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1 Introduction

PLDA estimates the similarity of two biometric fea-
tures by performing a likelihood ratio test within a
linear subspace assuming Gaussian subject and noise
distributions [1]. In [1, chapter 18], a PLDA family is
depicted:

e the subspace identity model,

e the original PLDA,

e non-linear models,

e asymmetric bilinear models,

e symmetric bilinear and multi-linear models.

Inspired by the original PLDA and the subspace
identity model, the speaker recognition community de-
rived further PLDA variants [2, 3, 4, 5, 6], examining
different flavors of model compositions and underlying
distributions:

e Heavy-Tailed PLDA (HT-PLDA) [2, 4, 5],
e Gaussian PLDA (G-PLDA) [4, 5, 6],

e Two-Covariance model (2-Cov) [3, 5, 6],

e Two-Gaussian model (2-Gau) [5],

Pairwise SVM (PSVM) [5].

Research in speaker recognition regarding uncon-
strained conditions addresses effects of different cap-
ture/transmission channels, noise and duration varia-
tion in reference and/or probe samples. Mismatches
in capture channel, i.e. tel. vs. mic., motivated HT-
PLDA [2]. Sample duration analysis [4] motivated
the application of length-normalization in G-PLDA
as an alternative to HT-PLDA due to Radial Gaus-
sianization (RG) effects. Thus, RD and G-PLDA
became the defacto state-of-the-art for comparing i-
vector features. In theory, i-vectors represent the char-
actersitic offset within a high-dimensional universal
cluster, which is represented as an intermediate-sized
Gaussian-distributed random variable consisting of a
single-point estimate, the i-vector itself, and the pos-
terior i-vector covariance.

Full-Posterior PLDA (FP-PLDA) was motivated
[7, 8] in order to address arbitrary voice sample dura-
tions in references and probes by taking i-vector poste-
rior covariances into account, i.e. fully considering the
i-vector random variable.

This report states FP-PLDA in context to the es-
tablished PLDA variants, and depicts the latest re-
search progress of FP-PLDA flavors and optimization
approaches.

2 Theory on the PLDA family

In [1], PLDA is motivated by the factor analyses model:

ri=pu+Ph; +¢€;, (1)
Pr(xz; | h;) =N (p+Ph;, %),
h; NN( I,
N (0,X), with: diag[X],
N (e

PP 1Y),

where x; is a data example, pu the overall data mean,
3 the residual covariance, ® = [¢1,..., x| contains
K factors in its columns, modeling the subspace of the
hidden variable h;, and residuals €;. Factor analysis
models are trained by the expectation maximization
(EM) algoirthm using training data {z;}Y ;. In the E-
step, the posterior distribution Pr(h; | a:,) is estimated

Pr(hz |£Cl) = N (L_l @' 2_1 (CCZ — /1,), L_l) s (2)

L=1+%'32'@®.
In the M-step, parameter updates fi, <i>, 3 are com-
puted based on zero, first and second order moments

N,E[h;],E[h; h}] of the estimated posterior distribu-

tion in order to maximize the overall model fit:
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In the following, the subspace identity and the
original PLDA model are discussed. Non- and multi-
linear models, depicted in [1], will only be briefy ad-
dressed, since they assume either distribution mix-
tures (non-linear) or too large style variations (multi-
linear). The speaker recognition community addresses
so far purely Problem 1 of the following figure, cf. [1].
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2.1 Subspace Identity Model

The subspace identity model [1] extends the fac-
tor analysis by addressing within-subject variabilities
among samples J; among subjects I, such that N =
Zfil Ji;. The generative model is depicted regard-

ing Tij-
=pn+ Ph; + €, (4)
PI"(:BZ'J' |h) :N(H+ (I)hl,E),
h; ~N(0,I),

(0,
N (0,%), with: diag[X],
N(p, @@ +3)

where ® &' corresponds to the between-subject vari-
ance, and ¥ corresponds to the within-subject vari-
ance. Posterior distributions are estimated by:
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Note: the 3 update can be seen as (a) summing up
i.i.d. Gaussians of within-subject variabilities, which
(b) are modeled by the difference of the total variabil-
ity @;; Z;; to the updated empirical between-subject
variability ® E[h;] Z;;’, where E[h;] Z;;’ denotes the
empirical between variability for estimating X Y given
the data, and (c) averaging all within-subject variabil-
ities in order to achieve one i.i.d. 3, that is represen-
tative for all subjects.
LLR scores S of reference and probe data x,,x,
are computed by Bayesian inference:
D P’ }
2tot

e (||
i s])

(2]
(7)

St = PP + 3.

2.2 Original PLDA

The original PLDA [1] assumes further style (channel)
influences, which are interpreted as additive Gaussian
random variables s;; that smoothly result in an addi-
tive manner to the generative model:

=p+Ph; + s+ €5,
Pr(zij| hi, sij) =N (p+ @ h; + ¥ s;5, %),
h; ~N(0,1),
1),
3, with: diag[X],
BB+ ).

(8)
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For the sake of tractable EM equations, PLDA is
examined in terms of compound systems, which can
easily be substituted in the subspace identity model,

cf. 2.1. The compound generative system for the E-
step can be expressed as:
Ti1 n (@ ¥ 0 0 h;
Tio n ® 0 U 0 Si1
. =|.1+. . .
: : : 0 :
TiJg; 12 P 0 0 v SiJ;
[ €1
€i2
+1 .|, (9)
| €iJ;

Tie = 1 + B* R + €,
>* = diag[®, 3,..., 3],
L} =1+ &' $* ' &* L!contains factor Ji,
E[h}] = L7 @' 5* ! &4,
E[hi h}'] = L7 " + E[h}] B[R],
where single E[R};], E[h]; h;‘j/] estimates can be ob-

tained either by sub-indexing, or by single computa-
tion. Note: the complete data of a subject is utilized



in order to estimate the depending posterior distribu-
tion A, then sample-depending posterior estimates are
derived.

In the M-step, the compound is formulated as [1]:

h;
ij

Tij = p+ SR + €4y,
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where the E-step is utilized e.g., E[h;F] = E[h}],
where ‘I>**,<i’** represent compound representation
suitable for the M-step, and @ as the covariance of
&, ¥ can be omitted.

Finally, a compund generative model can be estab-
lished for LLR scoring as well [1]:
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2.3 G-PLDA

In speaker recognition [2, 4], eq. (8) is revisited w.r.t.
(a) the subject-specific term B; = pu + ® h; does not
depend on a particular sample, and (b) the sample-
depending term Wj;; = Ws;; + €;; describes the
within-subject variability, where all latent variables
h,s,e are assumed to be statistically independent.
Eq. (8) can be re-formulated w.r.t. B;, W;;:

z;; = B; + W;j, (12)
B; NN(IJ‘aq’@/)a
Wi; ~ N (0,% ¥ + X), with: diag[X].
In G-PLDA [4], eq. (8) is simplified to:
Ti5 = p+ P h; + €4, (13)

h; ~N(0,I),
€i; ~ N (0,%), with: full[X],
S =0V + ot with: diaglp™!],

where ¢~ represents the covariance ! of €;; in eq. (8).

Regarding to the equations of the subspace identity
model, effectively only the M-step update $in eq. (6)
needs to be adapted from diagonal to full covaraince
matrix estimation [4]:

I J;
N 1 _
= NZZ%’” :L‘,LJ —
i=1 j=1

Further, in [6, 4, 9], a minimum-divergence (MD)
step is applied in order to avoid saddle points. MD as-
sumes h;, s;; priors could be in a non-standard Gaus-
sian form, maximizes w.r.t. its parameters and finds

® E[hz] :f:ij/. (14)

1o~ is a covariance matrix, and ¢ is a precision matrix.

standard prior equivalent representations. In [4], the
MD-step is conducted as:
1 G
=% Z E[hi; hij] (15)
i=1 j=1
&\ip = & chol(R).
2.4 2-Cov

In 2-Cov [3], a simple linear-Gaussian generative model
is adopted with between- and within-subject covariance
matrices B, W, which have the same dimensionality as
the feature vector x;; [6]:

Tij = p+ h; + €, (16)
h; ~ N (h;| p, B) , with: full[B],
Tij ‘h = (33,,,3 |h1, W) with: full[W],
B= Z + (hi — ),
1 I J;
=N ZZ (wij — hs) (255 — h;)'.
i=1 j=1
LLRs are computed by [3, 5, 10]:
1
S(zr,xp) = T0. P Ty + 5 (%, QTr + T, QTp)
P=wl'ewl+B Hwl 1)
o=wt 2w+ Hw!
-w wt+B H) wh

As depicted in [3, 5], the 2-Cov and the original
PLDA models share the same structure, they only dif-
fer in their covariance matrices:

-1
Borignal PLDA — ((I) (}I) 3

Worignal PLDA — (‘Il ‘Il, + E)i
Bg prpa=(@9') 7",

Wea.prLpa = 71, with: full[¥)],

(18)

" with: diag[>],

A straight-forward parameter estimation with source
code are provided by [6] for the original PLDA, G-
PLDA and 2-Cov. However, the 2-Cov scoring seems
odd comparing it to [10], and furthermore, the G-
PLDA results differ from the implementation in [4].

2.5 Other PLDA flavors

This section briefly depicts generative model ideas be-
hind non-linear models, multi-linear models, 2-Gau
and PSVM.

A. Non-linear models [1] assume categories ¢ €
[1,...,C] as hidden latent variables that define clus-
ters, where each cluster has different parameters:
=N (me,,Ze,),

Me,, = Py, + Pey, hi + Yo, S5

Pr(z;j; | ck, hi, sij) (19)



In [11], a non-linear model, referred to as mixture
PLDA, was examined in noisy environments, conduct-
ing mixtures SNR-dependingly.

B. Multi-linear models [1] are referred to be not
marginalizable for all hidden random variables e.g., a
generative equation for three latent variables h, s, t:

Tijit =+ P X9 hy X3 sk X4 4+ €550,  (20)

where the dot product notations X234 take the dot
product of the second, third, fourth dimensions of ®
w.r.t. h,s,t. However, bi-linear models are referred to
obtain closed-form solutions [1].

C. HT-PLDA [2] are motivated due non-Gaussian
effects observed on microphone data. Therefore, the
original PLDA priors h;, s;5,€;; were assumed to be
t-distributed rather than standard normal:

hi ~N (0,u™"I), where u ~T (%, %) ,(21)

8ij ~N (0,07 I), where v ~ T (%, %) ,
€ij ~ N (0,w™"I), where w ~ T (%, %) ,
with degrees-of-freedom mnq,n9,n3. However, RG
(length-normalization) [4] forced i-vector features to be
Gaussian distributed, no matter the channel, motivat-
ing G-PLDA as state-of-the-art speaker recognition.

D. 2-Gau [5] aims at modeling subject and chan-
nel distribution components of i-vector features di-
rectly. Thereby, one model represents the null hypothe-
sis Hy : {same subject} and the other model represents
the alternative hypothesis H4 : {different subject},
which one may also interprete as between- and within-
subject variability models:

] N B, (22)

Tp

{m'} . ~N (e, W).

Tp

E. PSVM [5] is trained to discriminate between
Hy, H4 (reference, probe) pairs, which is in contrast
to the conventional one-vs-all SVM framework. PSVM
belongs to the PLDA family in so far as its score of a
second order Taylor expansion of an i-vector pair can
be formulated in a way leading to the 2-Cov scoring
equation [5].

3 FP-PLDA and i-vectors

State-of-the-art speaker recognition systems comprise
i-vector features [12], which are latent posterior vari-
ables, being also extracted by factor analysis tech-
niques [12, 13]. In order to account for uncertain-
ties during feature extraction, i.e. the estimation of a

2Conventionally, a GMM which is referred to as UBM.

sample-depending i-vector posterior distribution, FP-
PLDA is motivated [7, 8].

3.1 Estimation of i-vectors (brief)

An i-vector 1 is a compact representation of a voice
sample, which depends on an underlying statistical
cluster of an acoustical space?. By observing acous-
tic features X on each cluster ¢, zero and centered
first order moments IN /.(Vc ), F i,c) known as Baum-Welch
statistics can be estimated. The i-vector extractor is
a factor analysis model (T',X) for Baum-Welch statis-
tics [12, 13, 14, 15, 16] modeling the i-vector posterior
distribution X x:

Xx~N (i\arx) ;
ZX :FxT/Z_lFx,

(23)

C
I‘;l _ I 4 ZN‘(X‘C) T(c), E(c)—l T(C)

c=1

The conventional PLDA models subspaces of the
single-point i-vector estimates ;x- FP-PLDA models
uncertainty estimates I'x as additive latent variables
to the sample-depending term W;x [15, 16].

However, conventionally, i-vectors are processed in
order to achieve a more discriminative feature space
by applying LDA and WCCN. Furthermore by RG, i-
vectors are projected onto a unit sphere. In order to
account for this transformations, X x needs to be pro-
jected as well [17]:

e LLDA with transformation matrix® L:

Xx ~N(Lix, LT x L), (24)
Note: in [18], an LDA variation is proposed that
also takes the i-vector uncertainty I'x into ac-
count (ULDA),

e WCCN with mean centering m and whitening
matrix W:

Xx NN(B (L;X —m),BLPxL,B/), (25)

e RG is a first-order Taylor series expansion [7],
passing the uncertainties through the process-
ing, which can be achieved either by the simple
length-normalization (LN):

Xx ~N(xi5,T55), (26)
lx =B (Lix —m)|,
B(Lix —m)
Lij = ZX )
BLT x L' B’
L= R —
X

3Usually, LDA performs a mean subtraction as well. However, since the i-vector extractor models i-vectors to be O-centered in
its factor analysis model, mean-subtraction is omitted in this framework.



or by the first-order approximation, referred to
as projected LN (PLN):

(I — &5 :c:a) B LFX L' B’ (I — &5 w: )

J
3 .
lX

Fij =
(27)

3.2 FP-PLDA model

In FP-PLDA [7, 8], uncertainty is propagated in terms
of additive noise to the prior residual distribution?, re-
formulating eq. (13):

Zij = p+ P h; + &,
€ij NN(O,E +Fij) NN((LAij) .

(28)

Note that in this section, the indexing ij purely rep-
resents an indexing of a certain sample j in the sam-
ple set ¢, without the intent to denote any subject-
dependencies, i.e. this notation is kept for comparison
tractability to the conventional PLDA model. Indexed
subject-dependencies are only addressed by h;.

3.2.1 Adapting the EM Training

As for the original PLDA and G-PLDA, compound sys-
tems are formulated regarding EM-steps. In the E-
step, the Cholesky decomposite of the posterior covari-
ance I';; = Cj; Cl'-j is utilized as an additional channel
component s7; with 0-mean [8]:
zij = p+ Ph; + Cij sj; + €5, (29)
s5; ~ N (0,Ty;),
€; ~ N (0,%), with: full[X],
which appears to match the formulation of the original
PLDA with sample-dependent channel factors. Model
consistency is contained due to:
NN(;I,,(I)Q,#*F“#*E),
NN(M,(I"I)I—FA,;j).

(30)

In analogue to eq. (9), the E-step compund system is
expressed by [8]:

Ti1 72 [® C;1 0 0 h;
Ti2 I P 0 Cis 0 s
. = + 1. .
. . . . . 0
LiJ; y7s _‘i’ 0 0 e Cr,j,]i sti
S 0 --- 0
0o .- 0
+1. .. , with: full[X]. (31)
. : e 0
L0 o --- X

The compound system for the M-step can be also ex-
pressed in terms of the original PLDA formulations in
eq. (10):

h;
Tij = p+ [@ C.LJ] . + €45- (32)

7

Compared to the original PLDA and G-PLDA, FP-
PLDA requires to process the E-steps sample-wise, i.e.:

—1 . . .
e L. is conducted from all posterior covariances,

e E[h};], E[h]] are estimated,

7,

o B[y, ki) E[b b

3.2.2 Updating the FP-PLDA model

Model updates are derived with MD-step using the
equations depicted in section 2.3. Note: the terms are
stated w.r.t. sample-wise processing, but usually they
are optimized.

3.2.3 Sample-wise LLR estimations

Contrary to G-PLDA, FP-PLDA LLR scoring cannot
be completely optimized, i.e. scores are computed in-
dividually w.r.t. to depending posterior distributions
(covariances). In [16], the LLR scoring for FP-PLDA
is referred to regarding a set of reference samples R and
a set of probe samples P with G = RUP, and ¢,y de-
noting the dimensionalities of the PLDA sub-space ®
and the posterior covariance I', respectively:

S(R,P) =0 (R,P) -0 (G) + g log2x,  (33)

1 1
0(G) = —5 log|Ag| + gu’g Ag pg,

2
Asetgrpy=1+9 (Z As—l) P,
seS
pg =Ag @ > ATz,

Y

1

o(R,P)= —5 log |Ar,p| + Fr Ar,p Fp
1
+ 5 (Fr Ar,p Fr + Fp A p Fp),

2
Arp=(I+Ar+Ap) ",

Fg=%") Ay,
Y

Since samples cannot be processed at once as in
(optimized) G-PLDA, one may counsider system com-
plexity as a performance constraint for optimization.
In [16], complexities of G-PLDA and FP-PLDA are
compared:

Complexity per

Comparator sample probe comparison
G-PLDA y v ¢
FP-PLDA ¥  ~%¢ ¢°

4In literature, usually precision matrices are referred to rather than covariance matrices. For the sake of easier comprehension,

this report refers to covariance matrices.



In order to achieve lower FP-PLDA complexity, ap-
proximated FP-PLDA is motivated [16]. Note: in orig-
inal and G-PLDA optimizations were possible regard-
ing how the sample sets are processed, which due to the
inclusion of the posterior covariances is not applicable
in FP-PLDA, such that other complexity optimization
strategies are sought. However, by denoting reference
distributions as certain, uncertainty propagation needs
only to be addressed regarding probe samples. This
method is referred to as asymmetric FP-PLDA [15] or
uncertainty decoding (UD) [17].

3.3 Approximating FP-PLDA

In [16], three diagonalizations are proposed: i-vector
posterior fij, residual covariance Aij, speaker iden-
tity posteriors Dg, Dp. By combining all of them, the
FP-PLDA complexity can be reduced to (72, @, (b).

3.3.1 Diagonalizing i-vector posterior

The i-vector posterior can be approximated in three
different ways [16]:

Diagonalizing the posterior covariance matrix

Ix=Txol. (34)
Diagonalization during posterior composition
Zero-order statistics IN /.(vc ) are replaced by the weight
of the c-th component w,., and further lets denote the
eigen-decomposition of I‘;l as U 1U":

—1
f‘X:<ZwCT(C)/E(C)_1T(C)> st (35)

w=U'w, T=TU,s.t
-~ —1
P = (U'F;l U) ,

A
e -

’I:X :U,Zx.

Diagonalization by Heteroscedastic LDA
Conventionally, LDA targets an optimal discrimina-
tivity by seeking a minimal scatter ratio in order to
estimate a transformation matrix. Furthermore, Het-
eroscedastic LDA (HLDA) aims at a maximum likeli-
hood of the feature space, while estimating transfor-
mation matrices. Thereby, HLDA performs a diago-
nalization.

3.3.2 Diagonalizing the Residual Covariance

By eigen-decomposing the G-PLDA precision matrix
as 71 = A = Vj D, V{, where Dy is diagonal, the
residual covariance A;; can be re-written and approx-

imated by A; as [16]:

_ _ —1
Aijl = (A71+Ty)) (36)
) —1
— (VaDR" V4 +Ty5)
-1 ’ i
=V (DA + VT VA) 178
—1
AD = (D;l + VLT Va oI) ,
Aij =VAAD Vst
AR =T+®' Vi [ D AP +> AD | V(&

reER peEP

Note: the approximation effects become negligible
for longer-duration samples, since the i-vector poste-
rior covariance becomes smaller, recovering the exact
PLDA solution [16].

3.3.3 Diagonalizing Speaker Identity Posterior

The speaker identity posterior A p can be diagonal-
ized in a similar manner by eigen-decomposing the pre-
cision term ®’ A ® as Vy Dy V5., such that the ap-

proximation terms D, Dp can be derived [16]:

Arp = +Vy (Dr+Dp) V§) ™",
=Vy (I+Dr+Dp)"' V§,
Dr = Vi ® Ag @ Vy,
Dp = Vi@ Ap® Vi,
Dr =Dgrol,
Dp=Dpol.

(37)

3.4 Full-Posterior 2-Cov

In [10], UD is introduced to the 2-Cov model, the LLR
scoring asymmetrically accounts for the probe uncer-
tainty:

1
S(iL’r, a:p) == Zi;. P [J@p + 5 11_5,,,, er (38)

1
5 (BT @) + 15, Quia, ).
L= +33"

na, = L7 (SR (@p — 1)+ Tx  px )

+

with total i-vector noise distribution N (px, X x ) and
random noise distribution N (un, X n), respectively.
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