous Quantization in or-
der to reduce the scope of the similarity search from the entire DB to
k candidates.

Adversarial behaviors can be generally classified into two types: semi-
honest (honest-but-curious) and malicious [36]. Security is guaranteed
in a honest-but-curious model, as the adversaries follow the protocol
but try to learn additional information. In [28] it is S, that follows the
protocol, but can try to find out private data of the biometric subject.
In a malicious model the adversary can change private inputs or even
terminate the protocol. As described above, the protocol is secure
against malicious behavior of the adversary client C’, as it can manip-
ulate data in order to get access to the system.

Another variant of Paillier HE approach, tested for iris identifica-
tion system, is proposed in [29]. It includes comparison server M
beside the database DB and authentication server AS, as shown in
fig. 2.4. AS receives an encrypted biometric template from client and
requests randomly all k stored templates ti from DB and computes k
times q

⊕
ti, where

⊕
is encrypted xor operation. M takes over the

task of determining the hamming distances between reference and
probe templates (since this operation cannot be accomplished in the
encrypted domain using partially HE techniques). The previous per-
mutation of the data (string from xor operation) is required in order
to reduce potential honest-but-curious behavior of M. Since M is in pos-
session of private key, that could be used to eavesdrop the data being
transmitted from the client, encrypted previously with the public key.
Finally, M decrypts permuted strings and calculates Hamming dis-
tance, sending the result back to AS, that decides, using predefined
threshold, whether access is granted or not.
Another distinctive feature of this approach is that it operates on
chunks. Paillier Chunkwise outperforms a bit-wise HE, since it still
fulfills the requirements of Paillier scheme, but being faster by sev-
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Figure 2.4: Architecture of iris identification system, cf.[29].

eral orders of magnitude compared to the bite-wise Paillier scheme.

For fingerprint recognition, a fingerprint verification system based
on the FingerCode fixed-length representation of fingerprints and HE
[30] should be mentioned. At first, the feature vector, extracted and
encrypted by the client C, is sent to the server S. Then the distances
(in that case - the square of the Euclidean distance) between the tar-
get vector and the vectors located in the database are calculated by
server S in the ciphertext domain using HE. The encrypted distances
remains unknown to S, still it aims to avoid on the server side to get
any information about the requested biometry or exploit the resulting
comparison scores. In order to select the matching identity, S has to
interact with C using some internal sub-protocols. The output, that
can have more than one identity, is only known by C. The drawback of
that approach is that the templates in DB are still stored unencrypted.

In [31] the proposed feature size reduction methods have a very lim-
ited impact on the accuracy of the biometric system and are signifi-
cantly implemented using quantization.

Erkin et al. [32] presented an efficient protocol for biometric face
recognition systems based on Eigenfaces [37], shown in fig. 2.5. Once
more, the honest-but-curious entity, responsible for the comparison
process, is unable to gain any privacy-sensitive information.

Another secure computation of the face identification protocol was
introduced in [33]. The algorithm is based on fixed-length templates
with a constant Hamming weight, outperforming the Eigenface ap-
proach in terms of efficiency and robustness, because computation of
the Euclidean distances are more complicated than that of the Ham-
ming distance.
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Figure 2.5: Efficient protocol for face recognition, cf. [32].

In [34], the client protocol called GSHADE, based on oblivious trans-
fers [27], evaluates several metrics (Hamming distance, Euclidean dis-
tance, scalar product, Mahalanobis distance) and shows a significant
improvement in terms of computation time towards the techniques
based on HE protocols.

The listing of the reviewed papers with emphasis on Paillier encryp-
tion scheme for anonymous biometric authentication protocols, is
given by tab. 2.1.



2.4 speaker recognition 21

reference characteristic he scheme dataset

Ye et al.[28] Iris Paillier CASIA

Penn et al.[29] Iris Paillier,
Goldwasser-
Micali

CASIA V3

Interval

Barni et al.[30] Fingerprint Paillier 408 images
acquired by a
CrossMatch Veri-
fier 300 sensor

Bianchi
et al.[30]

Fingerprint Paillier 408 images
acquired by a
CrossMatch Veri-
fier 300 sensor

Erkin et al.[32] Face Paillier,
DGK

"ORL Database
of Faces" from
AT&T Laborato-
ries Cambridge

Osadchy
et al.[33]

Face Paillier FERET

Table 2.1: Listing of papers dealing with Paillier encryption scheme for
anonymous biometric authentication protocols.

2.4 speaker recognition

Speaker verification systems are commonly divided into front-end
and back-end stages [38]. A front-end is responsible for converting
of speech signal into a sequence of the features vectors. Back-end
provides speaker modelling and score computation.

2.4.1 Front-End

Because of the variable length and duration of acoustic speech signal,
most of these variations are undesirable and cause mismatch between
the training and testing conditions. Thus, normalization and adapta-
tion methods are mandatory to minimize the mismatch.

2.4.1.1 Voice Activity Detection

Voice Activity Detection (VAD) [39] is a pre-processing algorithm used
to distinguish between the presence or absence of human speech in
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order to extract features only from the speech segments. The VAD is
usually performed in two steps:

1. Features from the noisy section are extracted to get a represen-
tation that discriminates between speech and noise.

2. A detection algorithm is used to classify the section as speech
or non-speech.

2.4.1.2 Low-level features: sampling the acoustic space

The analysis of the frequency spectrum of the signal is the most used
technique to extract features. For this purpose, signal is usually seg-
mented into 20-30 ms overlapping frames, and the Mel Frequency
Cepstral Coefficents (MFCCs) [40] are obtained. For each frames
the Fourier power spectrum is calculated. Nonlinearly spaced Mel
filterbank is applied to the power spectra. The spectrum energy is
summed in each filter, following by calculation of its logarithm. Fi-
nally, discrete cosine transform (DCT) is performed on the logarithm
of the filterbank energy, and a number of leading DCT coefficients
characterize MFFCs.

2.4.1.3 Feature Normalization

In order to provide more robustness to degradation among different
speech environments, various feature normalisation techniques are
proposed. These techniques can be distinguished between model-
based and distribution-based ones. In the model-based approaches,
such as cepstral mean and variance normalization [41], certain statis-
tical properties are normalized to minimize the environmental mis-
match. In the second category fall those approaches, that normalize
the feature distribution to a reference distribution, such as feature
warping [42] or short-time Gaussianization [43].

2.4.2 Back-End

The next step is modelling based on extracted features. Different
speakers have different subspaces within the UBM [44], an univer-
sal acoustical cluster. Baum-Welch statistics [45] are extracted from
UBM and represented in intermediate-sized vectors (i-vectors) [46],
that effectively summarize utterances, allowing one to apply useful
compensation methods because of its low-dimensional space.

2.4.2.1 Gaussian Mixture Models

A Gaussian mixture model (GMM) [47] is a parametric probability den-
sity function, defined as the weighted sum of Gaussian density com-
ponents. Given C components, where c = 1, 2. . . C and πc represent
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the component indices and the mixture weights of D-dimensional fea-
ture vector xn, respectively, a mixture density for speaker S is defined
as:

p(xn|λs) =
C

∑
c=1

πcN (xn|µc, Σc). (2.28)

For a sequence of n training vectors X = {x1, ..., xN} a mixture density
is given by:

p(X|λs) =
N

∏
n=1

p(xn|λs). (2.29)

The component densities are parametrized by a mean vector µc and
covariance matrix Σc :

pc(x) =
1

(2π)D/2|Σc|1/2 e−
1
2 (x−µc)

T(Σc)
′
(x−µc) (2.30)

The mixture weights, πc, summed up, are resulting to:

C

∑
c=1

πc = 1, ∀c : 0 ≤ πc ≤ 1. (2.31)

The GMM for speaker s is defined as the tupel:

λs = (πc, µc, Σc). (2.32)

In order to reduce the computational and improve performance, the
linear combination of diagonal covariance basis Gaussians is used.

2.4.2.2 Expectation-maximization algorithm

Conventionally, GMMs are trained using the expectation- maximization
(EM) algorithm [48]. The aim of this algorithm is to iteratively update
the parameter values in eq. 2.32 in order to maximize the likelihood
of the training data, given the current model.

The posterior probability γn of a mixture c given feature vector xn

is calculated:

γn(c) = p(c|xn, λs) =
πc p(xn|c, λs)

ΣC
j=1πj p(xn|c, λj)

. (2.33)

In the M-step, the weights, means and variances of GMM are re-
estimated:

πj =
1
N

N

∑
n=1

γn(c), (2.34)

µj =
ΣN

n=1γn(c)xn

ΣN
n=1γn(c)

, (2.35)
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Σj =
ΣN

n=1γn(c)(xn − µj)(xn − µj)
T

ΣN
n=1γn(c)

. (2.36)

In the last step, log likelihood evaluation is performed:

Λ(X|λs) =
1
N

N

∑
n=1

log
S

∑
s=1

πc pc(xn), (2.37)

where pc(xn) is calculated as given in eq. 2.30.
The process is iterated until convergence.

2.4.2.3 Universal background model

In order to compute LLRs, an alternate speaker model is needed,
usually referred to as Universal background model (UBM). The UBM
λUBM represents the speaker-independent distribution of features for
all speakers in general.
In the GMM-UBM approach [44], LRs are computed utilizing GMMs
representing either of the hypotheses: H0(X is from s) and H1(X is
not from s):

LR =
p(X|H0)

p(X|HA)
= log p(X|λs)− log p(X|λUBM) (2.38)

Usually, the data amount per speaker is limited, hence UBMs are
computed first, such that speaker dependent models can be adapted.

2.4.2.4 Maximum a posteriori adaptation

Maximum a posteriori adaptation (MAP) is a common technique to
adapt the speaker’s model from UBM. MAP was proposed in [49],
Reynolds et al. [44] applied this technique for speaker recognition.
At first, the probabilistic alignment of the feature vector is calculated
through the use of eq. 2.33 with the difference, that it is estimated
with respect to UBM components:

γn(c) = p(c|xn, λUBM) =
πc p(xn|c, λUBM)

ΣC
c=1πc p(xn|c, λUBM)

(2.39)

The values of γn(c) are used to calculate the zero-, first-, and second-
order Baum–Welch statistics [45]:

Ns(c) =
N

∑
n=1

γn(c) (2.40)

Fs(c) =
N

∑
n=1

γn(c)xn, (2.41)

Ss(c) =
N

∑
n=1

γn(c)xnxT
n . (2.42)
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MAP updates weight, mean and covariance for each mixture c:

π̄c = [αcNs(c)/N + n(1− αc)πc]β, (2.43)

µ̄c = αc
Fs(c)
Ns(c)

+ (1− αc)µc, (2.44)

Σ̄c = αc
Ss(c)
Ns(c)

+ (1− αc)(Σc + µcµT
c )− µcµ̄T

c , (2.45)

where β is a scaling factor, computed over all the adapted mixture
weights to ensure that they satisfy the constraint, given by eq. 2.4.2.1,
and α is an adaptation variable, given by:

αc =
nc

nc + r
, (2.46)

where r is a relevance factor, controlling, how the new speaker data
affects the adapted parameters.

2.4.2.5 Supervector

One of the problem in speaker verification systems is to compare data
of different length, allowing one to use such modelling techniques as
factors analysis (FA) or support vector machine (SVMs) [50]. Thus,
a fixed-dimensional representation of an utterance is needed. The
solution is provided by supervectors, that represent the concatenations
of GMM mean vectors. A supervector µ of dimension CF, where C is
the number of Gaussian mixture components and F is the dimension
of the acoustic feature vectors, contains the means of each mixture
component. The simplification of this process is shown in fig. 2.6.

Figure 2.6: Concatenation of supervector performed on four Gaussian mix-
ture components, based on [7].

2.4.2.6 Joint Factor Analysis

In practice, channel factors cannot be ignored in estimating the super-
vector µ. So the calculation of the joint posterior distribution of the
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hidden variables x and y is needed to represent channel and speaker
residual factors, respectively.
Utilizing Joint Factor Analysis (JFA), supervectors can be represented
as a linear combination of speaker independent, speaker dependent,
channel dependent, and residual components.
A speaker-dependent GMM mean supervector µs is defined as:

µs = µUBM + Ux + Vy + Dz, (2.47)

where speaker- and session-independent supervector µUBM is conven-
tionally referred to as UBM, since both speaker and channel variabil-
ity lie in lower dimensional subspaces (spanned by the matrices V
und U, respectively) of the GMM supervector space, as it shown in
fig. 2.7. In order to train the JFA model, at first the subspaces from
development corpora need to be estimated (V followed by U and D)
in order to obtain the speaker and session factors (x and y followed
by z), for a given new target utterance. Estimation is performed by
maximum likelihood and minimum divergence algorithms [51].

Figure 2.7: JFA model. µs presented as a sum of speaker components S =
µUBM + Vy + Dz and channel components C = Ux.

2.4.2.7 Intermediate-sized vectors (i-vectors)

Dehak et al. [46] show that using JFA approach, it is not possible
to completely separate speaker and channel variabilities, because the
channel space contains speaker-dependent information, either. For
this reason, [46] proposed the total variability space, that models both
variabilities. The supervector µs is given by:

µs = µUBM + Tw (2.48)

where µUBM is the UBM mean supervector, T is the low rank rect-
angular matrix representing the total variability space and estimated
by EM. Conceptually, i-vectors w are hidden variables, which are as-
sumed to be standard Gaussian distributed and can be estimated for
a given utterance from U = {u1, ..., uk}, represented by a set of acous-
tic feature vectors of dimension F, by its posterior distribution, using
Baum–Welch statistics from the UBM λUBM with C mixture compo-
nents. The i-vector can be obtained as:

w = (I + TtΣ−1N(u)T)−1TtΣ−1F̃(u), (2.49)
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where:

• I is a CF × CF identity matrix,

• N(u) is a diagonal matrix with F x F blocks Nc I(c = 1, 2, ..., C),

• F̃(u) is a supervector of dimension CF x 1 formed by concate-
nating of the centralized first-order Baum-Welch statistics F̃ for
a given speeach utterance u.

• The diagonal covariance matrix Σ of dimension CF × CF builds
the residual variability not captured by T.

It is desired, that i-vectors are transformed into unit sphere to reduce
the mismatch between training and testing i-vectors, thus optimizing
the clustering. For that purpose, length normalization of the i-vectors
is performed. Each i-vector is divided by its length. In order to
avoid the concentration of the i-vectors in a small region of the unit
sphere and the resulting decrease of discriminative power, centering
and whitening of the i-vectors need to be performed before the length
normalization. In the centering step, the global mean of the develop-
ment set is subtracted from each i-vector, centering it at the origin of
coordinates. In the whitening step, the i-vector space is normalized,
by turning their covariance matrix into the identity matrix.

2.4.2.8 Linear Discriminant Analysis

The aim of Linear Discriminant Analysis (LDA) [52] is to reduce dimen-
sionality and between-variabilities, at the same time preserving dis-
criminant information. For this purpose, LDA searches for a reduced
set of eigenvalues ALDA = [v1...vn] in the feature space, decomposing
the following eigen-problem:

Bv = ΛWv, (2.50)

where Λ is the diagonal matrix with the eigenvalues, B and W rep-
resent between-and within-class covariance matrices, respectively. In
order to calculate both covariance matrices, the speaker-dependent µs

and speaker-independent µ mean vectors need to be obtained:

µs =
1
ns

ns

∑
i=1

ws,i, (2.51)

µ =
1
S

S

∑
s=1

1
ns

ns

∑
i=1

ws,i, (2.52)

where ws,i is an i-vector, extracted from ith utterance of speaker s
from the number of utterances ns of the same speaker, and S is the
total number of all speakers in the set.
Between-and within-class covariance matrices are calculated:

B =
1
S

S

∑
s=1

(µs − µ)(µs − µ)T, (2.53)
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W =
1
S

S

∑
s=1

1
ns

ns

∑
i=1

(ws,i − µs)(ws,i − µs)
T. (2.54)

Examining matrix of eigenvectors ALDA, LDA maximizes S and mini-
mizes W, respectively. The LDA projection of i-vector is calculated as
follows:

ŵLDA = AT
LDAw. (2.55)

2.4.2.9 Within Class Covariance Normalization

Hatch et al. [53] introduced the Within Class Covariance Normalization
(WCCN) approach to improve robustness of SVM-based speaker veri-
fication systems. Dehak et al. [52] proposed to use WCCN in i-vector
approach to compensate intersession variability and guarantee con-
servation of directions of the feature space.
WCCN projection matrixes are obtained by the Cholesky decomposi-
tion of AWCCN :

S−1
w = AWCCN AT

WCCN . (2.56)

WCCN projected i-vectors are obtained by:

ŵWCCN = AT
WCCNw. (2.57)

2.4.3 Comparison

In the following subsection two relevant in terms of this work scoring
methods for comparison between i-vectors are given.

2.4.3.1 Cosine similarity

The cosine distance similarity scoring for speaker recognition was
proposed in [52]. Scoring is defined as normalized dot product of
reference i-vector wr and probe i-vector wp:

Scos(wr, wp) =
wr · wp

||wr|| · ||wp||
. (2.58)

2.4.3.2 Probabilistic Linear Discriminant Analysis

Probabilistic Linear Discriminant Analysis (PLDA) is a generative model
which was adapted from face recognition [54] for speaker verifica-
tion purposes, where PLDA is used to model i-vector distributions,
distinguishing between-speaker variability from all other sources of
undesired variability that cause distortions.
Kenny at al. [55] proposed a Heavy–Tailed PLDA model (HT-PLDA),
based on heavy–tailed distributions for the model priors. However,
this model is computationally expensive. For that reason, the most
commonly used model is a Gaussian PLDA (G-PLDA) model, that
using length normalized i-vectors [56] with LDA and WCCN, shows
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Figure 2.8: PLDA model [57]. a) Latent variable hi is used to weight between-
individual factors Φ. b) J latent variables {sij}J

j=1 are used to
weight within-individual factors Ψ. c) Adding residual noise
with diagonal covariance Σ. d-f) The process is repeated for sev-
eral speakers.

the comparable performance to HP-PLDA, but beeing computation-
ally faster. In PLDA i-vector is presented as a combination of the
follow components:

wij = µ + Φhi + Ψsij + ε, (2.59)

where µ is the speaker-independent mean i-vector, low-rank matrices
Φ and Ψ span the speaker identity subspace and channel subspace,
respectively, and ε represents a residual noise with a zero mean and
diagonal covariance Σ. The latent variables hi and sij are assumed to
follow a standard Gaussian distributionN (0, I). The PLDA modeling
is shown in fig. 2.8.
In G-PLDA [56] Σ is often assumed to be a full covariance matrix and
allows one to remove Ψ without performance loss:

wij = µ + Φhi + ε. (2.60)

2.4.3.3 Two-covariance model

The full-subspace PLDA model is referred to as the two-covariance
model (2Cov) [58, 59], assuming that the speaker and inter–session
subspaces span the entire i–vector space, thus, rank(Φ) = rank(T).
Thus, an i-vector can be represented as:

wij = µ + hi + ε, (2.61)

where hij ∼ N (hi|µ, B−1), w|hij = N (w|hi, W−1) and B and W are
the between–speaker and within–speaker covariance matrix, obtained
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by eq. 2.53 and 2.54, respectively. 2Cov log–likelihood ratio for an
i–vector pair is a quadratic function and can be given as [60]:

S2cov(wr, wp) = wT
r Λwp + wT

p Λwr + wT
r Γwr + wT

p Γwp

Λ =
1
2

WT
(
(B + 2W)−1

)
W−1

Γ =
1
2

WT
(
(B + 2W)−1 + (B + W)−1

)
W.

(2.62)



3
P R O P O S E D M E T H O D

The proposed methods utilize the Paillier homomorphic properties
for transferring data privacy methods to speaker recognition. The
proposed methods demonstrate how cosine and two-covariance com-
parators behave in the encrypted domain in terms of data and storage
management as well as communication between the single parts of
the system.

3.1 computations on non-integer values

Paillier homomorphic encryption is solely defined for non-negative
integers smaller than public key n. Thus, the representation of nega-
tive and real numbers are mandatory before they will be encrypted.

• Conversion of real values into integers: The conversion of real
number into integers is implemented based on floating-point
arithmetic. According the IEEE Standard for Floating-Point
Arithmetic, defined by IEEE Std 754-2008 [61], each finite num-
ber can be represented by three integers, using single precision
(32-bit) and double precision (64-bit) format:

f loat = s ·m · 2e, (3.1)

where s is a sign (s = 0 indicates the positive number, s = 1 - neg-
ative), m is a mantissa, that defines a fixed number of significant
digits (p bits), scaled by exponent e (r bits) in base 2. The de-
cision was made for the double precision because of more bits
that mantissa (52 bits) and an exponent (11 bits) occupy in con-
trast to the single precision (23 and 8 bits, respectively). Thus,
it is possible to increase the precision and the range of magni-
tudes that can be represented. The single and double formats
of IEEE 754-2008 are shown in tab. 3.1.
The main objective of this step is to find the mantissa, that
stands for the integer representation and save the exponent for
the following additive and multiplicative operation and the de-
coding of the final value. In case of addition of two encoded
values, the highest exponent needs to be decreased to the low-
est exponent, in case if multiplication the encoded values are
just summed up.

• Conversion of integers into whole numbers: The basic property
of congruence a mod n = a + kn for any k ∈ N is applied, by
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adding multiples of n to the a in order to get a positive repre-
sentation of a. The maximum integer value intmax is defined
in order to create two number ranges: all values smaller than
intmax are positive and all values greater than n − intmax are
negative (It is actually the case since the property of congru-
ence converts negative numbers into very huge positive values).
The range between intmax and n − intmax is used for overflow
detection.

level width exponent (r) mantissa (p) exponent values (e)

single 32 bit 8 bit 23 bit -126≤e≤127

double 64 bit 11 bit 52 bit -1022≤e≤1023

level range at full precision precision

single ≈ 1 · 10−38 to ≈ 3 · 1038 ≈ 7 decimal digits

double ≈ 2 · 10−308 to ≈ 2 · 10308 ≈ 16 decimal digits

Table 3.1: Single and double formats of IEEE 754-2008. [61]

3.2 conventional encryption scheme for cosine

similarity

3.2.1 Background

As mentioned in sect. 2.4.3.1, one of the scoring techniques is the
cosine similarity, that is defined as the length normalised dot product
of probe wp and reference wr i-vectors. According to [62], eq. 2.58 can
be rewritten as:

Scos(wr, wp) =
wr · wp

||wr|| · ||wp||
=

F

∑
f=1

wr f · wr f

||wp|| · ||wr||
=

F

∑
f=1

wp f

||wp||
·

wr f

||wr||
,

(3.2)
where f defines one of F i-vector dimensions.

Thus employing Paillier homomorphic property in eq. 2.3.2.5, the co-
sine similarity can be encrypted as:

enc(Scos) =
F

∏
f=1

enc
( wr f

||wr||

) wt f
||wt ||

(3.3)

where the encrypted reference i-vectors enc(wr) are raised to the
corresponding values of wp, calculating the encrypted score, that
decrypted returns the same result as a dot-product of two plain i-
vectors, given by eq. 3.2.
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In case of storing more than one reference i-vector for a certain user,
all single scores must be summed up. Based on the property in
eq. 2.3.2.5, the product of all single scores between probe i-vector wp

and the reference i-vectors wn
r , with n = 1...N, in encrypted domain

is calculated:

dec

(
n=1

∏
N

enc (Sn
cos)

)
=

n=1

∑
N

Sn
cos. (3.4)

3.2.2 Architecture

The architecture of the cosine approach is motivated by the architec-
ture, proposed in [62]. There are three system entities:

The client C is responsible for the extraction of probe i-vectors wt,
computation of the encrypted score enc(Scos) and sending it to the
comparator.

The database server DBsubject stores the encrypted reference i-vectors
encpk(wr) and send them to C during verification.

The authentification server ASsubject is a comparator of the system,
that holds a key pair, that consists of secret key sk and public key pk.
ASsubject decrypts the score after receiving it from the C, in order to
make a final decision about rejection or acceptance based on a pre-
defined threshold.

The verification includes the following six steps, as shown in fig. 3.1:

1. C captures the probe audio sample and extracts a probe i-vector
wp, following compensation methods.

2. DBsubject sends the beforehand stored and encrypted with the
public key pk reference i-vectors encpk(wr) to the client.

3. C computes the encrypted score encpk(Scos). If wp and wr are
unit sphere i-vectors, the eq. 3.3 can be simplified to
encpk(Scos) = ∏F

f=1 encpk(wr f )
wt f .

4. C sends encpk(Scos) to the authentication server ASsubject.

5. ASsubject decrypts the encpk(Scos), using secret key sk.

6. The decision D about the acceptance or rejection of the system
user is made based on pre-defined threshold η.

It is assumed, that the model is honest-but-curious, as described in
sec. 2.2. Thus, all parties perform the actions correctly, but try to
learn about other parties’ inputs. For the malicious scenario, it must
be pointed out that only one of three entities (C, DBre f ,ASre f ) can be
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compromised at a time, and if this is the case, the attacker cannot
attacks the other entities. Additionally, all entities of the system are
separated and never collude.
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Figure 3.1: Architecture of cosine similarity. A client C extracts the probe
i-vector wp and requests the reference i-vector encpk(wr) from
the database DBsubject. The final score is calculated in C, using
Paillier HE, and send to the authentication server ASsubject, that
holds the key pair (pk, sk) for the following decryption of the
score. Based on pre-defined threshold, ASsubject outputs the de-
cision D.

3.3 encryption scheme for full subspace plda compara-
tors

Λ and Γ are obtained from a large collection of labeled development
data, so the 2Cov training can be highly expensive. Thus, in the in-
terests of system vendors to encrypt model hyper-parameters, which
incorporate the knowledge from the system training data as well as
the processing and development costs.

3.3.1 Privacy Architecture solely for Subject References

3.3.1.1 Background

The Paillier scheme can be adopted for the 2Cov comparator. The
scoring in unencrypted domain is obtained, using eq. 2.62:

S2cov(wr, wp) = wT
r Λwp + wT

p Λwr + wT
r Γwr + wT

p Γwp. (3.5)
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where Λ and Γ are the model hyper-parameters, holding between and
within covariances, respectively. The assumption is, that the model
hyper-parameters Λ and Γ are freely available to C and DBsubject, so
applying the Paillier properties to the eq. 3.5, the encrypted score can
be estimated as:

enc(S2cov(wr, wp)) = enc(wT
r )

Λwp + enc(wr)
ΛwT

p

+enc(wT
r )

Γwr + enc(wT
p )

Γwp .
(3.6)

For the purpose of later model encrpytion, the terms enc(wT
p )

Γwp and
enc(wT

r )
Γwr are not further simplified.

3.3.1.2 Architecture

The verification includes the following steps, illustrated in Figure 3.2:

0. During enrolment reference i-vector wr is stored in DBsubject
as a tupel, containing the encryption of the i-vector enc(wr),
the encrypted transpose enc(wT

r ) and the encrypted component
enc(wT

r )
Γwr , where the multiplication of Γ and wr is performed

in the plaintext domain. Hence, this component, used in the
eq. 3.6, can be encrypted only during enrolment, since wr is
coming unencrypted to DBsubject.

1. The client C captures the probe audio sample and extracts a
probe i-vector wp and encrypts the second addend of the eq.
3.6, enc(wT

p )
Γwp .

2. DBsubject sends a tuple to the client.

3. The third addend of the eq. 3.6, enc(wT
r )

Λwp , is estimated, in-
volving Λ and the both i-vectors for comparison.

4. The forth addend of the eq. 3.6, enc(wr)
ΛwT

p , is estimated, in-
volving Λ and the both i-vectors for comparison.

5. All addends are summed up to the encrypted score, using Pail-
lier homomorphic property in eq. 2.3.2.5.

6. The client sends enc(S2cov) to the authentication server ASsubject.

7. ASsubject decrypts the enc(S2cov), using secret key sk.

8. The decision D is made based on pre-defined threshold σ.

3.3.2 Privacy Architecture for Subjects and System Vendors

In this section, a fully homomorphic encrypted data protection archi-
tecture is proposed for the 2Cov comparator.
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Figure 3.2: Architecture of 2Cov scoring without encryption of vendor
hyper-models.

3.3.2.1 Background

Cumani proposed in [60], that S2cov(wr, wp) can be estimated as a dot-
product in an i-vector pairs expanded space. For three matrices in the
bilinear form xT Ay the Frobenius inner product is calculated as:

xT Ay = 〈A, xyT〉 = vec(A)Tvec(xyT), (3.7)

where 〈A, B〉 denotes a dot-product of matrices A and B, and the
operator vec(·) converts the matrices into column vectors. The model
hypo-parameters are stacked as model vector m:

m =

[
vec(Λ)

vec(Γ)

]
=

[
wΛ

wΓ

]
. (3.8)

Then, an expansion of the reference and probe i-vectors is defined as:

ϕ(wr, wp) =

[
vec(wrwT

p + wpwT
r )

vec(wrwT
r + wpwT

p )

]
=

[
ϕΛ(wr, wp)

ϕΓ(wr, wp)

]
. (3.9)

S2cov can be presented as the dot–product of a model vector m and an
expanded i-vector pair ϕ(wr, wp):

S2cov(wr, wp) = SΛ(wr, wp) + SΓ(wr, wp) (3.10)

= mT
Λ ϕΛ(wr, wp) + mT

Γ ϕΓ(wr, wp)

= mT ϕ(wr, wp).

3.3.2.2 Architecture

In terms of Paillier cryptographic systems, eq. 3.10 fulfils either of the
homomorphic properties. The encrypted models Λ and Γ are raised
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to the power of an expanded i-vector pair ϕ(wr, wp) that should be
available in plaintext. Thus, the system requires another authentica-
tion sever, that is responsible for decryption of ϕ(wr, wp) after receiv-
ing it encrypted from the client, and the calculation of the dot-product
with the model vector m. The next step are mandatory and visualized
in fig. 3.3):

0. Enrolling biometric users at a biometric system in terms of their
reference, the following encryption of the reference with the
public key pk1 and storing it into the database DBsubject are per-
formed. Additionally, the encrypted multiplication result of the

reference with its transpose encpk1(w
wT

r
r ) is estimated, thus both

values can be combined into a single resulting tuple.

1. The client captures a probe voice sample and extract the de-
pending i-vector wp. Then, the client creates a tuple of en-
crypted i-vector encpk1(wp) and encrypted element-wise square

of the i-vector encpk1(w
wT

p
p ).

2. DBsubject send the encrypted tuple to C.

3-4. Having two encrypted tuples: one sent from DBsubject and one
created from a probe, the client estimates two encrypted com-
ponents enc(c1) and enc(c2), applying the homomorphic prop-
erties to the eq. 3.9.

5. The client sends the encrypted components enc(c1) and enc(c2)

to the subject data authentication server ASsubject.

6. The model comprising between and within covariances is en-
crypted with the second public key pk2 (the corresponding pri-
vate key sk2 has only the vendor authentication server ASvendor)
are sent to ASsubject.

7-9. ASsubject decrypts firstly the both components with the secret
key sk1 and use the encrypted models to calculate the encrypted
final score enc(S2cov), according to the eq 3.10.

10. ASsubject sends enc(S2cov) to ASvendor.

11-12. ASvendor uses a secret key sk2 to decrypt enc(S2cov) and makes
a decision D = (S2cov > σ), based a pre-defined threshold σ.
The decision outcome is decrypted on a vendor server, which
can be passed back to an application depending on its design,
employing conventional cryptographic methods.
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Subject data authentication server ASsubject 

7 Decrypt first component  

𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠1 �𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝1 (𝑐𝑐1)� = 𝑐𝑐1 

8 Decrypt second component  

𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠1 �𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝1(𝑐𝑐2 + 𝑐𝑐3)� 

= 𝑐𝑐2 + 𝑐𝑐3 
 
9 Calculate encrypted score  
𝑒𝑒𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝2(𝑆𝑆2𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑒𝑒𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝2(Λ)𝑐𝑐1 

+ 𝑒𝑒𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝2(Γ)(𝑐𝑐2+𝑐𝑐3)  
 

 
 

3 Encrypt first component  

𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝1 (𝑐𝑐1) =  𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝1(𝑤𝑤𝑟𝑟)𝑤𝑤𝑝𝑝𝑇𝑇 +  
+ 𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝1�𝑤𝑤𝑟𝑟

𝑇𝑇�
𝑤𝑤𝑝𝑝

 

4 Encrypt second component 
𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝1 (𝑐𝑐2 + 𝑐𝑐3) = 𝟏𝟏𝟏𝟏 +  𝟐𝟐𝟐𝟐  

Database DBsubject 

𝑒𝑒𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝1(𝑤𝑤𝑟𝑟) 
𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝1(𝑤𝑤𝑟𝑟𝑇𝑇) 

𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝1(𝑤𝑤𝑟𝑟)𝑤𝑤𝑟𝑟𝑇𝑇  

6a Send 𝑒𝑒𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝2(Λ) 
6b Send 𝑒𝑒𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝2(Γ) 
 

2a Send 𝑒𝑒𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝1(𝑤𝑤𝑟𝑟)   
2b Send 𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝1(𝑤𝑤𝑟𝑟𝑇𝑇) 

2c Send 𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝1(𝑤𝑤𝑟𝑟)𝑤𝑤𝑟𝑟𝑇𝑇  
 
 
 
 

 

 

Database DBvendor 

𝑒𝑒𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝2(Λ) 

𝑒𝑒𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝2(Γ) 

Vendor data authentication server ASvendor 
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1c Encrypt    𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝1�𝑤𝑤𝑝𝑝�
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10 Send 𝑒𝑒𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝2(𝑆𝑆2𝑐𝑐𝑐𝑐𝑐𝑐) 
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11 Decrypt score  

𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 �𝑒𝑒𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝2(𝑆𝑆2𝑐𝑐𝑐𝑐𝑐𝑐)� 

= 𝑆𝑆2𝑐𝑐𝑐𝑐𝑐𝑐 

12 Make a decision 
𝐷𝐷 = (𝑆𝑆2𝑐𝑐𝑐𝑐𝑐𝑐 > 𝛿𝛿) → Yes/no 

Figure 3.3: Architecture of 2Cov scoring with encryption of vendor hyper-
models.
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3.3.3 Mean adaptation

Considering the non-zero mean feature spaces e.g., in order to com-
pensate language domain shifts, a mean vector µ needs to be ac-
counted for as well. In this section, encryption for the generalized
2Cov model is depicted. Stored in DBvendor, it is requested by ASsubject
to perform necessary data shift before the score calculation. Accord-
ing to [60], two additional hyper-parameters k and c, based on µ, are
obtained:

c = WT
(
(2W + B)−1 − (W + B)−1

)
Bµ

k = k + 0.5
(
(Bµl)

T
(
(2W + B)−1 − 2 (W + B)−1

)
Bµ
)

,
(3.11)

where the parameter k is calculated as:

k = 2 ∗ log (W + B)−1 − log (B)− log (2W + B)−1 + µTBµ. (3.12)

c and k are stacked into the column vector in eq. 3.8 as mc and mk.
An expended i-vector pair in eq. 3.9 is extended by wr + wp and 1 as
ϕc and ϕk. Hence, the third component c3, defined as the encrypted
sum of wr and wp needs to be calculated in C. After the decryption
in ASsubject, mT

c ϕc(wr, wp) and mT
k ϕk(wr, wp) are added to the score,

obtained in eq. 3.10.

3.4 i-vector encryptor

Conventional front-end and back-end following the i-vector / PLDA
paradigm is used for obtaining the necessary input data for the Pail-
lier encryption. The flow of the implementation process is clearly per-
ceptible. Firstly, the system generates a public and private key pair
and returns the instances of classes PublicKey and PrivateKey, that
contain the encryption and decryption methods, respectively. Every
single value that represents one of dimensions of the input i-vector is
encrypted by method encrypt() of PublicKey. Due to the fact, that
i-vector are real valued features and Paillier works solely on integers,
the corresponding encoding method encode() of the newly created in-
stance of class EncodedValue is applied as a mandatory preprocess-
ing step. Having the EncodedValue instance, it is possible to create
an instance of the class EncryptedValue, that contains the ciphertext
and the exponent of encoding. All necessary operations in the en-
crypted domain, such as add() for addition of two encrypted values,
or mult() for the multiplication of encrypted value with plaintext, are
performed by the methods of the EnctryptedValue instance.
On the other hand, the instance of PrivateKey, responsible for de-
cryption, returns the decrypted and decoded plaintext of Encrypt-
edValue, using decrypt() and decode() methods of PrivateKey and
EncodedValue instances, respectively. All classes of the Paillier pro-
posed algorithm are listed in tab 3.2.
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class function

PublicKey Holds a public key and corresponding encryp-
tion method

PrivateKey Holds a private key and corresponding decryp-
tion method

PrivateKeyBundle Collects a number of private keys, using any of
them for decryption

EncodedValue Represents a float or integer value encoded for
encryption

EncryptedValue Represents the encryption of a float or integer
value.

Table 3.2: Classes of the proposed Paillier algorithm.



4
E VA L U AT I O N

In the following, the evaluation of the proposed methods is perfor-
med in terms of various metrics and complexity.

4.1 experimental set-up

The i-vectors from Speaker Recognition i-Vector Machine Learning Chal-
lenge [63] are used for implementation of the proposed encryption
schemes. Sidekit [64] provides the chain of tools required to perform
speaker recognition.

• The enroll/test partition consists of 1,306 target speaker models
(comprised of 6,530 i-vectors) and 9,634 test i-vectors.

• The development partition consists of 36,572 i-vectors, used for
the calculation of the system’s hyper-parameters.

• The trials consist of all possible pairs defining the comparison
between target speaker model and a single i-vector test segment.
Thus the total number of trials is 12,582,004. In terms of the
Challenge the trials were divided into two subsets: a progress
subset (40% of all trials), visible for all participants, and an eval-
uation subset (60% of all trials), used for generation of the of-
ficial final score determined at the end of the Challenge. For
implementation purpose only the progress subset is relevant.

In order to create comparable results, EER and and DET diagram are
chosen. The application-dependent metrics DCF and minDCF are
used for the evaluation of the systems, either. In terms of the biomet-
ric performance application-independent cost measures Cllr and Cmin

llr
are of great significance, since DCFs are dependent on a ratio of the
mated and non-mated hypothesis.

The computations are performed on a Debian 8.7 64-bit system hav-
ing an Intel i7-6770HQ CPU (2.60 GHz) and 32 GB DDR3-RAM.

4.2 data analysis

The raw i-vectors from the i-Vector Challenge are transformed ac-
cording to the official baseline system, presented in [63]. Mean and
whitening transformation are computed, using the i-vectors from the
development set in order to center and whiten all i-vectors with the
following projection into unit sphere. Since each target model consist
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of five i-vectors, a speaker model is generated by taking mean over
them and projecting the average model i-vector into unit sphere. The
average model i-vectors defines the reference i-vectors wr, stored in
database. All the i-vectors from the i-Vector Challenge exhibit 600 di-
mensions, that are reduced to 250 by performing LDA. Additionally,
WCCN can be applied to compensate for residual channel effects in
the speaker factor space. For the implementation of 2Cov approach,
within and between covariances are computed based on the develop-
ment set. Fig. 4.1 shows what steps are already implemented and
what are need to be estimated.
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Figure 4.1: Diagram of i-vector processing and scoring, based on [63]. Or-
ange blocks are the precomputed steps, the blue ones are need
to be performed.

4.3 validation of baseline enryption scheme on cosine

comparators

The performance of the cosine comparator in the plaintext and en-
crypted domain are examined on the i-vector set, defined in fig. 4.2.
The Detection Error Trade-Off (DET) curve for both systems is depicted
for the cosine distance. The EER, minDCF, Cllr and Cmin

llr are dis-
played in tab. 4.1. As expected, the performance is equal, moreover
the proposed encryption scheme is not decreasing the baseline per-
formance in discrimination or calibration.
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Figure 4.2: Performance analysis of for cosine similarity in the plaintext
(blue) and encrypted (dashed black) domains.

EER minDCF Cllr Cmin
llr

Cosine 0.0509 0.1320 0.9074 0.1893

Cosine (encrypted) 0.0509 0.1320 0.9074 0.1893

Table 4.1: EER, minDCF, Cllr and Cmin
llr for cosine similarity in the plaintext

and encrypted domains.

4.4 validation of encryption schemes on 2cov compara-
tors

The performance of the 2Cov comparators are analysed in terms of
the EER, minDCF, Cllr and Cmin

llr , as shown in tab. 4.2, and visual-
ized in fig. 4.3, again equal performance is sustained by either of the
proposed homomorphic encrpytion approaches.
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Figure 4.3: Performance analysis of 2Cov comparators in the plaintext (blue)
and encrypted domains (dashed black - the system with protec-
tion of solely subject data, red - the system with protection of
subject and vendor data).

4.5 complexity analysis

Each approach can be analysed due to the amount of resources re-
quired for running it. The resources are defined as a number of
operations performed in the encrypted domain as well as a size of
encrypted components sent over a channel. The channel bandwidth
and the database storage capacity can be estimated as:

capacity = r · d · 2n, (4.1)

where r is a number of reference i-vectors, d defines the total number
of elements of a vector or a matrix, and 2n is a size of chipertext in
bits (since a Paillier ciphertext is a number c modulo n2, the chiper-
text is 2n bits wide).

During the key generation the same conditions should hold for n
as for the size of the modulus in the RSA cryptosystem, which is at
least 2048 bits according to NIST recommendations [65]. Thus the
Paillier ciphertexts, used in the proposed system, is 2 · n = 4096 bits
wide. Utilizing eq. 4.1 for i-vector of dimension 250, the approach
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EER minDCF Cllr Cmin
llr

Cosine 0.0634 0.1609 0.9099 0.2277

2Cov (encrypted,
subject)

0.0634 0.1609 0.9099 0.2277

2Cov (encrypted,
subject + vendor)

0.0634 0.1609 0.9099 0.2277

Table 4.2: EER, minDCF, Cllr and Cmin
llr for 2Cov comparators in the plaintext

and encrypted domains.

for the cosine similarity in sect. 3.2 requires 4096 · 250 = 1, 024, 000
bits = 128 KB for the storage of every reference i-vector wr in the
database DBsubject. The final score, transmitted to the authentication
server ASvendor, is a single encrypted value with the size of 0,512 KB.

In case of the 2Cov training, described in sect. 3.3, DBsubject stores
a tuple of various representations of encrypted wr. The storage re-
quirements increase rapidly, since the tuple involves the element-wise
square of wr. Being a matrix of dimension 250× 250, with each value
encrypted, it requires the multiplication by a factor of 250 and ex-
pands the storage size of DBre f for every wr to 4069 · 250 · 250 + 2 ·
(4096 · 250) = 258, 048, 000 bits = 32.256 MB. Since all the tuple val-
ues are sent to the client C, the bandwidth of the communication
channel DBsubject needs to be scaled up in the same manner. Building
two components in C, the size of the chipertexts sent over communi-
cation channel to ASsubject is 2 · 4069 · 250 · 250 = 64 MB. Merely, the
size of the final score is 0,512 KB.
An overview is provided in tab. 4.3.
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cosine 2cov

No encryptions
decryptions

0

1

4

3

No multiplica-
tions
(encrypted)

250 (C) 500 (C)
250 (ASsubject)

No additions
(encrypted)

249 (C) 498 (C)
249 (ASsubject)

Stored data 128 KB (DBsubject) 32,256 MB (DBsubject)

Exchanged data 128 KB
(DBsubject → C)
0,512 KB
(C → ASsubject)

32,256 MB
(DBsubject → C)
64 MB
(C → ASsubject)
0,512 KB
(ASsubject → ASvendor)

Table 4.3: Complexity analysis for the scoring and the 2Cov training. The
dimension of the i-vector is 250, and the comparison is performed
between one probe and one reference i-vector.

4.6 analysis of irreversibility and unlinkability

According to [62], to fulfil the requirements in [4], the following con-
ditions should be met:

• Nobody except client can see the plain probe i-vectors wp

• Reference i-vectors are always encrypted in the system. This
affects the storage in the database as well as any operations
performed on them. In case of the 2Cov training, the same
criterion is valid for the vendor data.

• The final score, which is sent over the communication channel,
is encrypted, to prevent any score-based attacks.

Irreversibility is granted, since the reconstruction of the original i-
vectors and vendor data is not possible without the knowledge of
the corresponding private keys. The protection of the private keys,
used for decryption of the scores or necessary components, as in a in-
termediate step (decryption of two components of eq. 3.9 in ASsubject
in sect. 3.3) is guaranteed by the secure implementation of authentica-
tion server(s). Due to the fact, that the score is calculated in encrypted
domain, the system is also protected against Hill Climbing attack [66],
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where the malicious client iteratively tries to increase the score simi-
larity, making small changes in biometric samples.

The system ensures irreversibility, either. Since Pailier homomorphic
encryption is secured against IND-CPA, as explained in sect. 2.3.2.6,
the attacker, having two encrypted reference i-vectors, cannot guess
with better probability than 1/2, which encrypted reference i-vector
stems from which reference i-vector in plaintext. Also combining
of encrypted i-vectors or comparing of encrypted distances does not
lead to disclosure of relationships. Additionally, the randomness in
the Paillier homomorphic encryption algorithm yields different ci-
phertexts, every time the certain feature f is encrypted with the same
public key.

4.7 summary

As desired, the cosine and 2Cov comparators show the same verifi-
cation performance both in unprotected and encrypted domains in
terms of well-established application-dependent metrics and applica-
tion-independent metrics on discrimination and calibration metrics.

In case of 2Cov comparators, the approach, that provides protection
for both subject and system vendors data does not suffer any perfor-
mance drop towards the approach based on assumption, that vendor
data is freely available. This fact makes it more valuable for the sys-
tem vendor, if the protection of e.g., labeled data and comparison
models, is of high interest. A possible drawback of the 2Cov sys-
tem could be the amount of data transferred over the communication
channels, since certain encryption steps require the operations over
the large dimensional quadratic matrices, which however is the typi-
cal trade-off for sustaining privacy and security.

The architecture of the systems is secure against honest-but-curious
behaviour of the system components due to the encrypted commu-
nication between them. The attacks aiming at reconstruction of the
score or the reference i-vectors, as well as cross-matching attacks, are
not possible, thus fulfilling two main requirements of the ISO/IEC IS
24745 for biometric template protection, particularly: irreversibility
and unlinkability.



5
C O N C L U S I O N A N D F U T U R E W O R K

Three system architectures providing data privacy are introduced
based on the state-of-the-art i-vector paradigm in speaker recogni-
tion. In the proposed architectures, disclosure of sensitive data is
prevented by carrying out numerical comparison operations in a ho-
momorphic encrypted domain. Systems employing these architec-
tures are secure against the honest-but-curious behaviour of any sin-
gle party of the system, that follows the system protocol, but tries to
learn additional information about the data.

Motivated by the architecture proposed in [62], properties of Paillier
homomorphic encryption are adapted to cosine similarity compari-
son of i-vectors, i.e to features of assumed normal distribution. Then,
the architecture is extended to a parametric and generative compari-
son approach, the 2Cov comparator. Finally, a fully encrypted com-
parison scheme of subject and vendor data is proposed, which re-
quires an additional authentication server in order to perform vendor
depending encryption and decryption steps. Also, mean adaptation
for the fully encrypted comparison scheme is implemented.

The performance of baseline cosine and 2Cov comparators is pre-
served, whereas storage and bandwidth requirements are increased
due to the high-dimensional encrypted data, serving the purpose of
ensured data privacy.

This thesis examines irreversibiliy and unlinkability of ISO/IEC IS
24745 Standard, that are provided in all the systems.

The proposed 2Cov comparator in the encrypted domain becomes
the basis for further research, since 2Cov can be seen as a special case
of the PLDA (the only difference is in the covariance matrices). Thus,
the next steps will be to apply HE properties to the full subspace
PLDA model.

Future work may investigate on fully HE for other comparators of
the PLDA family.

Also, studies on end-to-end HE for systems employing generative
models are relevant, e.g. when considering that feature extractors
and comparators may originate from different vendors.
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Hash functions are promising for fast searching and indexing of data.
Future research might examine how hash value of encrypted refer-
ence can be related to hash value of encrypted score, such that the
verifier, placed into the authentication server, can use this informa-
tion to prove the integrity of the score.
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