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Abstract (English)

With the increasing number and size of biometric systems around the world, biometric databa-
ses are rapidly growing. Biometric systems use measurable and distinctive human characteristics
for the purpose of automatised recognition or identity verification tasks. This thesis aims to
contribute to the research in the area of biometric workload reduction in open-set identification
scenarios in large-scale palm vein databases. The palm vein as a biometric characteristic is very
difficult to obtain a copy from without notice of the individual and it records a steady growth
in biometric market share. Therefore, it has been selected as the biometric characteristic for
this project.

The main research in this thesis was carried out using a biometric indexing approach based
on Bloom filters and binary search trees, which has already been successfully applied for the
iris characteristic. To transform the extracted palm vein patterns in a Bloom filter compatible
representation, an approach based on Fourier transformations has been chosen. This representa-
tion was introduced for the fingerprint characteristic using defined reference points as an input.
A so-called feature extraction pipeline is proposed that extracts such reference points and yields
them in a usable form for further processing. This system has shown an acceptable biometric
performance and a high workload reduction, as well as showing a drastic speed improvement
compared to conventional pattern affinity approaches.
In addition to the Bloom filter-indexing approach, a less complex indexing approach used was
presented, merely employing the Spectral Minutiae Representation used, utilising binary search
trees. The presented system adopts optimisation approaches presented for the Bloom filter bi-
nary search trees and achieves a higher biometric performance than the Bloom filter-indexing
approach while sacrificing a small amount of workload reduction. To the best of the authors
knowledge, this is the first study of such an indexing approach using the selected representation.

It was discovered that the high fuzziness of palm vein imaging impairs the biometric per-
formance of the base representation and thus also impairs the biometric performance of the
indexing approaches. Facing the acceptable but not excellent biometric performance, promising
further research topics are presented, whereby their recorded biometric performance results
show promise and open new possible avenues of research in this area.
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Abstract (German)

Mit der international steigenden Anzahl an biometrischen Systemen, deren immer größeren
ausmaßen und deren zunehmenden Einsatzbereichen, resultierend aus zunehmender Akzeptanz
und zunehmenden Vertrauen in die Biometrie, steigt auch die Anzahl an immer größeren, bio-
metrischen Datenbanken. Biometrische Systeme nutzen mess- und bestimmbare Eigenschaften
bzw. Charakteristiken des menschlichen Körpers um dessen Identität zu bestimmen oder zu ve-
rifizieren. Der Betrieb solcher enormen biometrischen Systeme benötigt außerordentlich starke
Rechenkapazitäten um eine für die Benutzer akzeptable Zugriffszeit zu gewährleisten. Deswegen
zielt diese Thesis darauf ab, einen Teil zu der Forschung im Gebiet der Effizienzsteigerung für
biometrische Systeme im Identifikationsbetrieb beizutragen. Als zentrale biometrisches Charak-
teristikum wurde die Handvene ausgewählt, da diese unter anderem sehr schwer unbeobachtet
zu erfassen ist und der Marktanteil an Handvenensystemen stetig wächst.

Die Kernthemen der Forschung wurden mittels eines biometrischen Indizierungsverfahrens
auf Basis von Bloom Filtern und binären Suchbäumen analysiert, welches bereits erfolgreich
für die Iris getestet wurde. Um die Handvenenstruktur in eine Bloom Filter kompatible Dar-
stellung zu überführen, wurde eine für Fingerabdrücke entworfene Darstellung auf Basis von
Fouriertransformationen ausgewählt. Für diesen Schritt wird eine eigens entworfene Bildverar-
beitungspipeline vorgestellt, die die Handvenenstruktur in ein für die Fouriertransformationen
geeigente Darstellung konvertiert. Die erziehlte Erkennungsleistung in den Ergebnissen ist ak-
zeptabel und das System weist eine hohe Effizienz auf.
Neben der Indizierung mittels Bloom Filtern wurde eine weniger komplexe Indizierungsmethode
vorgestellt, welche sich nur auf die Darstellung nach den Fouriertransformationen und binären
Suchbäumen stützt. Die vorgestellte Methode nutzt Optimierungen im Suchvorgang, wie sie
im Bloom Filter System eingesetzt werden, und erziehlt dabei eine bessere Erkennungsleistung
bei minimal niedrigerer Effizienz als das Bloom Filter System. Diese Methode ist nach besten
Wissen und Gewissen erstmalig in dieser Thesis vorgestellt und erprobt worden.

Es stellte sich heraus, dass die Fouriertransformationen mit der Unschärfe der Handvenen
nicht ideal funktioniert, was die Erkennungsleistung des Systems reduziert. Im Hinblick auf die
akzeptable, jedoch nicht ideale, Erkennungsleistung wurden vielversprechende weiterführende
Forschungsansätze vorgestellt. Die erfolgversprechenste Methode wurde dargestellt.
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Chapter 1

Introduction

The steadily growing interest in biometrics for two decades lies in its promising application
in a vast range of disciplines. At the time of writing, biometrics are already reliably used as
an alternative or extension to traditional knowledge and token-based access control systems,
identity documents and forensic sciences. While the biometric market value in 2015 was estim-
ated at approximately 14 billion USD [Tra14], more recent studies predict market values from
approximately 35 billion USD by 2022 [Cre16] up to 70 billion USD by 2025 [Tra17]. One of
many catalyst for the rapid market value increase is government-driven, large-scale biomteric
deployments like the Indian AADHAAR project [Ind], which aims to enroll the entire Indian
population of 1.3 billion individuals and already has enrolled over 1 billion subjects, as well
as several immigration programmes. The operation of such large deployments yields immense
computational load. Up-scaling the hardware in terms of computing power quickly reaches cer-
tain limits. Therefore, the underlying systems software needs to implement efficient strategies
to reduce its computational load. Traditional indexing or classification solutions are ill-suited:
the fuzziness of the biometric data does not allow for naïve hashing or comparison methods.
This matter is the key motivation and the main focus of this thesis.
One emerging biometric characteristic, that steadily increases market share1 and popularity
is the vascular (blood vessels) pattern in several human body parts. Wrist and back-of-hand
vessels hold the most interest, since they are intuitive to use for users and feature several ad-
vantageous properties. While several biometric modalities like the fingerprint [CFM11] and iris
[DRB17] are already covered by workload reduction research, the (palm-) vein characteristic
lacks approaches for such computational load reduction. Wrist, finger and back-of-hand vascu-
lar biometrics are already commonly covered in several research topics, whereas the palm vein
is often passed or ignored and replaced by palm print biometrics. Therefore, this thesis shall
address the palm vein characteristic with a focus on the biometric identification scenario.

12014[Tra14], 2016 [Cre16], 2017[Tra17]
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1.1 Thesis Contribution
This thesis contributes to current palm vein and minutiae-based biometric research by the
following means:

• A state-of-the-art survey of existing approaches within minutiae-based biometric workload
reduction.

• A proposal of a palm vein signal processing subsystem for minutiae-based vascular bio-
metric systems based on well-known and optimized algorithms of various image processing
disciplines.

• A proposal on how to extract quality information for vascular data.

• Implementation and open-set evaluation of the proposed palm vein signal processing
subsystem.

• Re-implementation and open-set evaluation of the Bloom filter and binary tree-based
biometric workload reduction.

• Proposal, implementation and open-set evaluation of a less complex (compared to the
Bloom filter-indexing approach) biometric workload reduction approach using binary trees
for all minutiae-based biometric systems.

1.2 Thesis Organisation
This document is organised as follows:

• Chapters 2 and 3 aim to introduce the fundamentals of biometric systems with extension
to the vascular biometric characteristic and relevant related work.

• Chapter 4 proposes a palm vein signal processing subsystem capable of a robust fea-
ture extraction, even in palm-print environments with a high level of noise, yielding the
Spectral Minutia Representation (SMR) templates outlined in chapter 5.

• Chapters 6 and 7 describe two biometric indexing approaches used in this project.

• Chapters 8 and 9 present the experimental setup and results.

• Finally, chapter 10 concludes the thesis with a discussion of the results with proposals
for further research topics, followed by a summary of the achievements in this project in
chapter 11.

2



Chapter 2

Biometric System Fundamentals

This chapter provides a general introduction to biometric systems with a focus on the vascular
network (rete venosum), especially the vascular network of palm veins (rete venosum dorsal
palma manus) as the biometric characteristic of choice.

2.1 Veins as a Biometric Characteristic
The rete venosum is the network of (connected) veins internal to the individual’s body. Their
main responsibility is to transfer deoxygenated blood from the tissues back to the heart. By
contrast, arteries carry oxygenated blood away from the heart to the tissues. Figure 2.1 shows
the typical layout and layers of veins and arteries below the skin (epidermis) with labels on the
different types.

Figure 2.1: Distribution of the vessels in the skin (source: [GL18], figure 942).

3



(a) Office environment (b) Outdoor environment

Figure 2.2: Example FIR images of the back of hand in different environments (taken from [WL06]).

(a) FIR (b) NIR

Figure 2.3: Palm images using NIR and FIR imaging ((a) taken from [WL06]; (b) from [cas]).

The idea of using blood vessels for biometric authentication dates back when Joseph Rice
submitted his patent for vascular technology authentication in September 1985 [Ric85]. Over
time, many approaches in vascular imaging and authentication algorithms have been intro-
duced, mainly using Far-Infrared (FIR) imaging in wavelengths 50 000 nm to 1 000 000 nm or
Near-Infrared (NIR) imaging in wavelength 750 nm and 2000 nm.
FIR imaging of blood vessels uses heat radiation emitted from the vessels and thus it does not
need external illumination. A downside of the FIR imaging approach is the high environmental
impact, as shown in figure 2.2, which yields a very unstable image of the vascular pattern
due to strongly varying contrast [Har12]. Furthermore, using FIR for palm vein imaging can
lead to several problems, i.e. different skin thickness that result in different contrast levels in
a single image, renders FIR imaging a much less trivial approach compared to NIR (compare
figures 2.3a and 2.3b) imaging due to different heat levels. Therefore, this thesis will focus on
approaches and algorithms using NIR images.
Current NIR vessels imaging devices capture the superficial blood vessels using an NIR-enabled

4



(a) 840 nm (b) 880 nm

(c) 940 nm (d) 940 nm

Figure 2.4: Example images from palms captured with some NIR enabled devices with illumination
around 840 nm to 940 nm.

capturing device (e.g. CCD/CMOS sensor without an IR filter) while illuminating the Region
of Interest (ROI) with light in a spectral band between 750 nm and 950 nm. These capturing
approaches base on Lunnen’s advice for medical photographers [Lun61]. He also mentions the
absorption of various NIR wavelenghts by blood based on the level of oxygen in the haemo-
globin. Due to their size, location and oxygen level, the veins of the superficial blood vessels
are visible using the mentioned approach. These veins are visible as blurred1 dark lines in the
images.

To look upon the feasibility of using blood vessels, especially the palm veins, as a biometric
characteristic the properties proposed in [BP98] will be analysed.

Universality - Is every individual able to present the biometric characteristic? Excluding
congenital malformations, diseases or amputations, every individual has hands that con-
tain blood vessels. There are no relevant statistics stating the percentage of individuals
in ownership of at least one hand supplied with blood in the entire human population.
Nevertheless, it is safe to consider the palm veins as a universal biometric characteristic.

1The NIR radiation scatters while penetrating deeper into the skin, which leads to blurred edges.
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Distinctiveness - Is it likely, that two individuals are not distinguishable? Even though the
development of blood vessels is not truly random, the difference between individuals is
great. There are no observable identical patterns between siblings, ancestors or even the
left and right hand of one individual [Nad07, Bad06]. In all three databases used in this
thesis (see section 8.1) there were also not any similarities found. Therefore, it is a valid
assumption that palm veins are a distinctive biometric characteristic.

Performance - How accurate is the biometric identification? Watanabe et al. (Fujitsu) state
a False Acceptance Rate (FAR) of 0.01% and False Rejection Rate (FRR) of 0.00008%
(at maximum) in [WESS05] for their PalmSecure biometric system in a verification scen-
ario. However, these reports cannot be verified: the database of 140 000 palms and their
approaches are not public. Further, a more transparent evaluation of the Fujitsu PalmSe-
cure biometric system in [The06] reports a False Non Match Rate (FNMR) of 4.23% at
≈ 0.01% False Match Rate (FMR). Other vascular modalities perform at a similar level.
In [Nad07], Nadort presents an overview of several vascular modalities and their perform-
ance stated as FAR and FRR. Summarising, vascular biometrics perform at a very high
level. Palm vein biometrics should be no exception.

Permanence - Does the characteristic alter in time? Like other body parts, the palm vein
pattern stops developing, and thus changing, on average by the age of 20. Having implied
no diseases, wounds or surgical interventions alter the vascular pattern, the only expected
changes are shrinking and expansion of the vessels due to temperature and blood pressure.
However, several publications report damages of the vascular cells of smoking individuals
[Pit00, PGS+09].

Collectability - Is it easy to obtain a sample of the biometric characteristic? Acquiring a vas-
cular image is fairly simple with cheap components using NIR-Imaging. However, there
are several pitfalls in acquiring a high-quality vascular image for a high performance bio-
metric system. A brief elaboration of recommendations for acquiring high-quality vascular
images is outlined in section 4.1.

Acceptability - Do users accept the biometric system? The rising acceptance and trust in bio-
metric systems also benefits vascular biometric systems, even thought vascular biometric
systems are not as well-known as iris or fingerprint systems. Vascular imaging can be
made contact-less, and thus hygienic, which also helps the acceptance. Several case stud-
ies by Fujitsu Limited report a high acceptance in high-security applications like ATMs
[csp13b] and access control [csp13a, csp14].

Circumvention - How hard is it for a attacker to acquire a sample of the biometric character-
istic or to get accepted by the biometric system? Allthought it is very difficult to receive
a high-quality vascular image of an individual without their knowledge, it is still possible.
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With some knowledge, it is possible to produce artefacts (i.e. persentation attack instru-
ments) from low-quality vascular images or random artefacts for presentation attacks.
Countermeasures for presentation attacks are liveness detection with e.g. the pulse.

Collectability and acceptability are two important properties, why the palm veins are of high
interest. Other modalities using vascular patterns as characteristic show several drawbacks in
those properties. One example of such modality are the facial veins. The facial veins are thinner,
therefore require a image capturing system with a higher resolution to detect these thin veins.
Further a individual may rather lift his hand in front of a sensor then his face.

Summarized, the palm vein is a promising biometric characteristic that mostly suffers from
its lack of widespread deployment and lack of publicy-available high-quality databases (see
section 4.1 and 8.1) for research tasks.

2.2 Generic Biometric System
The following subsections introduce a generic biometric system and its basic operational details,
which can be used to describe a vast majority of biometric systems.

2.2.1 Workflow

ISO/IEC describe a basic workflow for a generalised biometric system in their standard on
biometric performance testing and reporting [iso06]. This workflow, as shown in figure 2.5, can
be applied to every biometric modality.

Figure 2.5: Generic biometric system (source: [iso06])

The five biometric subsystems described by ISO/IEC are briefly outlined below regarding
to the palm veins as biometric characteristic.
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Data Capture Subsystem An NIR-enabled imaging device (typically monochromatic), vari-
ous NIR light sources and its hardware to capture the necessary information needed for
the following subsystems (see section 2.1).

Signal Processing Subsystem A pipeline of algorithms is needed to extract the biometric
data (feature set) and process it to an understandable model, the template, for the sub-
sequent subsystems. This subsystem can further be detailed to the following processing
steps:

Segmentation/ROI detection The image retrieved from the Data Capture Subsystem
has to be segmented to the foreground and background. Subsequently, the ROI has
to be found. This step is crucial for further processing steps, since it is necessary to
always process the nearly exact portion of the palm to extract a stable biometric
feature set.

Feature extraction After the ROI has been successfully found, the biometric feature
set has to be extracted. For vascular biometric systems, this can be e.g. the whole
vein pattern or specific features like bifurcations or endpoins, so-called minutiae, of
the pattern. The requirement for the biometric feature set is to have a low intra-class
variation (low variance in samples from the same individual) while maintaining a
high inter-class variation (high variance in samples from different individuals).

Quality Control It is possible that the feature extraction fails to extract sufficient fea-
tures due to poor image quality or a misslocated ROI. Automated or manual quality
assessment can reject low-quality feature sets to maintain an overall good perform-
ance of the biometric system. In vascular biometric systems, it is possible to count
the number of veins or minutiae found, or in an early step check for sufficient contrast
in the ROI to reliably extract the vein pattern.

At the end of this pipeline, the Signal Processing subsystem returns a template created
from the extracted biometric feature set. The template needs to address various privacy
concerns, e.g. it should not be possible to translate the template back to an image of the
original vessels [FZ05].

Data Storage Subsystem Once the data is processed into a template, it has to be stored so
that the comparison subsystem can access it on demand. The Data Storage Subsystem
is subject to several privacy concearns outlined in section 2.2.4.

Comparison Subsystem If a biometric system is queried with a request, it has to compare
the biometric probe processed by the signal processing subsystem with the templates
stored by the data storage subsystem. Various algorithms have emerged over time using
all kind of different approaches and trade-offs. Most algorithms result in a probability,
rated by a similarity or dissimilarity score.
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Decision Subsystem Once all candidate templates are compared with the biometric probe,
the decision subsystem has to evaluate whether a template and the probe can be mated
and if there is a match in the candidate list or the biometric probe is non-matched.

The workflow also describes three paths in the biometric system: (i) Enrolment; (ii) Veri-
fication; and (iii) Identification;

Path (i) describes the process of creating a reference template, will be stored in the enrolment
database. This reference template is stored inside the Data Storage Subsystem and later on used
as a reference in comparison to a query. Paths (ii) and (iii) are subject to section 2.2.3.

2.2.2 Subsystems in this thesis

Through this thesis, implementations and approaches for the different subsystems described in
2.2.1, targeting the palm veins, are presented. To help the reader’s overview of the different
subsystems, the graph in figure 2.6 is used. Every node in this graph is expanded in its corres-

Data Capture Subsystem

Signal Processing Subsystem

Data Storage Subsystem

Comparison Subsystem

Decision Subsystem

Figure 2.6: Collapsed subsystem-graph, based on [Har12].

ponding chapter to guide through the details (in the further course referenced as a pipeline). A
concrete introduction in the Data Capture Subsystem is beyond the scope of this thesis and will
be skipped. Refer to section 2.1 and 4.1 for a brief overview or [Har12] for a deeper introduction
of the Data Capture process in (palm-)vein modalities.

2.2.3 Operation Modes

As already introduced in section 2.2, two more paths through the biometric system exist. The
two leftover paths (ii) and (iii) are called operation modes. They describe the flow, selection
and processing of information in the system and determine how the Decision Subsystem takes
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a decision. In an abstract sense, they describe the difference between an 1 : 1 (O(1)) and 1 : S
(O(S)) biometric system.

Verification In verification mode, a biometric system confirms the identity claim of an in-
dividual. The individual provides a claim to an identity, e.g. with an username, RFID
card or another attribute only assigned to him. With this claim, the biometric system
only needs to compare the individual’s query with the reference templates stored for the
claimed identity. For palm vein biometric systems, this corresponds to an O(1) (only one
palm enrolled) or O(2) (two palms enrolled per individual) comparison.

Identification In identification mode, a biometric system has no identity claim by an indi-
vidual. The individual only presents his biometric characteristic and queries the biometric
system with this probe. Now the biometric system has to confirm that the individual is
enrolled and find his identity or deny the probe if the individual is not enrolled in the
biometric system. For this purpose, in a naïve approach the biometric system has to com-
pare the query template with all reference templates of S individuals. In the worst case,
O(S) (only one palm enrolled) or O(2S) (two palms enrolled per individual) comparisons
are needed to reach a decision.

Without rotation compensation (like pre-alignment of the probe or rotation invariant rep-
resentations) of the biometric probes and references, the complexity rises by a factor of the
number of rotations that have to be tested for both operation modes. While computational
cost is a non-issue for biometric systems in verification mode, these costs are intolerable in
large-scale identification mode biometric systems. The naïve approach also introduces another
issue presented by [Dau00]. Daugman demonstrates the probability PS of having at least one
False Match (FM) in an identification scenario with equation (2.1). S denotes the number of
enrolled subjects and P1 the probability of a false match in a single identification transaction.

PS = 1− (1− P1)S (2.1)

Figure 2.7 shows the plot for equation (2.1) with a FMR of 1%, 0.1% and 0.01%.
Looking upon a biometric system with S = 800 enrollees, the probability of at least one

false match at a FMR of 1% is P800 ≈ 99.9%. Even with a FMR of 0.1% the probability is still
very high (P800 ≈ 55%).

It is clearly visible, that the probability of at least one false match quickly rises with the
number of enrolled subjects when choosing the nïve approach. Without an reduction of tem-
plate comparisons, large biometric systems quickly reach a point where they won’t behave like
expected: the system could fail to identify the correct user or, even worse, allows access to an
unauthorized individual. While this is less an issue for very small biometric systems (S < 10),
larger systems need to reduce the number of template comparisons in a identification or Du-
plicate Enrolment Check (DEC) scenario to tackle computational workload and false positive
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Figure 2.7: Plot of equation (2.1).

occurrences.

2.2.4 Template protection requirements

Biometric templates carry sensitive information from individuals, and thus they are subject to
several privacy concerns, including the following:

Impersonation Biometric templates can be stolen or forged like passwords, thus enabling an
attacker to generate an artefact (i.e. replica of the biometric characteristic) and several
attack scenarios from a template.

Irrevocably Biometric characteristics cannot be changed.

Tracking With a stolen template, a attacker can track people’s behaviour by cross-comparison
of templates across several databases.

The ISO/IEC 24745:2011 (draft: [Bus10]) describes several requirements to protect templates
to prevent these privacy concerns.

Renewability In the event of a compromised template, it should be possible to generate a
new and different template from the same biometric characteristic.

Unlinkability The templates stored in different biometric databases and applications should
not be linkable, e.g. to prevent tracking.

Irreversibility A template needs to be transformed by an asymmetric transformation in a dif-
ferent and comparable representation to prevent a reconstruction of the original biometric
sample from a template while maintaining the ability to compare different templates.

Refer to [RU11] for a overview of some existing template protection schemes.
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2.3 Chapter Conclusion
The vascular pattern of the humans palm is a promising biometric characteristic in the means
of the seven properties universality, distinctiveness, performance, permanence, collectability,
acceptability and circumvention. Biometric probes are collectable with NIR imaging when illu-
minating the palm in wavelengths of 750 nm to 950 nm. The vascular network appears as dark
lines in NIR imaging.

Every biometric system can be generalised to the five subsystems data capturing, signal pro-
cessing, data storage, comparison subsystem and decision subsystem operating in verification
or identification mode. A biometric system has to address several privacy concerns; templates
shouldn’t be traceable across different databases, templates shouldn’t be reversible to its bio-
metric sample and it should be possible to renew templates in a way, that a renewed template
isn’t linkable to a old template of the same instance.

Section 2.2.3 introduced the at-least-one-false-match problem in identification scenarios,
which also applies to the palm vein modality. Thus, it is required to employ a strategy to reduce
the number of necessary template comparisons (workload reduction) for the palm vein modality.
Workload reduction for palm vein modalities remains an insufficiently-researched topic. In the
following chapter, selected state-of-the-art approaches for workload reduction and state-of-the-
art representations of (palm) vein patterns will be presented, combined and expanded to find
new strategies for workload reduction in palm vein environments.
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Chapter 3

Related Work

This chapter describes current state-of-the-art and newly -introduced workload reduction ap-
proaches in palm vein identification scenarios, preceded by a brief discourse in palm vein feature
representations. The chapter is organized in three sections: first, a generalized list of state-of-
the-art types of palm vein representations is presented in section 3.1 and discussed. Second, a
brief overview of types of workload reduction is presented in section 3.2, followed by a short
literature survey for selected types in the corresponding subsections.

3.1 Vascular Biometric Systems
At the time of writing, there are two common features found in palm vein patterns.

Minutiae Points Vein minutiae points are nearly identical to fingerprint minutiae points:
they mark endpoints, bifurcations and trifurcations of the vein patterns. Minutiae points
can be described by their location and rotation.

Vein Strands The veins themselves can be used as features. Descriptors to veins are start-
and endpoints, direction, curvature, angles or abstract figure.

Due to their almost identical characteristics to fingerprint minutiae, the vein minutiae are
commonly used for vascular biometric systems. Substantial research effort has been devoted
to fingerprint minutiae and a broad segment of the introduced approaches are applicable, but
not necessarily feasible, to palm vein minutiae: recalling section 2.1, compared to fingerprint
minutiae, the palm vein minutiae suffers from a higher noise in the capturing process due to the
blurred edges of the veins and low contrast. Therefore, most fingerprint minutiae approaches
need to be re-evaluated for the more fuzzy palm vein minutiae. A brief survey of different
fingerprint minutiae approaches is presented in [Zae11].
Using minutiae as feature descriptor isn’t as commonly used as using the full vascular pattern
as feature descriptor. For example, patents [Wat14, JHF14, SKS+14] by Fujitsu Limited hint
at the usage of the full palm vein vascular pattern as a biometric feature set in their comercial
palm vein biometric system.
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3.2 Workload Reduction
As already mentioned in 2.3, it is crucial to reduce the number of necessary template compar-
isons in a biometric system. The different approaches in workload reduction are categorized in
three different types by [DRB17].

Serial combination of algorithms Instead of comparing every template with the query us-
ing the selected comparison algorithm, a less complex, respectively faster, and approxim-
ate algorithm is used to find a shortlist of most likely template matches. subsequently,
only the templates in the shortlist are compared using a complex and more accurate
algorithm.

Classification, Clustering and Binning Another two-step approach is to split the enrollee
database into multiple subsets based on a easy-to-determine feature characteristic. On a
query, the probe is classified and only the enrolled templates matching the class of the
probe are compared with the probe using the actual comparison algorithm. Trivial class
descriptors in palm vein templates are e.g. the race or left/right hand.

Indexing Workload reduction utilizing probabilistic or hierarchical data structures (e.g. trees).
These approaches reduce the system load in terms of the big-O notation.

It has to be noted that even if the serial combination of algorithms and classification types
appear to be the same (both types run a pre-selection step to select a shortlist of qualified tem-
plates), there is one crucial difference: while the serial combination of algorithms generates a
tailored shortlist for each query from the entire database, the classification/binning approaches
predefine shortlists of the database and select the right list for a query.

For the completeness sake, [DRB17] also lists hardware acceleration and parallelism as a
category: disjoint parts of the enrollee database can be processed simultaneously on multiple
CPUs/threads by using multi-core processors or GPUs. However, it is noted that the workload
is not reduced but simply distributed so the problem of reducing the number of templates is
not solved by these approaches. Further, [DRB17] divides the approaches in image encoding
depended and independent approaches.
Biometric systems can use a combination of the presented categories. For example, preceding
a paralleled indexing approach with an classification approach may further reduce workload in
large-scale scenarios.
Although it appears obvious, it has to be noted that a workload reduction approach must not
(significantly) impair the naïve biometric performance to be viable.
The following subsections provide a short list of examples for the different types of workload
reduction and list some possible advantages and disadvantages. Note that most examples are
for other modalities that use either veins as a biometric characteristic or use minutiae-points as
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feature descriptor, since approaches explicitly targeting palm veins are not broadly researched
or publicly available.

3.2.1 Serial combination of algorithms

All surveyed approaches that are stated as a serial combination of algorithms by the authors are
in fact indexing or classification approaches, followed by a state-of-the-art biometric recognition
approach.

3.2.2 Classification, Clustering and Binning

The advantage of the classification, binning and clustering approaches compared to the serial
combination of algorithms is trivial: while a serial combination of algorithms has to inspect
the whole database just-in-time, the predefined classes of a classification/clustering or the com-
puted bins of a binning approach are generated off-line during the database construction. This
leads to increased computational overhead while creating the database, although the overhead
for each query is comparatively small. Frequently, classification and clustering are used as
synonyms for each other. However, in data mining, classification (supervised) and clustering
(unsupervised) are two different learning approaches. Classification approaches are trained with
determined outcomes (i.e. pre-defined classes), while in clustering the algorithm has to determ-
ine the classes by itself.

A fairly new approach in workload reduction in terms of binning is presented by [ZLF+14].
By extracting an orientation matrix based on the Gaussian Radon transform using the Mod-
ified Finite Radon Transform (MFRAT) [JHZ08, ZK11], the principal direction features of a
palm vein image is determined. Based on the angle of the principal direction, the template is
classified in six bins (Binα), corresponding to the major directions 0°, 30°, 60°, 90°, 120° and
150°. Therefore, a probe that is classified as Bin30° only needs to be compared to the references
that are classified as Bin30°.
Another classification approach presented in [SRB15] uses clustering (K-Means [Llo82]) to form
groups of similar finger-vein patterns. Thus a query first is compared to the centre points of each
cluster and second the query is only compared to the templates stored in the most fitting cluster.

Disadvantages of a classification workload reduction approach include

the limited number of classes for each class descriptor: differing between left or right hand only
results in two classes; using the skin colour may result in two to four classes, whereby
even the introduced approach using the principal direction of the palm veins only features
five classes. Thus, the expected workload reduction for classification is comparatively
small. Furthermore, most classification approaches expect a evenly distributed number of
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templates in every class. In most real-world scenarios, this is not the case, and thus the
actual workload is much higher when one query is classified to a large bin.

the similar two-step problem like in serial combination of algorithms approaches: if a short
list does not contain the correct reference template, the following steps would yield a
non-match, thus lowering the genuine acceptance rate.

3.2.3 Indexing

Indexing on biometric data requires different approaches than common indexing algorithms
due to the fuzziness: instead of querying with the same key, a similar key is queried and thus
normal hashing approaches are not feasible. The retrieval performance of an indexing scheme
most depends on its hashing functions, which need to fulfil the conditions that the hashed
representation of two similar templates are also similar as well without losing too much inter-
class variance. A good introduction1 and a possible approach to the problem is presented by
[HDZ08]. Most noteworthy disadvantages and trade-offs are the high offline (preprocessing) and
additional storage costs.

An novel minutiae-based indexing approach is presented in [CFM11] using the Minutia
Cylinder-Code (MCC) (presented in [CFM10]) minutiae representation. Initially targeting fin-
gerprint minutiae, the design of the MCC offers promising characteristics for palm vein minu-
tiae. The MCC is a fixed-radius local minutiae approach represented in a 3D cylindrical data
structure. These cylinders are built from invariant distances and angles in a neighbourhood of
each minutiae, without the type and quality.

The authors state, amongst others, three advantages that - projected to palm vein minutiae
- deal with some of the negative characteristics of palm vein feature detection:

• The fixed-radius approach tolerates missing and spurious minutiae.

• Small feature extraction errors are tolerated due to the adoption of smoothing.

• Noisy regions with many spurious minutiae are dealt with a limiting function.

Indexing the MCC is achieved by linearising the cells of a cylinder corresponding to a given
minutiae, thus receiving a vector of linearised cylinders. Each linearised cylinder is hashed by
three different hashing functions. For each hash, the value (bucket) is stored. To generate a
short list of candidate templates, the same procedure is applied to the query and the database
templates with the highest number of bit collisions are selected.

1Another good publication for the awareness of the fuzzy data problem can be found in [Pro13].
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3.3 Chapter conclusions
This chapter has introduced the different types of workload reduction and presented some cur-
rent state-of-the-art biometric workload reduction approaches for minutiae- and vascular-based
modalities. The three introduced types are serial combination of algorithms, classification/bin-
ning and indexing. For each presented approach, the basics were briefly outlined. Some presen-
ted approaches base on special representations. This is most likely found for indexing and serial
combinations of algorithm types. Most classification and binning approaches do not rely on
a special representation, and thus can be efficiently employed without additional storage re-
quirements. This renders them a good choice as a first level for multi-level workload reduction
environments.

Article Type stated Real type Performance Workload Non-intrusive*

[CFM11] Indexing Indexing — — No
[ZLF+14] — Classification — 16.6% Yes
[SRB15] — Classification (Clustering) — — Yes
* Does not requires a special representation, thus easily combinable with other approaches.

Table 3.1: Summary of surveyed workload reduction approaches.

It has to be noted that many approaches labelled as a serial combination of algorithms
turned out to be binning approaches, hence the relabelling in table 3.1.
Before presenting the two indexing workload reduction approaches used for the practical work
of this thesis, the feature extraction pipeline and the feature representation will be presented
in the next two chapters.
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Chapter 4

Palm Vein Feature Detection

As shown in figure 4.1, the pipeline of a common Signal Processing Subsystem can be further
separated into four different stages: quality control, pre-processing, feature extraction and post-
processing. All approaches in this chapter belong to the pre-processing or feature extraction
stage. The Signal Processing Subsystem in palm vein modalities is much more complex and

Data Capture Subsystem

Signal Processing Subsystem

Data Storage Subsystem

Comparison Subsystem

Decision Subsystem

Quality control

Pre-Processing

Feature Extraction

Post-Processing

Figure 4.1: Signal Processing Subsystem

error-prone compared to other biometric modalities. Even compared to other vein modalities,
there are some additional difficulties to address. Compare figures 4.2a and 4.2b. Note the in-
homogeneous illumination of the ROI due to the geometry of the palm. Moreover, note the
creases and strong skin valleys resulting in large amount of noise that can not be found in the
skin texture of the wrist or the back of the hand. The lack of public available large-scale, high-
quality palm vein databases requires to use databases built for other modalities like palm print
(refer to section 8.1 for details) in experiments. Palm print databases purposely feature a high
amount of skin details, and thus feature more noise than purpose-built palm vein databases,
which aggravates the palm vein feature extraction (recall, figure 4.3a sample of a purpose-build
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(a) (b)

Figure 4.2: Raw samples of different vein-modalities found in public databases: (a) wrist [PUASRL10]
and (b) palm [cas].

palm vein imaging device; figure 4.3b sample of a purpose-build palm-print imaging device).
A discussion of different approaches for low-quality vein images in [KK10] presupposes high
contrast and little, homogeneous noise, and thus is not feasible for the fuzzy-noise environ-
ment of palm-print images. Further related work by [HOXB11, HOX+12] has already briefly
discussed several approaches for pre-processing and feature extraction of other vein modalities
with less noise. However, the lack of documentation details on these approaches exacerbates
the reimplementation and replicability for further research.
Since the pre-processing and feature extraction steps are not trivial for a high-noise environ-
ment and important for the biometric performance of following subsystems, and given that
most approaches are taken from other modalities, it is necessary to discuss the adaptations
and the combination of these approaches in the following sections. The first following section
provides a brief elaboration of recommendations for NIR imaging to increase the overall input
quality.

4.1 Recommendations for high-quality vascular imaging
For high-quality images of the superficial blood vessels, a NIR-pass filter that blocks visible
light is recommended to filter noise like reflections and skin details. Another recommendation
for noiseless images is to illuminate the ROI with a diffuse, rather than specular, illumination
source. Further, a very small back-focus (in respect to the skin surface) of the lens helps to
further reduce noise. Figure 4.3 shows the difference in cleanliness of the captured veins when
using diffuse (4.3a) and specular (4.3b) sources.

Observe the noise in figure 4.3b: The image features parts of the skin texture (mostly
shadows in the texture valleys) and suffers from inhomogeneous illumination distribution due
to specular light, which can lead to false detection of veins by the feature detection subsystem.
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(a) (b)

Figure 4.3: Difference between diffuse and specular lightning of the palm ROI using reflection captur-
ing: (a) diffuse NIR illumination (captured with a proprietary device); (b) specular NIR illumination
(from [cas])

4.2 ROI Detection
In real-world contact- or guidance-less palm vein applications, a robust and accurate ROI de-
termination is a crucial step in the pre-processing stage.
The single requirement of the introduced approach to the user is that he should spread1 his
fingers. It can safely presupposed that in high-security applications, individuals keep a high
level of cooperation and are aware of requirements in interacting with the biometric system.
Starting with a prioritized watershed-flood filling - described in [BLM14] - for image segment-
ation, the palm and fingers are separated from the background and other noise using a simple
mask shown in figure 4.4. Once the palm and fingers are filled (visualized in 4.5adg), the Border

Figure 4.4: Mask used for watershedding, rectified (white = highest priority; black = lowest priority).

Following algorithm by Suzuki from [S+85] is used to retrieve the contour of the hand. Next, the
convex hull of the hand is retrieved using the approach from [Skl82]2. With the convex hull and

1Overspreading should be avoided to keep the palm geometry undistorted as possible.
2Note that [GY83] describes a more efficient implementation for finding the convex hull that could be used

to replace the algorithm used.
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the real contour of the hand, so-called convexity defects can be calculated. Convexity defects
are gaps, thus the error, between the convex hull and the contour. They can now be used to
find the finger gaps. In figure 4.5, the convex hull (purple) and the convexity defects (green)
are visualized for three different samples in the second column. Finding the three finger gaps
in a vector of convexity defects can be implemented according to the following assumptions:
(i) the convexity defects of fingers are comparatively deep (large error); (ii) the convexity de-
fects of interest have a narrow start and end point (start/end of error); (iii) convexity defects
of fingers lay very close together; (iv) the center convexity defect (between the middle and
ring finger) has the smallest distance to the other two finger convexity defects; and (v) when
spanning a line between the two outer gaps, the middle gap has to be above the line, and thus
the orientation of the hand can be determined. If the assumptions are implemented in this
order, the three finger gaps found can easily be mapped to the left, middle and right finger
gap. The reference points (shown coloured blue and cyan in the third column of figure 4.5)
can now be used to span the ROI-rectangle: left and right mark the ROI’s size with rotation
and the middle reference point helps to decide where to move the rectangle. Now the ROI-
center can be calculated: Let Pcenter = (Pleft + Pright) ∗ 0.5, ∆P the distance between Pleft and
Pright, and α the angle of the axis spanned by Pleft and Pright in respect to the X-axis, then
PROIxy = (Pcenterx + ∆P ∗ 0.8 ∗ cos(α), Pcentery + ∆P ∗ 0.8 ∗ sin(α)). The scalar 0.8 is used to
reduce the translation, otherwise the ROI-center would translate too far away from the center
of the palm. Around Pcenter, a rectangle with the edge size of 120% of ∆P is created and rotated
by α. These calculations result in the blue rectangles shown in the third column of figure 4.5.
Note that there are two blue rectangles per palm: the enclosed area between the two rectangles
is used to determine whether the calculated ROI is placed too close to the palms boundaries.

The introduced ROI determination approach proved robust and accurate on multiple samples
and correctly framed3 the ROI of 99.2% (∼ 1190/1200) of the 940 nm samples contained in the
CASIA-MS[cas] database. Another feature is its rotation invariance: the ROI is correctly de-
termined independently of the image and the palm rotation.

4.3 Image Enhancement
The second stage in the pre-processing step involves various image enhancement operations.
As already mentioned in the fundamentals chapter (see section 2.1), vascular imaging is very
noisy and blurred. To best eliminate noise and receive a most clean and stable vascular image,
the following combination of the Non-Local Means (NL-means) and the Non-Linear Diffusion
(NL-diffusion) algorithms are used in the Signal Processing Subsystem.

3ROI centered in the palm, no background inside the ROI and at least 90% overlap of ground-truth and
determined ROI.
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(d) (e) (f)

(g) (h) (i)

Figure 4.5: Visualisation of different intermediate data in the ROI finding process for samples from
CASIA-MS[cas]: (a,d,g) hand seperated from background using priority-watershedding with mask
shown in figure 4.4; (b,e,h) convex hull (purple) and convexity defects (green); (c,f,i) original image
with projected ROI-rectangle (blue) and reference points (green, cyan, grey).

4.3.1 Non-Local Means

The first used algorithm is used to create an illumination invariant texture of the ROI by non-
local smoothing. Initially presented for face recognition by [ŠP09], it was successfully used by
[HOXB11, HOX+12] for vascular imaging. For ROI-sizes of about 128px, a template window
size of 7×7 and a search window size of 21×21 proved feasible in all experiments carried out in
the curse of this project.
Figure 4.6b shows the output of the NL-means when a worst-case sample in terms of illumin-
ation variance shown in figure 4.6a is used as a input. Note the shadows in the input sample
resulting from inhomogeneous illumination and a folded palm that are successfully removed.
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(d) (e) (f)

Figure 4.6: Output from single stages of the image enhancement process: (a) raw input (ROI from
figure 4.5f, see section 4.2); (d) raw input (NIR from [pol]); (b,e) output of NL-means (inverted); (c,f)
denoised image output of NL-diffusion after inversion.

Another property of the presented algorithm used is its ability to increase contrast on edges
while removing illumination contrast, with a high decay parameter h. The decay parameter is
used to control the decay of the Gaussian weighted Euclidian distance that serves as a similarity
value between local neighbourhoods. Refer to section 3.1 of [ŠP09] for a in-depth description
of the decay parameter.
The introduced contrast enhancement by this algorithm with h = 30 is sufficient for further
steps. Thus, an additional contrast enhancement is not necessary. Furthermore, well-known
contrast enhancement algorithms like CLAHE tend to increase contrast in non-vein areas, thus
again introducing additional noise that can lead to falsely-detected veins by the following steps.

A disadvantage of this algorithm is its high computational complexity. However, the ad-
vantage of skipping further contrast enhancement with computational complex methods puts
this disadvantage in perspective.

4.3.2 Non-Linear Diffusion

Following the NL-means, the NL-diffusion agorithm is used to remove high-frequency and some
mid-frequency noise introduced by the skin texture. Noise removal is a well-researched topic.
The selected approach introduced by [Wei01] features two feasible advantages for this applic-
ation: (i) reduces high- and mid-frequency noise and (ii) preserves blurred edges. Advantage
(i) is expected for a good noise-reduction algorithm while advantage (ii) can be considered an
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additional feature.

For demonstration purposes, a very noisy sample was chosen in figure 4.6d. Observe how
NL-diffusion removed the high-frequency and some mid-frequency noise in 4.6f after applying
NL-means in figure 4.6e, while the veins are still clearly visible due to the ability to keep blurred
edges. The NL-diffusion is configured with by the paramenter k, which describes the amount
of diffusion iterations done.

4.4 Vein Detection
After completing the pre-processing stages of finding the ROI and enhancing the cut ROI, the
features can be extracted. Recall section 2.1, the features of interest (the veins) are the dark
lines. The task to solve can be simplified to line tracking. While line tracking is a well researched
topic, due to its application in a vast number of disciplines most approaches are not feasible
for vein extraction: many approaches require pre-defined starting points, directions or patterns
and depend on high-contrast edges. Neither of these requirements are fulfilled in palm vein
patterns. With the introduced image enhancement pipeline, the contrast isn’t high enough on
edges of small veins for traditional line tracking approaches to extract a stable representation
of the vascular pattern. Even with a high enough contrast, gaps, noise and the determination
of starting-points are still a problem for line tracking approaches.

In [MNM04], a approach using simple line-tracking with random starting-points, trimmed
for vascular images, is presented. However, the approach fails to reliably follow veins in low con-
trast areas and thick veins. The same authors present in [MNM07] a more robust vein-pattern
extraction approach using maximum-curvature points. Simplified, the algorithm examines the
ROI-image horizontally, vertically and diagonally line by line as a intensity graph4 and con-
verts it in a curvature representation. The curvature representations is now searched for local
maxima. Every local maxima is scored with the probability that it is positioned on the centre
of a vein, and thus a map of scores is created.

Using the enhanced image from figure 4.6c as an input for the maximum-curvature al-
gorithm, the score map visualized in figure 4.7a is received. With a threshold function, the
score map can be converted to a binary representation of the palm vein pattern. Even though
the maximum-curvature algorithm tries to connect the vein centres inside the score map, exper-
iments have shown that using a dilate-erode-dilate step helps to connect single gaps or closing
small holes (see figure 4.7b).

4The very basic idea of [MNM07] is again picked up (three years later) by [KK10]. Neither [KK10] nor the
following publication [KK11b] mention the approach by [MNM07].
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(a) (b) (c) (d)

Figure 4.7: Output from single stages of the feature detection process with input from figure 4.6c:
(a) score map retrieved with the maximum-curvature algorithm; (b) binarised and dilated score map;
(c) thinning with algorithm of Guo and Hall; (d) detected minutiae (bifurcations/trifurcations green,
endpoints red);

The response of the maximum-curvature algorithm can be trimmed with its σ parameter
that controls the kernel size of the algorithm. Reducing σ decreases the size of the window in
which local maxima are searched, thus increasing the sensitivity. In the original publications a
σ = 8 is used. Experiments showed an increased Genuine Acceptance Rate (GAR) for all used
databases with σ = 7.

Another application of the maximum-curvature algorithm response is extracting quality
information about the vascular pattern. Refer to section 5.7.1 for a detailed description of the
quality extraction process.

4.5 Minutiae
With the palm vein pattern received from binarising the maximum-curvature score map, the
minutiae are easily extractable. Instead of complex pattern searching, a much faster and more
robust approach based on the skeletarised representation of the binarised score map can be
used. The approach presented in [OHBL11] extracts the minutiae type and rotation in one im-
age iteration with a single convolution kernel, where other approaches need multiple iterations
and kernels.

To receive the skeleton (see fig. 4.7c) of the vein pattern (see fig. 4.7b), the algorithm
introduced by [GH89] is used. The thinning algorithm was chosen because it best preserves the
initial structure[Koc13] and is highly parallelisable.

The kernel by [OHBL11] (see fig. 4.8) represents a 2D bitmask, thus applied to the binary
skeleton image, every pixel is assigned with a value describing its neighbourhood. Minutiae
(skeleton endpoints, bifurcations and trifurcations) and their rotations can be determined by
special values in the filters response: e.g. Endpoints at rotation 0°, 45°, 90°, 135°, 180°, 225°, 270°
and 315° (ccw, starting top-centre) are assigned a value of 258, 257, 384, 320, 288, 272, 264 and
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Figure 4.8: 2D-Kernel used by [OHBL11] to receive minutiae types and rotation in one iteration.

260. Figure 4.7d shows the minutiae found. Bifurcations and trifurcations are marked green,
while endpoints are marked red with an additional marker following the direction of the end-
point.

4.6 Chapter Conclusions

(a) (b) (c) (d)

Figure 4.9: Pipeline applied on six samples of four palm instances selected from [pol] and rendered as
one image. Each colour represents one sample. Colours: Red, green, blue, cyan, magenta, yellow.

In this chapter, the pipeline for the pre-processing and feature extraction stages of the
Signal Processing Subsystem was presented. The presented pipeline is a robust basis for further
algorithms: Figure 4.9 shows the combined output of six samples from four randomly-selected
palm instances. Note the robust vein extraction even under the noisy conditions of a palm-print
database. Most errors appear to be a result of different blood circulation due to heartbeat. Only
some minor translation errors are observable.
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Chapter 5

Spectral Minutiae Representation

Data Capture Subsystem

Signal Processing Subsystem

Data Storage Subsystem

Comparison Subsystem

Decision Subsystem

Quality control

Pre-Processing

Feature Extraction

Post-Processing

Figure 5.1: Signal Processing Subsystem

By now, the pre-processing and feature extraction stages have successfully extracted the
palm vein minutiae for further processing. The following Comparison Subsystem and Data
Storage Subsystem can use the raw minutiae vector as a template. However, this introduces
several problems, starting with privacy concerns in terms of storing the raw biometric features
and ending with computational drawbacks due to differently-sized feature-vector1 sizes.
To address these issues, a post-processing stage can convert the raw minutiae to a fixed feature-
size representation that should not be reversible to the minutiae. This chapter describes the
approach that was investigated in this thesis. Readers already familiar with the SMR approach
may only read section 5.7 and skip the rest of this chapter.

1Even probes of the same subject differ in their number of features.
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5.1 Spectral Minutiae
Inspired by the Fourier-Mellin transform [CP76] used to obtain an translation, rotation and
scaling invariant descriptor of an image, the SMR [XV10c] transforms a variable-sized minutiae
feature vector in a fixed-length translation, and implicit rotation and scaling invariant spectral
domain. To prevent the re-sampling and interpolation introduced by the Fourier transform and
the polar-logarithmic mapping, the authors introduce a so-called analytical representation of
the minutiae set and an so-called analytical expression of a continuous Fourier transform that
can be evaluated on polar-logarithmic coordinates. According to the authors, the SMR meets
the requirements for template protection and allows faster biometric comparisons.

To represent a minutiae in its analytical form, it has to be converted into a Dirac pulse to
the spatial domain. Each Dirac pulse is described by the function mi(x, y) = ω(x−xi, y−yi), i =
1, . . . , Z where (xi, yi) represents the location of the i-th minutiae in the palm vein image. Now
the Fourier transform of mi(x, y) is given by:

F{mi(x, y)} = exp(−j(wxxi + wyyi)) (5.1)

Based on this analytical representation, the authors introduced several types of spectral rep-
resentations and improvements for their initial approach. The following four sections will cover
the three main types and their sampling introduced in their corresponding publications. Sub-
sequently, the introduced feature reduction approaches and the binarisation approach, followed
by the comparison methods, are presented.

5.1.1 Spectral Minutiae Location Representation

The initial approach introduced in [XVK+08] is called the Spectral Minutia Location Repres-
entation (SML). It only uses the minutiaes location for the spectral representation:

M(wx, wy) =
∣∣∣∣∣

Z∑
i=1

exp(−j(wxxi + wyyi))
∣∣∣∣∣ (5.2)

To compensate small errors in the minutiae location, a Gaussian low-pass filter is introduced
by the authors. A 2-D Gaussian filter in the space domain is represented by

g(x, y) = 1
2πσ2 exp

(
−x2 + y2

2σ2

)
(5.3)

and its Fourier transform
G(wx, wy) = exp

(
−

w2
x + w2

y

2σ−2

)
. (5.4)

Thus, the magnitude of the smoothed SML with a fixed σ is defined as

M(wx, wy; σ2) =
∣∣∣∣∣exp

(
−

w2
x + w2

y

2σ−2

)
Z∑

i=1
exp(−j(wxxi + wyyi))

∣∣∣∣∣ (5.5)

in its analytical representation. By taking the magnitude, the translation invariant spectrum is
received.
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5.1.2 Spectral Minutiae Orientation Representation

Additional to the location, the orientation θ of a minutiae can be incorporated as an additional
source of information to better describe a minutiae. This second Spectral Minutiae type was
introduced in [XVB+09]. For the Spectral Minutia Orientation Representation (SMO), to every
minutiae the function mi(x, y, θ) is assigned, such that

F{mi(x, y, θ)} = j(wxcosθi + wysinθi) ∗ exp(−j(wxxi + wyyi)). (5.6)

Applying the Gaussian smoothening and taking the magnitude yields

M(wx, wy; σ2) =
∣∣∣∣∣exp

(
−

w2
x + w2

y

2σ−2

)
Z∑

i=1
j(wxcosθi + wysinθi) ∗ exp(−j(wxxi + wyyi))

∣∣∣∣∣ . (5.7)

However, the SMO did not show better results in experiments than the SML: the orientation is
included as a derivative of the delta function, thus amplifying the noise in the higher frequencies.
To compensate the higher noise, a higher σ is needed for the Gaussian kernel, therefore losing
precision.

5.1.3 Spectral Minutiae Complex Representation

To tackle the disadvantages of the SMO approach, the Spectral Minutia Complex Represent-
ation (SMC) approach was introduced in [XV10b]. Instead of incorporating the orientation as
derivative of the delta function, the orientation is assigned by a complex amplitude ejθi . Thus,
the magnitude of the Gaussian smoothed Fourier spectrum yields

M(wx, wy; σ2) =
∣∣∣∣∣exp

(
−

w2
x + w2

y

2σ−2

)
Z∑

i=1
exp(−j(wxxi + wyyi) + jθi)

∣∣∣∣∣ . (5.8)

The authors achieve an overall better performance using the SMC compared to the SML even
for the lesser-quality dataset.

5.2 Spectral Minutiae Sampling
As already mentioned in section 5.1, the different types of the SMR can be evaluated on a
polar-logarithmic grid. When sampling the SMR on a polar-logarithmic or polar-linear grid,
rotation of the minutiae become horizontal circular shifts. For this purpose, sampling of the
continuous spectra 5.5(SML) or 5.7(SMO) is proposed by the authors using M = 128 in the
radial direction λ logarithmically distributed between λmin = 0.1 and λmax = 0.6. The angular
direction β for SML and SMO is proposed between β = 0 and β = π in N = 256 uniformly
distributed samples. A sampling between β = 0 and β = π is sufficient due to the symmetry of
the Fourier transform for real-valued functions.
The SMC features much more information in the higher frequencies. Instead of sampling λ of
SMC on a logarithmically distributed grid, sampling on a linear grid is proposed. This provides
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more samples in the higher frequency part. Furthermore, due to the additional complexity, the
SMC is proposed to be sampled between β = 0 and β = 2π in N = 256 uniformly distributed
samples.

(a)

(b) (c)

(d) (e)

Figure 5.2: Illustration of the Spectral minutiae approach: (a) input minutiae visualised on the extrac-
ted vein pattern; (b) complex-modulus SML Fourier spectrum sampled on a polar-logarithmic grid; (c)
complex-modulus SMC Fourier spectrum sampled on a polar-linear grid. (d) real-valued SML Fourier
spectrum sampled on a polar-logarithmic grid; (e) real-valued SMC Fourier spectrum sampled on a
polar-linear grid.

Refer to figure 5.2 for examples of sampling the minutiae input visualized in 5.2a with the
different approaches: The magnitude of the polar-logarithmic SML is shown in figure 5.2b while
the magnitude of the polar-linear SMC is shown in figure 5.2c. Figures 5.2d and 5.2e show the
real-valued grids of the same SML and SMC. Real-valued SMR lose their translation invariance
compared to the absolute-valued SMR, but are more stable on low-quality data with various
spurious minutiae.

Further, it is possible to tune the SMR sampling to more stable, but less detailed con-
figuration by altering λmin and λmax [XVK+08]. λmin correspondents to the lower frequencies
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of a SMR and λmax to the higher frequencies. To receive a more stable SMR in a high noise
environment, the λmax should be lowered to values between 0.45 and 0.55. Altering λmin should
be avoided since all experiments that used a λmin ̸ 0.1 achieved a notoriously bad biometric
performance.

5.3 Normalisation
Since the SMR yields spectra with different energies depending on the number of minutiae per
sample, each spectrum has to be normalised to reach zero mean and unit energy. To normalise
the SMR, the following equation is used.

X = M−M
σ(M)2 (5.9)

By subtracting the mean (M) of the magnitude2 (M) and then dividing it by the standard
deviation (σ(M)2) of it, the resulting spectrum X is normalised to zero mean and unit energy.

5.4 Feature Reduction
Sampling the spectra on a N = 256 and M = 128 grid yields a N×M = 32768 sized feature
vector. This large-scale feature vector introduces two drawbacks:

Storage Considering N×M = 32768 double-precision float (64bit) values, each template would
take 2097152bit = 256kB RAM or data storage.

Comparison Complexity Processing a N×M = 32768 sized feature vector is a large com-
putational task and limits comparison speeds, especially with large-scale databases in
biometric identification scenarios.

To address these issues, the same authors of the SMR approaches introduced two feature-
reduction approaches in [XVKA09]. Both base on well-known algorithms and are explained in
the following subsections.

5.4.1 Column Principal Component Analysis

Based on the idea of the well-known Principal Component Analysis (PCA) originally presented
in [Pea01], the CPCA is introduced as one feature reduction approach. The authors present
two problems by applying the original PCA to the SMR. First mentioned is the small sample
size problem introduced in [RJ+91]: to receive a reliable PCA feature reduction, it is necessary
to train the PCA with a large training set. It is unlikely possible to acquire a large training set
in real-world scenarios. The second mentioned problem is the rotation invariance of the PCA:

2Or real valued part.
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(a)

(b)

(c) (d)

Figure 5.3: Illustration of the feature reduction approaches: (a) input minutiae visualised on the
extracted vein pattern; (b) complex-modulus SML Fourier spectrum sampled on a polar-logarithmic
grid; (c) feature reduction with Column Principal Component Analsysis (CPCA); (d) feature reduction
with Line Discrete Fourier Transformation (LDFT) applied on top (c).

when applying the PCA to a SMR, the resulting feature vector loses its rotation invariance and
every probe has to be pre-rotated to a fixed position for all references and probes.
To avoid both problems, the PCA is only applied column-wise, resulting in the CPCA. Naïvely
spoken, the CPCA scrutinizes the input SMR and applies the Singular Value Decomposition
(SVD) column-wise.
The first problem is thus addressed by the number of columns (M) per SMR. Let X be the
M×N sized 2-D feature vector received by the SMR, every column is translated in a new
feature vector −→z = (z1, . . . , zM)T , thus every spectrum consists of N feature vectors X =
(−→z 1, . . . ,−→z N). When L samples of X (X 1, . . . ,X L) are present in the training set, LN = L×N

trainings vectors Z = [−→z 1, . . . ,−→z LN
] are received. In other words, the spectra get appended on

the X-axis to another and every column is analysed.
The second problem of keeping the rotation operator (shifts on the horizontal axis) is avoided
by only reducing features in the means of rows. Thus the information of every column is still
in the same column after the CPCA transformation and rotations can still be compensated by
horizontal shifts.
Since the features are concentrated in the upper rows after applying the CPCA, the lower rows
can be removed, resulting in a N×MCP CA sized feature vector. According to the authors, the
achieved reduction is stated up to 90% for SMO and up to 80% for SML with the CPCA
approach while maintaining the biometric performance. Figure 5.3c shows the CPCA of the
SML with proposed settings in figure 5.3b with a small L = 4. The SMR with applied CPCA-
reduction will further be referenced as SMR reduced with the CPCA feature-reduction (SMR-
CPCA) respective SML reduced with the CPCA feature-reduction (SML-CPCA) and SMC-
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CPCA.

5.4.2 Line Discrete Fourier Transform

The second introduced feature reduction approach reduces the features in the horizontal direc-
tion. It bases on the periodic characteristic of the horizontal axis of the spectrum X . Thus, it
is possible to apply it on top of the CPCA reduction.
In the LDFT feature reduction, every row of X is translated in a line vector −→y = (y1, . . . , yM),
therefore X = (−→y 1, . . . ,−→y M)T . With the discrete Fourier transform [OWN96],
X LDF T = (Y1(k), . . . , YM(k))T , an exact representation of X , is received. Only the Fourier com-
ponents with a certain percentage of energy, the authors propose 80% (refer to [XVKA09] for
details), are retained, and thus the feature reduction is achieved. The circular shift rotation is
then expressed as

T (m, n− ncs) = exp
(
−j2π

N
kncs

)
×X LDF T ; k = 0, 1, . . . , N − 1; m = 1, . . . , M (5.10)

with ncs expressing the columns to shift.
The authors state a reduction of up to 70% for the stand-alone LDFT and up to 95% for LDFT
after CPCA while maintaining the biometric performance.

5.5 Binarisation
Since ∑Z

i=1 exp(−j(wxxi + wyyi)) ∈ C, thus M(wx, wy) ∈ R, every element in X is defined
as a 32bit or 64bit floating-point real-valued number. Comparisons or calculations (especially
divisions) with single or double precision floating-points is a relatively complex task compared
to integer operations. In the proposed SMR scenario, where a direct comparison (see section
5.6) is defined as one multiplication, one division and one addition per feature, N×M×OPcnt =
256×128×3 = 98304 floating-point operations3 are needed for one comparison. To address this
computational complexity and comply with other template-protection or indexing approaches
where a binary feature-vector is required, the SMR can be converted to a binary feature vector
as presented in [XV10a].
The authors introduce two binarisation approaches, each using a different data model but both
resulting in the same representation.

The binarisation approaches yield two binary vectors: a so-called sign-bit vector and a so-
called mask-bit vector:

sign-bit The sign-bit vector contains the actual features of the SMR in a binary representation.
Each bit is set according to one of the two binarisation approaches.

3A small additional overhead for preprocessing optimised values is ignored.
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Input and result of the SMR-binarisation for SML and SML-CPCA: (a) real-valued SML
input; (d) real-valued SML-CPCA input; (b) the spectral sign-bit of (a); (e) the spectral sign-bit of
(d); (c) the spectral mask-bit of (a); (f) the spectral mask-bit of (d).

mask-bit Since binary representations suffer from bit-flips on edges in fuzzy environments,
a second vector is introduced. This vector masks the likely-to-be-stable, called reliable,
sign-bits.

The mask contained in the mask-bit vector is not applied to the sign-bit. Instead, it is kept as
auxilary data and is applied during the comparison step4.
The authors describe two approaches of receiving both vectors:

Spectral-Bits The Spectral-Bits are the result of the first, naïve approach. Let X R be the
SMR feature vector, X BSsign the sign-bit vector and X BSmask the mask-bit vector of the
Spectral-Bits. Then BX sign

is defined as

X BSsign(x, y) =

1, if X R(x, y) > 0

0, otherwise
(5.11)

and Bmask as

X BSmask(x, y) =

1, if |X R(x, y)| > MT

0, otherwise
(5.12)

Using the proposed threshold of 0.8 as MT for the mask-bit ensures masking only the
stable bits of X BSsign.

Phase-Bits While the Spectral-Bits only evaluate the real-valued SMR, the Phase-Bits also
use the imaginary part of the SMR spectrum X C. A third dimension is added to the sign-
bit and mask-bit vectors for the Phase-Bits. The subsequent steps equal the Spectral-
Bits approach but with an additional dimension. Let X C be described as X C(x, y) =
(real + i ∗ imag) and again X BP sign the sign-bit vector and X BP mask the mask-bit vector

4This approach equals the masking procedure in iris recognition (see [Dau03, Dau04]).
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of the Phase-Bits, then

X BP sign(x, y) =



[0, 0], if X C(x, y)real ≤ 0 and X C(x, y)imag ≤ 0

[0, 1], if X C(x, y)real ≤ 0 and X C(x, y)imag > 0

[1, 0], if X C(x, y)real > 0 and X C(x, y)imag ≤ 0

[1, 1], if X C(x, y)real > 0 and X C(x, y)imag > 0

(5.13)

and

X BP mask(x, y) =



[0, 0], if X C(x, y)real ≤ MT and X C(x, y)imag ≤ MT

[0, 1], if X C(x, y)real ≤ MT and X C(x, y)imag > MT

[1, 0], if X C(x, y)real > MT and X C(x, y)imag ≤ MT

[1, 1], if X C(x, y)real > MT and X C(x, y)imag > MT

(5.14)

For the mask-bit vector of the Phase-Bits, a threshold of 1.2 is proposed.

5.6 Comparison
In the initial publication [XVK+08], two comparison methods for the SMR are introduced:
one direct comparison approach and one weighted comparison approach. Both of them showed
almost identical results, and thus the weighted comparison approach was dropped in later pub-
lications because the slightly better results did not justify additional training and computational
overhead. Later on in [XVB+09], a third comparison method that tries to compensate rotation
and scaling variances by using an additional Fourier transform is introduced. However, this
approach shows a significantly lower performance in terms of FMR, FNMR and Equal Error
Rate (EER) and was also dropped in later publications. Therefore, the next sections will only
cover the direct comparison methods, that are used later in this thesis.

5.6.1 Spectral Minutiae

The most proven performance in SMR comparison is reached with the so-called direct com-
parison5. It yields the most reliable comparison scores while keeping a minimal computational
complexity.
Let R(m, n) be the spectrum of the reference template and P (m, n) the spectrum of the probe
template, both sampled on the polar-logarithmic grid and normalised to zero mean and unit
energy (see section 5.3). Then, the similarity-score E

(R,P )
DM is defined as

E
(R,P )
DM = 1

MN

∑
R(m, n)P (m, n) (5.15)

The score is thus defined by correlation, which is a common approach in image processing.
5In [XVK+08], the comparison method is named direct matching, where matching is used as wrong term for

comparison.
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5.6.2 Binary Spectral Minutiae

For comparing two binary SMR or SMR-CPCA, a different approach is introduced in [XV10a],
which is also used in the iris modality [Dau03, Dau04].
After converting R(m, n) and P (m, n) in their individual mask-bit and sign-bit, yielding {maskR, signR}
and {maskP, signP}, the fractional Hamming Distance (FHD) can be applied on those binary
representations.

FHD(R,P ) = ∥(signR⊗ signP ) ∩maskR ∩maskP∥
∥maskR ∩maskR∥

(5.16)

The inclusion of masks in the Hamming Distance masks out any likely-to-flip bits and only
compares the parts of the sign-bit vector where the mask-bit vectors overlap. Therefore, only
the likely-to-be-stable, so-called reliable, areas are compared. This typically improves the re-
cognition performance.

5.7 Extending the Spectral Minutiae Representation with
quality data

As an enhancement for the SMR, a approach of using quality information about minutiae is
presented in [XV09]. The authors differ between two types of quality:

Location Accuracy (qL) Under certain circumstances, the position of a minutiae cannot be
accurately determined. For example, when wide veins need to be thinned to their skeleton,
a displacement of the actual vein centre could happen. The Location Accuracy describes
the expected certainty that the minutiae has not been misplaced in the feature-extraction
process.

Minutiae Reliability (qM) It is possible for feature-extraction pipelines to falsely extract
minutiae. Some pipelines are able to determine a genuine certainty for each minutiae that
describes the certainty that the extracted reference point is a genuine minutiae and not
a spurious minutiae. The following steps can decide whether they use a minutiae or how
to weight them.

Both types of quality can be incorporated independent of one another in all previously-presented
SMR, yieling the quality data enhanced Spectral Minutia Location Representation (QSML) and
the quality data enhanced Spectral Minutia Complex Representation (QSMC).
Recall section 5.1.1, where equation 5.5 defines the Gaussian smoothed SML. The Gaussian
filter helps to reduce small location errors for all minutiae. Now, if the accuracy of minutiae
locations is known, instead of using a fixed σ Gaussian kernel for all minutiae, σ is linear
depending on the minutiae quality individually, thus yielding

M(wx, wy) =
∣∣∣∣∣

Z∑
i=1

(
exp

(
−

w2
x + w2

y

2σ−2
i

)
∗ exp(−j(wxxi + wyyi))

)∣∣∣∣∣ (5.17)
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as a new equation for the SML with location accuracy quality.
When the minutiae reliability is known, the Dirac pulse (eq. 5.1) of each minutiae can be
weighted linearly:

M(wx, wy; σ2) =
∣∣∣∣∣exp

(
−

w2
x + w2

y

2σ−2

)
Z∑

i=1
wiexp(−j(wxxi + wyyi))

∣∣∣∣∣ (5.18)

A higher reliability correspondents to a higher weight wi for minutiae mi(x, y, qM).
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(c) Minutiae reliability

Figure 5.5: Effects of the quality data on the (not normalised) SML

Compare figure 5.5a and 5.5b: in 5.5b the location accuracy quality data is used with an
average accuracy of 50%. The location accuracy smooths the high frequency parts of the SMR
that are sampled in the higher Y-axis regions (Y > 64), and thus the impact6 of a minutia
with a low accuracy is reduced in high frequencies, while minutia with a high location accuracy
keep their impact on the high frequencies. With increasing frequency, a minutiae’s location is

6Increase of the SMR value (Z-axis).
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narrowed down: the higher the frequency, the more precise the location information.
By contrast, figure 5.5c shows the effect of the minutiae reliability on the SMR, compared to
figure 5.5a. The minutiae reliability reduces the impact on all frequencies of the SMR. Therefore,
minutiae with a low reliability will leave a smaller footprint in the SMR than minutiae with a
high reliability. Observe the lower frequencies along the beginning and the end of the X-axis,
whereby the value of the SMR is reduced since unreliable minutiae have a lesser impact.
Note: the QSML shown in figure 5.5 are not normalised to [−1, 1]. The normalisation process
accentuates the visualisation of the quality data impact since it evenly distributes the Z-axis.

5.7.1 Retrieving and applying minutiae-reliability data in vascular
modalities

Applying minutiae-reliability quality data promises increasing performance in terms of GAR. In
chapter 4, a feature-extraction pipeline was introduced which is already able to report minutiae-
reliabilty data.

One approach for extracting quality data could be to use the contrast of the veins. However,
this introduces at least one concern: image contrast is relative. To use the contrast as quality
data, a reference value is needed. Using the average image brightness as reference could yield
small contrast gradations. Second, it is very hard to normalise the output of the contrast quality
data approach. Therefore, another quality data extraction approach is proposed.

Recall section 4.4, whereby the maximum-curvature approach yields a score map describing
the probability that a local maxima actually represents the centre of a vein. Observe figure

(a) (b) (c)

Figure 5.6: Feature detection with the maximum-curvature approach: (a) input probe; (b) response of
the maximum-curvature algorithm; (c) probe (a) with layover response (b).

5.6, it is visible, that the response also corresponds to the darkness and contrast of the vein:
clearly-visible veins result in a high response by the maximum-curvature algorithm, while less

38



noticeable veins result in a low response. Since these small, less noticeable veins are more likely
to be affected by short-term influences like temperature or blood pressure, it is desirable to
weight their minutiae less than those of the larger veins. As described in section 4.5, the used
thinning algorithm best keeps the initial shape and best hits the actual centre of the input.
Thus, it is safe to assume that the minutiae found in the skeleton will be in the centre of
their maximum-curvature extracted veins. Following the assumption, the value at the minutiae

(a) (b)

(c) (d)

Figure 5.7: Extending the minutiae with reliability data taken from the response of the maximum-
curvature algorithm: (a) response of the maximum-curvature algorithm of the probe showed in figure
5.6a (jet colour-map); (b) skeleton of the vein pattern; (c) scored minutiae (red = lowest, green =
highest score); (d) fusion of the previous figures (maximum-curvature without jet colour-map; minutiae
yellow = lowest, green = highest score).

location in the maximum-curvature response corresponds to the minutiae reliability.
A drawback of this approach is its dependency on overall contrast: probes with low contrast,
even after the image enhancement, will automatically result in a overall lower reliability. To
address this issue, the maximum-curvature response has to be normalised to [0, 1]. Let −−→MC

be the maximum-curvature response as one continuous vector, then the normalised maximum-
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curvature vector M̂C is given by

M̂C(x, y) = min
(

g
MC(x, y)
max

−−→
MC

, 1
)

(5.19)

where g is a gain factor used to adjust the minimal needed response for 100% (M̂C(x, y) = 1)
minutiae reliability. After applying the normalisation to the maximum-curvature response, the
values are contrast-invariant and can safely be used as reliability descriptors.
For further confidence, it is possible to include the minutiae N4- or N8-neighbourhood of the
normalised maximum-curvature response in the calculation and take the mean or weighted mean
as minutiae reliability. Thus scores of minutiae detected from single pixel width maximum-
curvature responses will be reduced while the score of reliable thick responses will barely be
altered.

5.7.2 Retrieving and applying location-accuracy data in vascular
modalities

Even if the thinning algorithm used (see section 4.5) promises the best skeleton accuracy, it is
possible for the skeleton to be shifted by a few pixels. Therefore, it might benefit the GAR to
retrieve and use the location-accuracy data to reduce errors introduced by shifted minutiae.
Again using the maximum-curvature response, the location-accuracy can be approximated for
individual minutiae points. Instead of using the normalised maximum-curvature response, a
binary representation will be used. The location accuracy is then approximated by the width
of the vein. A naïve approach is to test the vein width by taking the minimum span of set
bits of the binary maximum-curvature response MCB in each direction as proposed in listing
1. The returned pixel span can now be used to approximate the location accuracy relatively
to the probes size: minutiae where their returned SpanDir0 differs from SpanDir1 by more
than a few pixel are likely to be shifted in other probes. Thus, the difference of SpanDir0 and
SpanDir1 (∆SpanDir) corresponds linearly7 to the location accuracy.

5.8 Minutiae pre-selection
Besides the quality extensions presented in the previous section, the SMR can further be expan-
ded by a simple minutiae pre-selection. Since the feature extraction pipeline extracts various
spurious minutiae, it holds interest whether the biometric performance can be increased by
automatically ignoring minutiae, based on simple rules:

Type A naïve selection approach is to either select only endpoints or select only bifurcations
for the SMR generation. However, it is expected that only selecting endpoints results

7Note that the difference has to be put in perspective to the probe’s size: a difference of 5px is much less of
an issue in a 512×512 sized probe than in a 128×128 sized probe.
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Algorithm 1 Naïve vein span algorithm for minutiae m(x, y).
1: function VeinSpan(MCB, x, y)
2: sHeight0 ← 1, sHeight1 ← 1, sWidth0 ← 1, sWidth1 ← 1, sDiagA0 ← 1, sDiagA1 ←

1, sDiagB0 ← 1, sDiagB1 ← 1
3: grow ← true, growFactor ← 1
4: while grow = true do
5: heightGrow ← 0 ▷ Height-Span
6: if MCB(x, y + growFactor) = 1 then
7: sHeight0 ← sHeight0 + 1, heightGrow ← heightGrow + 1
8: end if
9: if MCB(x, y − growFactor) = 1 then
10: sHeight1 ← sHeight1 + 1, heightGrow ← heightGrow + 1
11: end if
12: widthGrow ← 0 ▷ Width-Span
13: if MCB(x + growFactor, y) = 1 then
14: sWidth0 ← sWidth0 + 1, widthGrow ← widthGrow + 1
15: end if
16: if MCB(x− growFactor, y) = 1 then
17: sWidth1 ← sWidth1 + 1, widthGrow ← widthGrow + 1
18: end if
19: diagAGrow ← 0 ▷ Diagonal-Span (/)
20: if MCB(x + growFactor, y − growFactor) = 1 then
21: sDiagA0 ← sDiagA0 + 1, diagAGrow ← diagAGrow + 1
22: end if
23: if MCB(x− growFactor, y + growFactor) = 1 then
24: sDiagA1 ← sDiagA1 + 1, diagAGrow ← diagAGrow + 1
25: end if
26: diagBGrow ← 0 ▷ Diagonal-Span (\)
27: if MCB(x− growFactor, y − growFactor) = 1 then
28: sDiagB0 ← sDiagB0 + 1, diagBGrow ← diagBGrow + 1
29: end if
30: if MCB(x + growFactor, y + growFactor) = 1 then
31: sDiagB1 ← sDiagB1 + 1, diagBGrow ← diagBGrow + 1
32: end if
33: if heightGrow = 0 or widthGrow = 0 or diagAGrow = 0 or diagBGrow = 0

then
34: grow ← false

35: end if
36: growFactor ← growFactor + 1
37: end while
38: return min ((sHeight0, sHeight1), (sWidth0, sWidth1), (sDiagA0, sDiagA1), (sDiagB0, sDiagB1))
39: end function
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in very poor biometric performances since only selecting endpoints corresponds to only
selecting noise.

Reliability Based on the minutiae-reliability extraction presented in section 5.7.1, only minu-
tiae with a reliability score that exceeds a certain threshold will be selected for SMR
generation.

Neighbourhood The neighbourhood selection (neighbourhood cleaning) extends the approach
to only select bifurcations: all endpoints are excluded from the minutiae list. Further, the
bifurcation minutiae whose closest neighbour (in the means of Euclidean distance) is a
endpoint minutiae are also excluded.

The reliability criterium can be combined with the other two, resulting in five minutiae selection
approaches. Applying one or a combination of the minutiae pre-selection to the SMR yields
the Spectral Minutia Representation with minutiae pre-selection (PSMR), respective the PSMR
sub-types Spectral Minutia Location Representation with minutiae pre-selection (PSML), Spec-
tral Minutia Complex Representation with minutiae pre-selection (PSMC), PQSML and PQSMC.

5.9 Chapter Conclusions
In the first section of the chapter, the SMR has been outlined based on the original publications
and the collection in [XV10c]. With the SMR, Xu et al. introduced a promising representation
for templates of fingerprints. The SMR features comparable characteristics for fingerprint tem-
plates like the Iris-Code (see [Dau04]) for iris recognition: yielding a fixed-length feature vector
with template-protection properties and fast comparison methods for the complex-valued as
well as the binary-valued representation.
Since the SMR is based upon minutiae data, it should be feasible to apply the SMR to other
minutiae-based modalities. Hartung et al. analysed the feasibility of the SMR for finger veins,
wrist veins and veins in the back of the hand in [HOXB11] and [HOX+12]. The authors con-
cluded the feasibility of the SML variant for those vein modalities. Continuing on the work of
Hartung et al., the experiments in section 9.2 analyse the feasibility of the SMR for the palm
vein characteristic and state recommendations and hints about applying the SMR in the palm
vein modality.
The final two sections outlined the quality enhancements for the SMR by [XV09] with the SML
as a example with a new contribution: a proposal to retrieve and apply minutiae-reliability
as well as minutiae-accuracy data based on the maximum-curvature approach. Enhancing the
SML with quality data yieldes the QSML, and enhancing the SMC yields the QSMC repres-
entation. The approaches are expected to raise the GAR for vascular minutiae and are subject
to experiments in section 9.2.
Thus far, no approaches for workload reduction to address the issue stated in section 2.2.3 have
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been introduced. The next chapters introduce two promising indexing approachs for workload
reduction that are used in the experiments.

43



Chapter 6

Bloom filter-based indexing

In section 2.2.3, the challenges associated with large-scale biometric identification databases are
described. To tackle those challenges, workload reduction strategies have to be implemented.
This chapter outlines the first workload reduction approach chosen in this thesis using the
Bloom filter.

Data Capture Subsystem

Signal Processing Subsystem

Data Storage Subsystem

Comparison Subsystem

Decision Subsystem

Template

Database

Template selection

Comparison

Candidate list

Figure 6.1: Bloom filter-based indexing

6.1 Bloom Filter
Introduced as early as 1970 in [Blo70], the Bloom filter is still used today in a broad scope
in computer sciences (e.g. Big Data [CDG+08], CDN-caching [MS15], URL-matching [Yak10,
Hes12] and computer forensics). The purpose of the probabilistic data structure is an efficient
membership query. A Bloom filter (denoted B) is organized as a vector of l bits. In the initial
(empty) Bloom filter, every bit is set to zero.
Upon adding or for querying, an element has to be converted to its Bloom filter representation.
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Hash-set creation The new element or query is hashed by a fixed number (k) of independent
hashing functions H1, . . . , Hk that produce hash values in the range of [0, l] resulting in
the hashes h1, . . . , hk. These hash values represent indices for the Bloom filter.

Now the hashes h1, . . . , hk can either be added to the Bloom filter or a membership query can
be run:

Adding to the Bloom filter An element is added to the Bloom filter by taking the hash
values hi as indices for the Bloom filter and setting the corresponding bits to one as by
BN [hi] = 1 ∈ 0 . . . k. Thus an element is added to B by B = B ∨ BN .

Membership query As well as in adding to the Bloom filter, the queried element is converted
to its Bloom filter representation by BQ[hi] = 1 ∈ 0 . . . k. Now the query is performed by
comparing the Bloom filter with the query by |B∧BQ|. Only if |B∧BQ| = |BQ| is fulfilled
is the query’s element contained in the Bloom filter. Thus, if any of the set bits in BQ is
not set in B, the element is definitely not part of the Bloom filter, and therefore no false
negatives occur. However, it is possible for false positives to occur due to bit collision.
Therefore, a Bloom filter is only able to tell if the element is perhaps or definitely not
part of the Bloom filter.

Bit collisions cannot be prevented, but can be delayed by increasing l. A Bloom filter is full if
all bits are set and thus all queries will yield a positive result. It is desirable to keep a Bloom
filter as a sparse matrix to minimise the probability of bit collisions. The event of exceeding
the threshold of set bits for a Bloom filter is further called overflow in this thesis.

In its basic definition, the Bloom filter offers very successful and efficient membership queries
for scenarios where the probe and the reference are identical. However, in biometric systems,
the Bloom filters can be enabled to work with fuzzy data, allowing its usage in verification and
naïve identification scenarios if an appropriate comparison function (e.g. the hamming distance)
is used.
The initial objective of this work was to apply the Bloom filter on the SMR to achieve a
significant workload reduction for identification scenarios. In [RBB13] and [RBBB15], the Bloom
filter approach is already successfully applied to Iris-Codes. Since Iris-Codes are fixed-length,
binary structures, the approach is tailored to templates representing thsee characteristics. As
presented in section 5.5, the SMR is also transferable in a fixed-length binary representation of
biometric references. Therefore, applying the same concept to the binary SMR seems to be a
reasonable approach. In the next sections, the basics of this concept are outlined.

6.2 System Basics
In this section, operational details of the Bloom filter-based scheme presented in [RBBB15] and
extended by [DRB17] will be presented. Both publications provide the basis and the baseline for
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the workload reduction approach, which is benchmarked against a new contribution presented
later in this thesis.

6.2.1 Template Transformation

To transform a SMR template to its Bloom filter representation, the procedure explained below
is used.

1. The SMR has to be converted to its binary form (see section 5.5). Since the basic form
does not support auxiliary-data schemes, i.e. the sign, mask pair, the mask-bit has to be
applied to the sign-bit so that matrix = sign ∧mask.

2. The resulting binary matrix has to be segmented into equally-sized blocks of width W
and height H.

3. In contrast to the original Bloom filter approach, where multiple hash function are applied
to the data, a simple mapping scheme is used. Each block is mapped to a Bloom filter
(B) by interpreting the bits of each column (c1, . . . , cW) as unsigned integer (h1, . . . , hH),
which are then used as indices for setting the bits in the Bloom filter. This represents
an inverted hashing strategy: the original Bloom filter uses multiple hashing functions on
a single element, whereas here multiple elements (the columns) are hashed by a single
hashing function. Both strategies yield the same end result of h1, . . . , hW hash values
subsequently used as indices.

4. Repeat step 3 for every block: each block yields a Bloom filter Bi resulting in a sequence
of Bloom filters (B = {B1, . . . ,BBC}) of length BC = N

W×
M
H .

The transformation features rotation-compensating properties for the binary SMR matrix. In
most width and height configurations, fewer shifts for rotation compensation have to be done,
due to the indices scheme.
The size (τ) of a Bloom filter sequence template with block sizeW×H for a N×M binary SMR
matrix is calculated by equation 6.1.

τ = 2H ∗ N

W
∗ M

H
(6.1)

With the described template transformation, it is possible to use the Bloom filter in a verification
and a naïve identification scenario. A sequence of Bloom filter for a N = 256×M = 128 binary
SMR with a block size of W = 8×H = 4 reduces the bit comparisons by 50%.

However, in identification scenarios the overhead for large-scale databases is dwindling re-
lative to the overall computation time. To use the modified Bloom filter for a more efficient
identification than a naïve approach, the methods described in the following two sections are
used.
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6.2.2 Tree Construction

Storing the Bloom filter-based templates in a binary search tree enables a more efficient iden-
tification by reducing the number of comparisons needed. The process of building the tree is
described below and conceptually illustrated in figure 6.2.
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Figure 6.2: Bloom filter tree construction scheme and tree traversal for query B′ (taken from [DRB17],
original in [RBBB15]).

1. The tree root is created as the element-wise union of all templates (S) such that Ψ0 =
B1 ∪B2 ∪ · · · ∪BS =

S∪
i=1

Bi.

2. Child nodes are created by splitting the template list of their parents in two parts and
taking the element-wise union of one of the two sub-sets (i.e. Ψ1 = B1 ∪ · · · ∪ BS/2 =
S/2∪
i=1

, Ψ2 = B(S/2)+1 ∪ · · · ∪BS =
S∪

i=S/2+1
).

3. Repeating step 2 until only the leafs are left, which then are the templates (B1, . . . , BS)
themselves (e.g. Ψ2S−2 = BS , if S is a power of two).

Inserting a new template into an already-built tree is trivial and can be achieved in O(logS)
steps: The new template is inserted as a new leaf and is added to the element-wise union of its
parents and their predecessors. If no node has an empty leaf, a leaf is converted to a node and
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receives its template as well as the new template as children (respectively leafs). Removing one
or more templates requires fully rebuilding1 the tree, which is done in O(SlogS) steps.

6.2.3 Tree Traversal

Upon receiving a membership query, the query is transformed in its Bloom filter representation
(B′). Subsequently, the tree traversal for a single tree starts at the root node (Ψcurrent =
Ψ0) by computing the similarity score for the two children (Ψcurrent+1, Ψcurrent+2) of the root
node. Basing on the two received scores, the direction of the first descend is determined, thus
Ψcurrent = Ψcurrent+1 if the similarity score of Ψcurrent+1 and B′ is higher than the score of
Ψcurrent+2 and B′, respectively Ψcurrent = Ψcurrent+2 vice versa. These direction decisions are
repeated until a leaf is reached. Finally, the similarity score of the leaf and B′ is compared to a
threshold, which has been previously trained with a set disjoint from the enrolled templates or
manually set by an operator. The lookup process is conceptually illustrated in figure 6.2 (bold
lines) and formally stated in algorithm 2.
The similarity score of two Bloom filter sequences (B, B′) is calculated by a score-level fusion
of the pair-wise similarities between the Bi ∈ B and B′

i ∈ B′ as shown in function 6.2. By
taking the amount of matching bits and the population count of the set of matching bits of
booth B and B′, the similarity is calculated. Because the population counts of B and B′ varies,
it is necessary to normalise the score by subtracting the average of both population counts.
Equation 6.3 shows the final similarity calculation for B and B′.

SI(B, B′) = 1
BC

BC∑
i=1

SI(Bi,B′
i) (6.2)

SI(B,B′) = |B ∧ B′|
1
2(|B|+ |B′|)

(6.3)

Because a decreasing similarity score per level is expected for impostor queries, an additional
workload reduction, for impostor queries and queries for templates stored in another tree, can
be achieved by prematurely stopping the tree traversal for the current tree, when the similarity
score of the different levels is required to be ordered (i.e. SIlevel0 < SIlevel1 < SIlevel2 < . . . ).
As a side effect, it is more difficult for impostors to be accepted, thus potentially lowering the
False Positive Identification Rate (FPIR). However, some genuine queries may also be rejected,
potentially increasing the False Negative Identification Rate (FNIR). Therefore, requiring a
increasing similarity per level is considered as optional and is only recommended for biometric
subsystems with a very robust feature-extraction subsystem.

By increasing the number of stored templates (S) in a Bloom filter tree, the population
count2 of the root nodes B(Ψ0) increases. While this is less an issue for the root node itself, an

1A derivative of the Bloom filter, the so-called counting Bloom filter (see [RB13]) addresses this issue on the
cost of the efficiency of performing bitwise operations.

2In other words, the sparsity of the root node decreases.
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excessive population count in the lower nodes affects the capability of making correct traversal
direction decisions. A wrong traversal direction decision at the upper levels resulting from
too many bit collisions is not correctable in lower levels, thus resulting in a False Negative
Identification (FNI) event or worse in a False Positve Identification (FPI) event3. Therefore,
it is necessary to build multiple trees with fewer subjects respectively biometric instances per
tree. The lookup process for multiple trees employs the same strategy for traversing a tree as
for single tree environments. Merely a trivial loop-logic has to be added, as shown formally in
algorithm 3.

Algorithm 2 Tree traversal for a single Bloom filter tree.
1: function TraverseTree(Node, Query, Threshold, LastScore)
2: if Node[left] ̸= nil and Node[right] ̸= nil then
3: scoreLeft← similarity(Node[left], Query)
4: scoreRight← similarity(Node[right], Query)
5: if scoreLeft > scoreRight then
6: if scoreLeft < LastScore then
7: return nil ▷ Optional
8: end if
9: return TraverseTree(Node[left], Query, Threshold, scoreLeft)
10: else
11: if scoreRight < LastScore then
12: return nil ▷ Optional
13: end if
14: return TraverseTree(Node[right], Query, Threshold, scoreRight)
15: end if
16: end if
17: score← similarity(Node[this], Query)
18: if score > Threshold and score > LastScore then ▷ Second condition optional
19: return Node[this]
20: end if
21: return nil

22: end function

6.2.4 Configuration

By now, three variables are to be considered for the basic Bloom filter tree system: Bloom
filter width (W), Bloom filter height (H) and tree count (T ). Each of them can be adjusted
considering the following limitations.

W Increasing the block width for the Bloom filter increases the number of bit collisions when
transforming the binary SMR-matrix to the Bloom filter representation. Reducing the

3This behaviour was observed in the experiments: queries that would normally have the highest similarity
score with their corresponding reference template in a naïve approach do not find their correct reference in the
Bloom filter since the high amount of bit collisions direct the query to a different reference template where the
similarity score unfortunately exceeds the decision threshold.
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Algorithm 3 Additional loop-logic for multiple Bloom filter trees.
1: function Lookup(Trees, Query, Threshold)
2: candidates← empty list
3: for all Trees as root do
4: candidate← TraverseTree(root, Query, Threshold)
5: if candidate ̸= nil then
6: candidates← candidates + candidate

7: end if
8: end for
9: return candidates

10: end function

block width increases the total template size, thus requiring more RAM, storage and bit
comparisons. Further, it diminishes the rotation invariance properties of the templates.

H Increasing the block height for the Bloom filter increases the total template size. Reducing
the block height increases the number of bit collisions and increases the overall population
count of the Bloom filter.

T Employing additional trees for the Bloom filter reduces the number of templates per tree,
therefore reducing the bit collisions and increasing the hit rate, thus decreasing the FNIR.
However, additional trees require more template comparisons, thus increasing the work-
load. Refer to figure 6.3, with S = 512 using two trees nearly doubles the number of
template comparisons needed where using 64 trees hardly yields a workload reduction.

6.3 State-Of-The-Art Bloom filter approach
As already mentioned in section 6.2.2, wrong traversal decisions can occur if the child nodes are
too populated4, thus it is required to build multiple trees with fewer subjects. However, doing
so introduces a new issue: multiple trees cause higher workload. For a single tree environment,
the number of template comparisons needed per tree is given by 2log2(S)− 1 (two comparisons
per level). Splitting the same number of subjects to multiple trees T , the number of template
comparisons needed is

C = T ∗
(

2 ∗ log2

(S
T

))
. (6.4)

Note figure 6.3, for an example with S = 512, 18 comparisons are needed in a single-tree
environment, while using two trees nearly doubles the number of comparisons needed and
using 64 trees nearly invalidates the Bloom filter tree approach. In the basic setup, every tree
is traversed and there is no approach to skip trees that unlikely contain the searched template.

4It isn’t possible to generally state a threshold when a child node is too populated since it depends on the
configuration of the Bloom filter size and the number of bit errors in the raw binary templates.
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Figure 6.3: Number of needed comparisons (C) per lookup for S = 512 with 1, . . . , T trees.

6.3.1 Tree selection

Recall that the additional workload introduced by employing multiple trees reduces the workload-
reducing effect of the Bloom filter-indexing. The estimated number of template comparisons
(C) for single- and multi-tree environments is summarized in equation 6.5.

C =



2 ∗ log2(S)− 1 if T = 1

T ∗
(

2 ∗
(

log2

(S
T

)
− 1

))
if 1 < T <

S
2

S if T ≥ S
2

(6.5)

A naïve approach to reduce the impact of additional trees would be to stop traversing the
trees, in a one-to-first search manner, if an appropriate candidate has been found. However,
this naïve approach only reduces the number of template comparisons needed by factor 2 on
average5

C = T
2

(
2 ∗

(
log2

(S
T

)
− 1

))
. (6.6)

A more efficient strategy is presented in [DRB17]. The idea is to add a pre-selection step,
selecting the t most promising trees with t ≪ T . To determine the most promising trees, the
query template is compared with the root node of each tree. Only the t trees with the highest
similarity between the root node and query template are then fully traversed. This concept is
formally described in listing 4.

Note equation 6.7, using this strategy greatly reduces the additional workload introduced
by the additional trees.

C =


2 ∗ (log2(S)− 1) if T = 1

T + t ∗
(

2 ∗
(

log2

(S
T

)
− 1

))
if 1 < T <

S
2

(6.7)

However, as shown in figure 6.4, the pre-selection scheme loses its efficiency when the number
of trees T approaches the number of templates S: The generated overhead by comparing the

5I has to be noted, that this is only true for genuine transactions, for impostor attempts, the workload is
further reduced.
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Algorithm 4 Improved loop-logic for multiple Bloom filter trees.
1: function Lookup(Trees, t, Query, Threshold)
2: rootScored← empty list
3: for all Trees as root do
4: rootScored← similarity(root, Query) + rootScored
5: end for
6: SortAscending(rootScores)
7: candidates← empty list
8: for i = 0 . . . t do
9: candidates← TraverseTree(rootScored[i], Query, Threshold)
10: end for
11: return candidates
12: end function

query template to the root nodes starts to overweight, thus reducing the overall workload
reduction.

100 101 102 103 104 105
101

102

103

104

105

T

C
(S

=
218

)

Baseline
Basic scheme
Stop-after-candidate scheme
Improved scheme t = 1
Improved scheme t = 2
Improved scheme t = 16
Improved scheme t = 128

Figure 6.4: Number of needed template comparisons (C) per lookup with the pre-selection scheme.

6.3.2 Quick traversal direction decision

Recall (section 6.2.3), in the basic system each traversal direction decision requires two compar-
isons, thus yielding C = 2∗log2(S)−1. With the usage of the assumption stated in section 6.2.3,
the similarity scores increases per level (for queries with their associated template included in
a tree) when traversing a tree, the number of template comparisons needed can be reduced to
one per level, thus C = log2(S)−1. Instead of comparing both children per node, only one (e.g.
the left/first) children is compared. When the similarity score has not increased compared to
the previous, the other children is selected as next node; if the score has increased, the com-
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pared node is selected. Thus, a second6 comparison is only needed if the similarity score has not
increased. Algorithm 5 formally shows the improved direction decision strategy. On average,

Algorithm 5 Tree traversal for a single Bloom filter tree with single comparison strategy.
1: function TraverseTree(Node, Query, Threshold, LastScore)
2: if Node[left] ̸= nil and Node[right] ̸= nil then
3: scoreLeft← similarity(Node[left], Query)
4: if scoreLeft > LastScore then
5: return TraverseTree(Node[left], Query, Threshold, scoreLeft)
6: else
7: scoreRight← similarity(Node[right], Query)
8: return TraverseTree(Node[right], Query, Threshold, scoreRight)
9: end if
10: end if
11: score← similarity(Node[this], Query)
12: if score > Threshold and score > LastScore then ▷ Second condition optional
13: return Node[this]
14: end if
15: return nil
16: end function

the second comparison is needed for every second level, yielding C = 3
2 log2(S)− 1.

Finally, it has to be noted that this improvement is not feasible if the assumption of increasing
similarity scores (for queries with their associated template included in a tree) is not satisfied.

6.4 Tree root emulation and random template emulation
It is crucial to find a suiting tree-to-template ratio to receive an efficient workload reduction:
using an insufficient number of trees increases the FNIR7 and is difficult to detect at runtime.
For this purpose, it is necessary to emulate the root node of a tree and random templates.
In [DRB17], Drozdowski presented an approach to mathematically emulate random templates,
thus emulating root nodes of trees. By calculating the overlap between a emulated random
template and the emulated root node, the author is able to estimate the number of trees to
build for a database with S templates. With a few adaptations, this approach should also be
feasible for binary SMR Bloom templates, too.
Recall (section 6.2.1) that a Bloom filter B is created of a binary SMR block with width W
and height H. By assuming that all set bits in the block are mutually independent and are
uniformly distributed, then:

B = {x ∈ N0 | 0 ≤ x ≤ 2H}, |B| = 1−
(

1− 1
2H

)W
(6.8)

6Refer to appended section A.1 for a excursus why a second comparison is needed.
7It is possible to reach FNIR values that render the biometric system useless: With one or more levels

overflown, finding the right template is more a fluke than a hit.
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Figure 6.5: Spectral mask-bit (figure 5.4c) applied to spectral sign-bit (figure 5.4b) of the SML in
figure 5.4a as introduced in section 6.2.1.

Observe figure 6.5, where the spectral mask-bit has been applied to the sign-bit for the
Bloom filter transformation. It is clearly visible that for the SMR there is a very high dependency
between individual columns and the bits set aren’t distributed uniformly. To allow for this
deviation, let ε denote the difference between the expected number of duplicate columns in a
binary SMR and randomly-generated, mutually-independent columns:

B = {x ∈ N0 | 0 ≤ x ≤ 2H}, |B| = 1−
(

1− 1
2H

)W
− ε (6.9)

There is no general value for ε since its value depends on parameters such as block size, the
dataset itself, SMR configuration, SMR binarisation configuration and has small variations
between different templates.
The concept can be extended for root nodes of the Bloom filter tree, too. Recall (section 6.2.2)
that a Bloom filter tree root node (here RK) is a union of its (here K) child nodes, thus:

RK = B1 ∪ B2 ∪ · · · ∪ BK, |RK| =
(

1−
(

1− 1
2H

)K∗(W−ε))
∗ 2H (6.10)

At this point, it is possible to approximately emulate random templates, thus emulating
random impostor templates and root nodes of Bloom filter trees. By estimating the overlap O of
the tree root node (respective nodes) and an random impostor Bloom filter template (equation
6.11), it is possible to qualify a statement about the feasibility of the current configuration.

O = |RK ∩ B| (6.11)

The expected overlap outcome follows a hypergeometric distribution with denoting the number
of overlapping items in range 1 . . . |B|:

P (O = o) =

(
|B|
o

)(
2H−|B|
|RK |−o

)
(

2H

|RK|

) (6.12)

The mean of that distribution Θ (equation 5) can be used as a single number metric.

Θ = |RK| ∗
|B|
2H (6.13)

Refer to [DRB17] for a explanation how to interpret the introduced Θ.
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6.5 Summary
In the first two sections of this chapter, the fundamental details of a Bloom filter-based biometric
system have been outlined, partially based on the original article in which this approach was
proposed [RBBB15]. The third section outlines the state-of-the-art for the Bloom filter-indexing
approach by Drozdowski [DRB17]. All sections include minor adoptions to enable the approach
for the binary SMR.
How well the adoptions and the Bloom filter itself perform in identification scenarios is subjects
to the experiments introduced in section 8.4 and evaluated in section 9.4.
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Chapter 7

Spectral Minutiae CPCA-Tree indexing

In this chapter, a second workload reduction approach based on the SMR-CPCA is introduced.
The system basics are adopted from chapter 6.

Data Capture Subsystem

Signal Processing Subsystem

Data Storage Subsystem

Comparison Subsystem

Decision Subsystem

Template

Database

Template selection

Comparison

Candidate list

Figure 7.1: Spectral Minutiae CPCA-Tree indexing

7.1 System Basics
In contrast to the Bloom filter-based indexing approach, this author proposes a tree indexing
scheme based on the SMR-specific CPCA. The CPCA already proved its feature-reduction, thus
also workload-reduction, capabilities without impairing the recognition performance1 [XVKA09].
The basics of the SMR-CPCA are already introduced in section 5.4.1. However, for this chapter,
a closer observation of the SMR-CPCA representation is reasonable.

1This statement by Xu et al. will also be tested for palm vein (respective vein based) SMR.
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7.1.1 Binary SMR-CPCA merging

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 7.2: SML-CPCA creation from different subjects: (a,d,g) input SML; (b,e,h) CPCA represent-
ation; (c,f,i) binary CPCA (top to bottom: sign-bit, mask-bit, applied mask-bit to sign-bit)

Observe figure 7.2, where three different real-valued SMR (here SML) and their (binary)
SMR-CPCA are illustrated: the binary SMR-CPCA features a high inter-class variance - all set
bits in the binary SMR-CPCA matrices are differently distributed and there are few unanimous
bits.
While a high inter-class variance is mandatory and desirable for a good recognition perform-

ance, it introduces some difficulties for naïve indexing schemes that rely on trivial stacking or
merging. When merging SMR-CPCA, the population count rises quickly, thus diminishing the
descriptive value. In other words, the bits set in a binary SMR-CPCA have few bit collisions
with SMR-CPCA from other subjects repectively from other biometric instances. The problem
can easily be explained visually: in figure 7.3, the bit-matrices for 1, 2, 4, 8 and 16 (randomly
chosen) merged SMR-CPCA are shown and the percent of bits set are presented in table 7.1.
Observe the quickly rising population count for the sign-bit (figure 7.3 left column) and mask-
bit (figure 7.3 centre column). Already at 4 merged SMR-CPCA, the sign-bit and mask-bit
have passed a population count where no descriptive value is left. If the mask-bit is applied
to the sign-bit and the result (applied-bit) is merged (figure 7.3 right column), then about 8
SMR-CPCA can be merged without losing too much information, thus keeping the descriptive
value. These conclusions will be further analysed in the experiments described in section 8.4.
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(a) 1 (b) 1 (c) 1

(d) 2 (e) 2 (f) 2

(g) 4 (h) 4 (i) 4

(j) 8 (k) 8 (l) 8

(m) 16 (n) 16 (o) 16

Figure 7.3: SMR-CPCA (SML-CPCA) sign-bit (left), mask-bit (center) and applied mask-bit to sign-
bit (right) for merged SMR-CPCA with 1, 2, 4, 8 and 16 SMR-CPCA (white = set, λmin = 0.1, λmax =
0.6, MCP CA = 24).

No. merged Bits set
SMR-CPCA sign-bit mask-bit applied-bit

1 50.3% 43.5% 21.4%
2 74.5% 67.9% 38.1%
4 93.3% 89.3% 61.4%
8 99.3% 98.8% 83.9%

16 99.9% 99.9% 96.6%

Table 7.1: Average rate of set bits in the SMR-CPCA (SML-CPCA) sign-bit, mask-bit and applied
mask-bit to sign-bit for merged SMR-CPCA.

7.1.2 Masking out most common bits

Masking out bits that are set in a bulk of all SMR-CPCA templates (here SML-CPCA) is
a common-known strategy used to lower the average similarity score of impostor comparison
trials: the impostor comparison trials that gain their score from these commonly set bits are
more likely to be rejected. However, since the CPCA transformation depends on the training
dataset and the data itself, there is no common mask. As a rule of thumb, the upper bits are

Figure 7.4: Example heat map of set bits generated with 467 SMR-CPCA (SML-CPCA) applied-bit
(red = most, blue = least).

more likely to occur in SMR-CPCA than the lower bits. Figure 7.4 shows an example heat map
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of 467 (trainig-set size 33) SMR-CPCA generated with the PolyU-Database ([pol], see section
8.1). Observe the upper rows of the heat map: these bits are set most often with a hot-spot in
the top-centre and top-right. Most descriptive value is held in the middle rows: these bits are
set less often and more likely to differ between multiple SMR-CPCA. In this example scenario,
it is recommended to mask out the upper three rows and the red hot-spots in the top-centre
and right. The experiments in 8.4 will further analyse the advantages and disadvantages of this
strategy.

7.1.3 Template Transformation

For the proposed SMR-CPCA binary search tree (CPCA-Tree) approach, no additional tem-
plate transformation is needed. The SMR is merely transferred in its binary CPCA represent-
ation and cut to MCP CA rows. Refer to section 5.4.1 for details.

7.1.4 Tree Construction

The tree construction for the proposed CPCA-Tree approach follows the same scheme as the
Bloom filter tree of section 6.2.2 with the Bloom filter templates replaced by SMR-CPCA
templates. There are two different methods of representing the binary SMR-CPCA for the
CPCA-Tree:

SMR-CPCA-Components (SMR-CPCA-C) Recall (section 5.5 and 5.4.1), there are two
different strategies when transforming a SMR in its binary form. The spectral binarisa-
tion method yields two binary matrices: a sign-bit and a mask-bit. These two matrices
represent the two components of the SMR-CPCA-Components (SMR-CPCA-C) repres-
entation.

SMR-CPCA-Applied (SMR-CPCA-A) Instead of keeping both binary components, the
mask-bit is applied to the sign-bit, yielding the applied-bit (see section 7.1.1). The applied-
bit matrix represents the single component representation SMR-CPCA-Applied (SMR-
CPCA-A).

An advantage of the SMR-CPCA-A compared to the SMR-CPCA-C is its trivial adoption to
the already-introduced Bloom filter tree: it follows the same comparison method (hamming dis-
tance), tree construction and traversal as the Bloom filter template. Most of the improvements
by [DRB17] (see section 6.3) are also applicable. Therefore, refer to section 6.2.2 for further
details on the tree construction with the SMR-CPCA-A. The SMR-CPCA-A, compared to the
SMR-CPCA-C, loses the ability of merging the auxiliary data for the fractional hamming dis-
tance which limits the comparison to the stable bits set in booth templates. Thus the hamming
distance is used for the comparison which compares all set bits, even if some of them are con-
sidered unstable in one of the two templates.
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The SMR-CPCA-C requires a different comparison method (recall section 5.6.2; fractional
hamming distance) and thus requires a tree with nodes that carry auxiliary data. Furthermore,
a strategy is needed to handle the two matrices. In the Bloom filter approach, the root node is
a union of its two child nodes, both of which are unions of their child nodes, etc. Again, observe
figure 7.3 and table 7.1, by taking the union of e.g. the sign-bit of 4 random binary SMR-CPCA
the nodes sign-bit matrix would be already set by 90%. The mask-bit for a union of 4 random
binary SMR-CPCA is also highly populated. Therefore, trivially taking the union of both will
not allow for identification trees containing more than 8 (4 per root children) templates without
significantly losing recognition performance.
This problem with the SMR-CPCA-C leads to an artificial third method: replacing the sign-bit
of the SMR-CPCA-C with the applied-bit of the SMR-CPCA-A (and keeping the mask-bit)
could help to increase the number of templates for the SMR-CPCA-C-Tree and is further called
SMR-CPCA-Mixed (SMR-CPCA-M).

7.1.5 Tree Traversal

The basic tree traversal logic of the CPCA-Tree also follows the same scheme as the Bloom
filter tree. For the SMR-CPCA-A variant, the same comparison method and intelligent traversal
strategies implemented in the Bloom filter tree can be used. In a SMR-CPCA-C- or SMR-
CPCA-M-Tree, the comparison method has to be adapted to the sign/mask-scheme by using
the FHD (see section 5.6.2). Since the FHD yields the same output as the original Bloom
filter tree comparison method (a similarity value), all intelligent traversal strategies are also
applicable.

7.1.6 Configuration

On top of the CPCA configuration, there are two variables to be considered for the CPCA-
Tree system: SMR-CPCA height (MCP CA) and tree-count (T ). Each of them can be adjusted
considering the following limitations.

MCP CA The height of the SMR-CPCA templates depends on the training data and the fre-
quency (λmin and λmax, section 5.2) of both the training data and model data. Further,
the MCP CA is limited by 1 ≤ MCP CA ≤ M , since MCP CA = 0 results in an zero-sized
template and increasing the template (MCP CA > M) is not possible. A large MCP CA

results in an increased template size (thus increased computational workload), and an
insufficient MCP CA drops some necessary information. It has to be noted that MCP CA

has an artificial threshold defined by the mask-bit of each SMR-CPCA. Again, observe
the sign-bits shown in figure 7.3: in this figure, the MCP CA = 24 could be further re-
duced, but increasing the MCP CA would not increase the recognition performance since
the mask-bits are not set2 for rows beyond MCP CA = 24.

2Compare figure 5.4f

60



T The behaviour of T for the CPCA-Tree equals T for the Bloom filter tree system and follows
the same limitations: too many trees invalidates the workload reduction introduced by
the system, while too few trees renders the system useless as a worst case.

The three different template types described in section 7.1.4 aren’t considered a configur-
ation property, instead they are implementation variants that are benchmarked in the experi-
ments.

7.2 Template protection properties
The proposed system purely relies on the SMR-CPCA representation. Like mentioned in sec-
tion 2.2.4, a biometric system and their templates should address several privacy protection
requirements. This section inspects the three requirements unlinkability, renewability and irre-
versibility for the SMR-CPCA.

7.2.1 Unlinkability

The SMR-CPCA template depends on the training set of the PCA used for the CPCA. It can
safely be stated that two different databases will use two different CPCA training sets.
To analyse the unlinkability properties of the CPCA approach, the metrics Dsys

↔ and D↔(s)
proposed by Gomez-Barrero et al. [GBRG+16] are used. Dsys

↔ describes the overall system
linkability and D↔(s) describes the linkability of a single similarity score both measures yield
a value on a scale from 0 (fully unlinkable) to 1 (fully linkable). For the following, reasoning
Dsys

↔ is rated as listed in equation 7.1.

Linkability =



unlinkable if 0 ≤ Dsys
↔ < 0.15

semi-unlinkable if 0.15 ≤ Dsys
↔ < 0.3

semi-linkable if 0.3 ≤ Dsys
↔ < 0.6

linkable if 0.6 ≤ Dsys
↔ ≤ 1

(7.1)

Training two CPCA with disjoint training sets (for two different databases) yields two differ-
ent transformations (referred to as CPCAA and CPCAB). For this unlinkability experiment,
CPCAA is used to generate SMR-CPCAA of SMR1 from instance I1 and CPCAB is used
to generate SMR-CPCAB of SMR1 from instance I1. In other words: same instance, same
palm vein, transformed using two differently trained CPCA. As reference, non-mated templates
are generated with CPCAB to test whether the scores between the mated SMR-CPCAA and
SMR-CPCAB are distinguishable from the scores of the non-mated templates. Two different
scores are obtained during the experiment:

Mated scores: scores obtained from the comparison of two templates, extracted from samples
obtained from a single instance I1 and two different transformations CPCAA and CPCAB.

61



0.0 0.1 0.2 0.3 0.4
Score

0

2

4

6

8

Pr
ob

ab
ilit

y 
De

ns
ity

T ainigset Ove lap = 0%

Mated
Non-Mated
D% (s)

0.0

0.2

0.4

0.6

0.8

1.0

D
%
(s

)

(a) 0%→ Dsys
↔ = 0.34

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Score

0

2

4

6

8

Pr
ob
ab
ilit
y 
De

ns
ity

Trainigset Overlap = 10%

Mated
Non-Mated
D↔ (s)

0.0

0.2

0.4

0.6

0.8

1.0

D
↔
(s
)

(b) 10%→ Dsys
↔ = 0.38

0.0 0.1 0.2 0.3 0.4
Score

0

2

4

6

8

10

Pr
ob

ab
ilit

y 
De

ns
ity

T ainigset Ove lap = 30%

Mated
Non-Mated
D% (s)

0.0

0.2

0.4

0.6

0.8

1.0

D
%
(s

)

(c) 30%→ Dsys
↔ = 0.48

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Score

0

1

2

3

4

5

Pr
ob
ab
ilit
y 
De

ns
ity

Trainigset Overlap = 60%

Mated
Non-Mated
D↔ (s)

0.0

0.2

0.4

0.6

0.8

1.0

D
↔
(s
)

(d) 60%→ Dsys
↔ = 0.59

Figure 7.5: Unlinkability Dsys
↔ plots for same images at (a) 0%, (b) 10%, (c) 30% and (d) 60% CPCA

training set overlap.

Non-Mated scores: scores obtained from the comparison of two templates, extracted from
samples obtained from two different instances I1 and I2 and two different transformations
CPCAA and CPCAB

This simulates the scenario when an attacker received two protected templates enrolled in two
applications (A and B), and tries to decide whether the were extracted from the same instance,
e.g. when he tries to track the subject in different databases.
However, it is possible that even for different databases there are some small intersections in
the training dataset. To cover this scenario figure 7.5 includes the plots (S = 400) for a training
set overlap of 0%, 10% and 30% with an additional bad-case overlap of 60%. For 0% (7.5a) and
10% (7.5b) overlap a Dsys

↔ < 0.4 is achieved and is already considered semi-, but not fully-,
linkable. As could be expected with a strong overlap in the training sets, the templates are
more linkable. In particular, a Dsys

↔ above 0.5 (semi linkable, nearly linkable) is reached with
an overlap of 60% (7.5d).
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There is one additional hurdle for an attacker that is not covered in the previous analysis.
Two different databases are usually generated by two different image capturing subsystems,
feature extraction subsystems and different images of one subject. When analysing Dsys

↔ for
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Figure 7.6: Unlinkability Dsys
↔ plots for different images of the same instance at (a) 0%, (b) 30%, (c)

60% and (d) 90% CPCA training set overlap.

different images but the same image capturing and feature extraction subsystems, the achieved
values for 0% (7.6a) and 30% (7.6b) are both below 0.3, and thus are considered semi-unlinkable.
Even for an overlap of 60% Dsys

↔ = 0.24 (7.6c, semi unlinkable) and for an overlap up to
90% Dsys

↔ = 0.57 (7.6d, semi linkable) is achieved. It is safe to assume that with different
SMR configurations in other feature extraction subsystems, Dsys

↔ would further decrease and
strengthen the unlinkability.
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7.2.2 Renewability

The renewability of SMR-CPCA templates can be reasoned the same way as the unlinkability:
the SMR-CPCA template depends on the training set of the PCA used for the CPCA. Therefore,
it is possible to renew SMR-CPCA templates in certain boundaries.
Observe the similarity-score histogram in figure 7.7. Training two CPCA (refered to as old
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Figure 7.7: Histogram of similarity scores for mated old and renewed SMR-CPCA templates and
non-mated old and renewed SMR-CPCA templates.

and renewed) with disjoint training sets yields two different templates: when comparing two
SMR-CPCA of one instance generated with the old and the renewed CPCA, the score cannot
be distinguished between scores generated by comparing the old SMR-CPCA with renewed
SMR-CPCA of other instances.

Another hint at the renewability capability of the SMR-CPCA can be derived from the
analysis of the unlinkability in the previous section. Observe the unlinkability for e.g. 30%
and 60% training set overlap in figure 7.6. When acquiring new images and not using a fully
disjoint training set for the new CPCA to renew the templates (e.g. after a data leakage), the
unlinkability is still given to some extent. By contrast, if the new template is not linkable to
the old template, the renewability is also given.

7.2.3 Irreversibility

The SMR itself can be stated irreversible3 (it cannot be transferred back to its minutiae), al-
though a discourse to prove the irreversibility of an SMR template is beyond the scope of this
thesis. However, the SMR can be defined as a raw template, since the renewability is not given
and the unlinkability is only given with e.g. permutations. Therefore, it is necessary to analyse
the irreversibility properties of the CPCA transformation, to determine if the SMR-CPCA can
be stated irreversible.

3[XV10c] hints at the irreversibility of the SMR but never actually states nor proves it.
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In [XVKA09], the CPCA is given by

XCPCA = ŨT
ZX (7.2)

where UZ is the transformation matrix used to project the SMR spectrum X to its SMR-
CPCA XCPCA. By only keeping the first MCP CA columns of UZ, ŨZ is received, thus yielding
the MCP CA×N sized SMR-CPCA. The CPCA can trivially reversed4 by

XREV = ŨZXCPCA. (7.3)

This introduces a security risk since the reversibility renders both unlinkability and renew-
ability useless. Therefore it is necessary to treat UZ (and ŨZ) as classified key matrix for the
CPCA system that should not be saved as plain data.

It has to be noted that the trivial reversibility is aggravated for the attacker in a real-world
scenario, since he has to undertake additional steps to sufficiently reconstruct a SMR template.
The SMR-CPCA templates should be stored in their normalised form. Since the normalisation
is applied after the CPCA transformation, the dynamic range of the CPCA matrix multiplic-
ation (usually [−3, 3]) shrinks during the normalisation process (normalised to [−1, 1]). When
reversing the matrix multiplication - which would normally transform the pre-normalised SMR-
CPCA dynamic range to the normalised SMR - the resulting SMR is also reduced in its dynamic
range. Comparing the reversed SMR with the original SMR using the direct comparison method
therefore yields an average similarity score of ∼0.4. However, the original structure of the SMR
is retained during the transformation process. Therefore, applying the normalisation on the
reconstructed SMR yields SMR that achieve an average similarity score of ∼0.998 when com-
pared to the original SMR. Reconstruction of normalised SMR-CPCA templates is not perfect
but more than sufficient for tracking or other purposes.

Facing the general reversibility, a possible scenario is that an attacker was able to receive
the SMR-CPCA template but could not receive UZ since it is strongly encrypted. The attacker
can train an approximated UZ (referred to as U′

Z) by training a CPCA with random SMR
templates that feature the same characteristics (M , N , SML/SMC) and approximate configur-
ations (λmin, λmin, σ).
Again, the unlinkablity measure Dsys

↔ from [GBRG+16] is used to analyse the scenario. Ob-
serve figure 7.8, the linkability for the reconstructed SMR (here SML) while using U′

Z by 0%
CPCA training set overlap is with 0.23 still considered semi-unlinkable. In scenarios where the
attacker was able to acquire templates used in the training set of the CPCA used to create
UZ, he is able to generate a U′

Z with an overlap. For U′
Z with 50% overlap, the SMR-CPCA

4The error introduced in double precision implementations is hardly detectable. For single precision imple-
mentations, the error is noticeable but influences a comparison between XREV and X by less than 0.5% in
experiments.
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Figure 7.8: Unlinkability Dsys
↔ plots between reconstructed SML and original SML at (a) 0%, (b) 20%,

(c) 50% and (d) 80% CPCA training set overlap.

is still considered semi-unlinkable. When reaching up to 80% overlap, Dsys
↔ = 0.6 is considered

semi-linkable. Exceeding 80% overlap quickly rises Dsys
↔ and 100% overlap results in Dsys

↔ = 1.
Note the linkability of 0.16 for 20% overlap is smaller than the linkability of 0% overlap. This
behaviour5 was observable in all intervals of this experiment6.

These linkability scores were generated using training sets and templates with equal SMR
characteristics and configurations, and therefore they represent perfect conditions for an at-
tacker since he is using a perfect copy of the system. Again, it is safe to assume that the
linkability decreases when different characteristics and configurations are used in the training

5Between 0% and 50% overlap, one or two linkability scores peaked (where smaller) compared to linkability
scores generated with less overlap.

6This author is not sure about the origin of this behaviour. One possible explanation would be that some
SMR have a higher impact on the CPCA training, thus when these are included in both training sets, U′

Z and
UZ become more equal; when the overlap increases, the other SMR even the impact of the high impact SMR.
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sets and templates.

7.3 Conclusions
The CPCA-Tree is a novel workload reduction approach exclusively for SMR-based biometric
systems. It adopts the same strategy and mechanism of the already-proven Bloom filter-indexing
approach [RBB13, RBBB15, DRB17].

In the first section of the chapter, the basics of the system were outlined. The template
transformation uses the CPCA projection to reduce the full SMR feature vector to a on av-
erage 80% smaller representation. To construct a single CPCA-Tree, three different methods
for representing a template are presented. Which method yields the best retrieval performance
will be explored in the experiments. For the tree traversal, all state-of-the-art strategies from
[DRB17] are also applicable. Merely the comparison method is adapted to the three different
template methods. Finally, the CPCA-Tree features a configuration comparable to the Bloom
filter-indexing configuration.

The second section analyses the template protection properties unlinkability, renewability
and irreversibility. All three properties were evaluated using the unlinkablity measure Dsys

↔ from
[GBRG+16]. While the unlinkability and renewability are given without prerequisites, the irre-
versability is only given if the transformation matrix UZ of the CPCA approach is unreachable
for an attacker (e.g. with strong encryption). When the unlinkability, renewability and irre-
versibility reached with the CPCA transformation are not sufficient, permutation approaches
like the presented method in [GBRG+16] are also applicable.

The CPCA-Tree indexing approach will be used as a contender to the already-proven Bloom
filter-indexing approach in the workload reduction experiments.
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Chapter 8

Experimental Setup

The following sections describe the palm vein data used during this project for experiments, its
preparation and a description of how the experiments were conducted.

8.1 Datasets
While there are many publicly-available vascular datasets, only few of them contain palm vein
images. This situation is aggravated by the fact that most palm vein images are captured using
a self-designed apparatus resulting in noisy and poor-quality images. However, for use during
the conceptual and experimental phases of this project, three distinct datasets were selected.
The datasets are briefly described below, example images are presented in figure 8.1 and all
dataset values are summarized in table 8.1.

PolyU multispectral palmprint Database (PolyU) [pol] At the time of writing, the PolyU
dataset is the largest publicly-available palm-print dataset containing NIR palm-print
images usable for palm vein recognition known to the author. It comprises images from
two sessions in an average of 9 days difference of 250 subjects with 6 images per hand
and session, resulting in 6 000 images. The images have a pre-defined and stable ROI.
All images have a very low-quality variance and are all equally illuminated. Since the
PolyU dataset aims for palm-print recognitionm, it features a high amount of skin texture,
which interferes with the vein detection and makes it a challenging dataset for the feature
extraction pipeline.

CASIA-MS-PalmprintV1 (CASIA) [cas] Another palm-print targeting dataset featuring
NIR palm-print images usable for palm vein recognition. The dataset is built in two
sessions, with a difference of more then one month, from 100 subjects with 3 images per
hand (i.e. biometric instance) and session, resulting in 1 200 images. All images picture
the full geometry of differently-shaped hands without any guidance, thus makes it a
prefect dataset for experiments for guidance-less ROI detection. Unfortunately, the image
capturing device is a multispectral device, thus missing any visible light filters resulting
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(again) in images with a high amount of skin texture. Furthermore, the illumination
variance is very high, since the capturing device used specular LEDs. Therefore, small
hand movements result in large illumination (shadows, hotspots) variance. Some hands
were bent or crooked during the capturing process, aggravating the feature extraction
or resulting in failure-to-acquire events. In summary, it is the most challenging dataset,
which is expected to yield very low performance.

PUT Vein Database (PUT) [KK11a] Additional small dataset with three sessions, with a
difference of at least one week, including 50 subjects with 4 images per hand and session,
resulting in 1 200 images with a pre-defined ROI. The ROI suffers from a high translation
variance but the images feature almost no skin texture or other noise1.

In the PolyU dataset it is not possible to link the left hand instance and the right hand instance
to one subject. The CASIA and the PUT datasets link left and right hand instances to subjects.
Since it isn’t possible to link left and right hand instances to subjects by just viewing at the
palm vein images, it is assumed in the following sections and chapters that no two instaces
are from one subject and therefore, every subject is represented by only one instance in the
datasets.

Dataset Instances Images Excluded Instances§ Excluded Images§ Resolution ROI Quality

PolyU 500 6 000 6 50 128×128 px 128×128 px Moderate
CASIA 200 1 200 28 30 768×576 px max. 128×128 px Low
PUT 100 1 200 0 0 512×384 px* 272×176 px† Moderate‡

* Downscaled off-line to reduce resource usage (disk and computation).
† Original 340×240 px downscaled by factor 0.8.
‡ High image quality but no ROI alignment possible.
§ Refer to section 8.3 for a detailed explanation of the exclusion criteria.

Table 8.1: Dataset overview.

(a) PolyU (b) CASIA (c) PUT

Figure 8.1: Example images from each dataset.

1It could be possible that the images are heavily pre-processed by the image-capturing device or some other
subsystem in terms of contrast and colour gradients. All images are differently saturated and coloured, which
hints at some pre-preprocessing steps.
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8.2 Palm Vein Feature Detection Pipeline
The complete biometric processing chain (pipeline) has already been presented in chapter 4.
Since the data of the selected datasets features completely different characteristics, the pipeline
has to be adjusted to the three datasets.

CASIA The CASIA dataset uses the full featured pipeline presented in chapter 4.

PolyU Since the PolyU dataset already features a pre-defined ROI, the ROI detection step
(section 4.2) is skipped. All following steps are used as presented.

PUT With the already pre-defined ROI of the PUT dataset, again no ROI detection step is
needed. However, the images are further tailored to remove the background, thus removing
noise. Refer to the appended figure A.1 for a visualisation of the ROI used.

8.3 Excluded Images
Unfortunately, not all images or subjects could be used for the experiments. This section outlines
the reasoning behind the decisions for excluding images.

8.3.1 Capturing Errors

As described in section 2.1, capturing vascular images is not a trivial task. The four different
failure-to-acquire types observed through the datasets are outlined below and example images2

are presented in figure 8.2.

No visible veins For some instances, no veins are visible at all. Even with manual image
manipulation, no (real) veins were extractable. This is mostly due to a poorly-chosen
NIR wavelength and when the veins are too deep inside the skin. In all cases, this affects
the whole subject, resulting in an exclusion of all images of that instance.

Missing/additional veins In some occasions, the pulses can make some veins visible, if the
image was taken at the exact time of the heartbeat that are not visible between heartbeats.
Several images were found where the minutiae count fluctuated more than 50% due to
the pulses. To remove as few images as possible, the images with a high minutiae count
(due to the heartbeat) were identified and removed as more images between heartbeats
than images on a heartbeat are expected.

Misplaced hand Only affecting the CASIA dataset, some hands were shifted or tilted during
during the image-capturing process. This heavily warps the venous network and results
in false negative identifications.

2Missing/additional veins are difficult to illustrate using only one example image. The full illustration would
exceed the scope of this section.
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Bend hand Again only affecting the CASIA dataset, some hands were bent or crooked during
image capturing. This mostly created skin folds and shadows that were detected as veins
while covering the real veins. Consequently, bent hands were falsely mated rather than
mated with their enrolled sample.

Inhomogeneous illumination Again only affecting the CASIA dataset, the inhomogeneous
illumination created hotspots and shadows depending on the positioning of the hand. In
some images, the shadows and hotspots displaced the real veins, resulting in falsely-mated
templates.

(a) No visible veins (b) Misplaced hand

(c) Bend hand (d) Inhomogeneous illumination

Figure 8.2: Example images for the different failure-to-acquire event types.

Refer to table 8.1 for a summary ofhow many images are excluded for each dataset.
Note: no images of the CASIA dataset were removed due to quality issues. Therefore, the dataset
contains all data from misplaced, bent or inhomogeneous illuminated hands. It is expected that
this will significantly reduce the recognition performance on this dataset.

8.3.2 Preprocessing Failures

Preprocessing failures can occur as early as the ROI detection. The ROI is the most vulner-
able and critical preprocessing step. A misplaced ROI propagates further down the processing
chain, is difficult to automatically detect and impairs the overall system performance. Figure
8.3 illustrates the three common ROI detection errors and is explained below. The presented
ROI detection approach in section 4.2 tries to determine the rotation of the hand and which
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(a) (b) (c)

Figure 8.3: Example images for reasons of a misplaced ROI: (a) wrongly interpreted rotation; (b) one
gap detected as two gaps; (c) wrongly associated gaps.

side of the hand is captured. In some cases, this step fails and returns a wrong association of
the finger gaps, as illustrated in figure 8.3a. When the segmentation step fails to extract a clean
contour, the finger gap finding step detects two gaps at one location. This usually yields an
ROI smaller than 10px, illustrated in figure 8.3b, that is misplaced as well. Lastly, the error
illustrated in figure 8.3c is again a result of a falsely detected hand in terms of left and right
hand. In this example, the subject has presented the left hand. The ROI detection falsely clas-
sifies it as a right hand and the gap association step associated the thumb-index-finger gap as
the ring-little-finger gap, etc. Therefore, the determined ROI is too large and thus exceeds the
hand perimeters.

Aside from the error illustrated in figure 8.3b, these errors are notoriously difficult to detect.
Through a visual inspection, the worst and most obvious failures were found. From the CASIA
dataset, 30 images (2.5%) had to be removed to avoid including templates from invalid ROIs
in the experiments.
Again, refer to table 8.1 for a summary of how many images are excluded for each dataset.

8.4 Experiments
The dataset has been split into four groups: enrolled, genuine, impostor and training (for
the CPCA feature reduction). Table 8.2 shows the number of templates in each group. The
conducted experiments are listed below.

8.4.1 Conducted experiments

This section outlines the experiments conducted as practical work for this thesis.

MHD-Baseline The basic implementation, comparing palm vein probes based on minutiae
with the modified Hausdorf Distance (MHD) [DJ94]. In an identification, scenario the
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Dataset Enrolled templates Genuine samples Impostor samples Training samples

PolyU 256 (256) 2 816 (256) 2 487 (238) 100 (6)*

CASIA 99 (99) 476 (99) 468 (72) 100 (28)†

PUT 58 (58) 456 (58) 456 (38) 48 (4)
* With added images previously excluded.
† Only ∼4 images (2 per session) used per subject.

Table 8.2: Dataset partitioning overview, subjects in parentheses.

database is searched exhaustively, e.g. every query template (probe) is compared with
every enrolled template (reference).

Verification Each template of every subject is compared with another template of the
same subject and the score is checked against a threshold. Impostor scores are gen-
erated by comparing every template of one subject with all templates of another
subjects. A false match is counted if a score of one non-mated comparison trial ex-
ceeds the decision threshold, whereas a true match is counted if a score of a mated
comparison trial exceeds the decision threshold, and a false non match is counted,
if a score of one mated comparison trial does not exceed the decision threshold.

Identification One reference template is enrolled for each subject. All remaining probe
templates are compared against the enrolled references. A false positive identification
is counted if the highest score of one probe exceeds the threshold on a reference
template of a wrong subject (impostor score), whereas a true positive identification
is counted if the highest score of one probe exceeds the threshold on an genuine
reference template, and a false negative identification is counted if the highest score
of one probe does not exceed the threshold.

SMR The same procedure as the baseline experiments, but with the SMR and direct SMR
comparison. Since the main focus of this project is identification in large-scale databases,
the identification experiments for the SMR are used to find the optimal representation
and SMR settings for following experiments. These experiments represent the baseline
for the workload-reduction approaches in the following experiments.

Identification As in the baseline identification experiment above, but with the SMR
and direct SMR comparison. This setup is used to find the optimal representation
and SMR settings.

Verification Supplemental experiment to the identification experiments. Procedure as
described in the baseline verification experiments.

Workload reduction by feature reduction After determining of the best-performing SMR
configuration as the performance and workload baseline, the first workload reduction
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approaches for palm vein SMR are applied and evaluated in identification and verification
scenarios as above.

CPCA Repetition of the above verification experiments, but with CPCA feature reduc-
tion.

Binary SMR The same experiments (for both original SMR and SMR-CPCA, verifica-
tion and identification) as above are repeated with the binary representations of the
SMR. It holds special interest whether the binary recognition performance benefits
from other SMR settings than the (original) double-precision SMR.

Bloom filter The second workload-reduction experiments with the system described in chapter
6.

Identification and workload reduction - Binary SMR-CPCA With one template
per subject (references), the Bloom filter trees are constructed. Genuine and impostor
scores are obtained as described in the baseline implementation. All results achieved
in the means of biometric performance are analysed with respect to the achieved
workload reduction on top of the results achieved in the workload reduction by
feature reduction section.

Identification and workload reduction - Binary SMR An additional experiment
is run the same way as the above experiment to test whether the larger binary
representation achieves a higher biometric performance under equal workload re-
duction achievements.

Verification Completing the Bloom filter experiments, the verification capabilities for
both binary SMR-CPCA and binary SMR Bloom filter templates are tested.

CPCA-Tree The third workload-reduction experiments with the system described in chapter
7. These experiments follow the same procedure as the experiments for the Bloom filter,
without the verification experiments since the templates are the same as in the workload
reduction by feature reduction binary SMR-CPCA section.

Full vascular pattern SMR Finally, additional experiments are run to test whether the
SMR can be enhanced with the full vascular pattern to increase the biometric perform-
ance.

8.4.2 Experiment vocabulary

Alongside plots and tables, many labels employing shortcuts are used. The following table 8.3
lists all labels and outlines their meaning.

74



Label Reference Description

MHD-Baseline 9.1 Biometric performance baseline yielded by the MHD
identification and verification experiments

PSML-Baseline 9.2.4 Biometric performance baseline yielded by the naïve SMR
identification and verification experiments for the PolyU dataset

PSML-CPCA 9.3.2 Biometric performance (or the experiment) yielded by
applying the naïve CPCA transformation to the PSML-Baseline

Binary
PSML

9.3.2 Biometric performance (or the experiment) yielded by binarisation
of the naïve PSML-Baseline

Binary
PSML-CPCA

9.3.2 Biometric performance (or the experiment) yielded by binarisation
of the PSML reduced with the CPCA feature-reduction (PSML-CPCA)

SM* Tuned 9.2.1, 9.2.2,
9.2.3

SMR types tuned in the means of λmax

Bf 9.4.2 Bloom filter-indexing experiment with binary PSML templates

Bf ABC 9.4.2 Bloom filter-indexing experiment with binary PSML templates
and an additional binary PSML comparison

Bf CPCA 9.4.1 Bloom filter-indexing experiment with binary PSML-CPCA templates

Bf CPCA ABC 9.4.1 Bloom filter-indexing experiment with binary PSML-CPCA templates
and an additional binary PSML-CPCA comparison (ABC)

Bf CPCA ARC 9.4.1 Bloom filter-indexing experiment with binary PSML-CPCA templates
and an additional real-valued PSML-CPCA comparison (ARC)

PSML-CPCA-A 7.1.4, 9.5.1 SMR-CPCA-A (SCA) templates build from PSML-CPCA-A templates
PSML-CPCA-C 7.1.4, 9.5.1 SMR-CPCA-C (SCC) templates build from PSML-CPCA-C templates
PSML-CPCA-M 7.1.4, 9.5.1 SMR-CPCA-M (SCM) templates build from PSML-CPCA-M templates
C-T SCA 9.5.1 CPCA-Tree indexing experiment with PSML-CPCA-A templates
C-T SCC 9.5.1 CPCA-Tree indexing experiment with PSML-CPCA-C templates
C-T SCM 9.5.1 CPCA-Tree indexing experiment with PSML-CPCA-M templates

C-T SC* ARC 9.5.5 CPCA-Tree indexing experiment with PSML-CPCA-A/C/M templates
and an additional real-valued PSML-CPCA comparison

C-T SC* Masking 9.5.4 CPCA-Tree indexing experiment with PSML-CPCA-A/C/M templates
and masking out most common set bits

ω256 8.5 Workload ω for S = 256
𝟋B 8.5 Workload fraction 𝟋 compared to the (naïve) PSML-Baseline
𝟋R 8.5 Workload fraction 𝟋 compared to the (naïve) binary PSML-CPCA

Table 8.3: Labels used in plots and tables.

8.5 Workload metric
Aside from the performance reporting metrics specified by the ISO/IEC 19795-1 [iso06], the
systems workload and system workload reduction metrics introduced by [DRB17] are used to
compare the systems workload for the different approaches and expansion stages.
The authors of [DRB17] present six requirements for a full-featured workload and workload-
reduction reporting:

R1 The baseline workload must be explicitly stated.
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R2 The baseline biometric performance of a state-of-the-art algorithm on the dataset used
must be explicitly stated in a manner described in the ISO/IEC standard.

R3 The workload of the proposed scheme is to be stated in the manner described in R1.

R4 The biometric performance of the proposed scheme must be reported according to the
ISO/IEC standard.

R5 The additional costs and benefits of the proposed scheme should be listed.

R6 The total workload for both the baseline and the proposed system is to be computed using
equation 8.1.

The workload itself is expressed as
ω = S ∗ p ∗ τ (8.1)

where S is the number of enrolled subjects, p the penetration rate (measure of the average
number of pre-selected templates as a fraction of the total number of templates, as defined in
[iso06]) and τ the cost of a single comparison (i.e. the number of compared bits). The measure
ω is not feasible to describe the workload for the chosen baseline since the minutiae feature
set yields a varying τ and the comparison cost of the modified hausdorf distance with varying
reference points is difficult to describe comparable to bit comparisons. Therefore, the workload
of a naïve SMR system is used as a baseline. The workload reduction is stated as a fraction (𝟋)
of the baseline workload as proposed by requirement 6.

8.6 Summary
This chapter has presented the details of the experimental setup for this project. In the first sec-
tion, the datasets used and their properties are outlined. The following two sections described
the feature detection pipeline and its errors. Next, the roadmap of the performed experiments
was presented. The results of these experiments were presented and discussed in the following
chapters. Finally, the workload metric used by [DRB17] was introduced.

The three chosen datasets do not feature optimal raw data. However, they were chosen due
to the lack of better palm vein datasets. The PolyU dataset features the best characteristics,
albeit it is not flawless (instances without visible veins). To test the ROI detection and receive a
second test database, the CASIA dataset is used. Unfortunately, all contained palm vein images
contain a high amount of skin texture (noise) and some subjects bent, misplaced or shifted
their hands. This dataset is expected to yield the worst results. With the PUT dataset, the only
purpose built palm vein dataset is introduced. While it features a high image quality, it is not
possible to automatically align the ROI since there are no reference points of the hands visible,
and therefore the translation invariance features of the SMR has to compensate for that.
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Chapter 9

Results

The experimental results of this project are presented in this chapter.

9.1 Baseline
The baseline results are obtained using the MHD for the extracted palm vein minutiae. These
results are necessary to evaluate the results of the subsequent experiments and were used to
find the base settings of the feature extraction pipeline for each dataset. All experiments where
run with inter-session data.

9.1.1 Score Distribution

Looking upon the similarity score distribution of the datasets provides a first hindsight into the
quality of the biometric data. Figure 9.1 presents the best-achieved MHD similarity score dis-
tributions for the three chosen datasets with feature extraction pipelines configured as stated
in table 9.1. Observe h (NL-means) for all three datasets: the experiments have shown that

max.-cur. NL-means NL-diffusion

Dataset σ h Sizetemplate
† Sizesearch

† k *

PolyU 8 7 7 23 1
CASIA 7 7 7 23 2
PUT 7 7 7 23 1
* Out of 2 non-linear-scale-space iterations with 2 sub-iterations.
† Same for all three datasets: ROI size is fixed to fit these sizes.

Table 9.1: Configuration of the minutiae feature extraction pipeline: σ - kernel size of the maximum
curvature algorithm; h - decay parameter of the Euclidean distance in the NL-means; Size - template
window and search kernel size of the NL-means algorithm; k - amount of diffusion iterations in the
NL-diffusion algorithm.
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Figure 9.1: MHD similarity score distribution (normalised to x = 1.0) for the three datasets.

h > 7 does not increase the recognition performance in any means1. In some cases, a h > 7
reduces the recognition performance because contrast resulting from noise (i.e. skin-texture) is
also increased. Further observations showed that the maximum-curvature algorithm does not
necessarily needs very high contrast to properly extract the veins, and thus reducing h to 7
does not impair the maximum-curvature performance.

1This contradicts the observation stated in section 4.3.1.
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From examining figure 9.1, the following two observations can be stated:

• The score distribution for the PUT dataset is very bad. The nearly full overlap of impostor
and genuine comparison trials yield no clear threshold, thus it is impossible to distinguish
between impostor and genuine probes. This is expected for the PUT dataset since the
dataset features many characteristics (rotations, translations, spurious minutia) that the
MHD is not capable of compensating.

• The PolyU dataset impostor and genuine score overlap is very small. A threshold of around
0.65 is capable of distinguishing between impostor and genuine comparison trials with a
very small error compared to the PUT dataset.

• As expected in section 8.3.1, the bad quality data contained in the CASIA dataset shifts
the genuine scores to the left2.

Basing on these observations and the three score distributions, it is expected that the PolyU
dataset will yield the best biometric performance, followed by the CASIA dataset with a distant
performance for the PUT dataset.

9.1.2 EER and ROC

The EER is a commonly-used metric for reporting the performance of a biometric verification
system. It is defined by the [iso06] as the point at which the FMR and FNMR are equal. The

Dataset EER

PolyU 5.4%
CASIA 30.5%
PUT 47.3%

Table 9.2: EER for the MHD comparison of the PolyU, CASIA and PUT datasets.

conclusions derived from figure 9.1 in the previous section can be validated using the EER
presented by table 9.2. With an EER of 5.4%, the MHD achieves an moderate verification
performance for the PolyU dataset. As expected, the performance of the CASIA dataset is below
the PolyU dataset. However, the EER of 30.5% for the CASIA dataset confirms the MHD is not
able to achieve distinguishable scores of impostor and genuine probes with the bad quality data
of the dataset. Also confirming the expectations for the PUT dataset with an EER of 47.3%,
the MHD fails to yield any distinguishable scores for heavily translated or rotated data.

2It can be expected that the CASIA dataset would perform similar to the PolyU dataset if the poor quality
data were excluded.
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The relevant metrics for biometric identification systems are the True Positive Identification
Rate (TPIR) and FPIR, both defined by the [iso06] standard. By moving the decision threshold
for the biometric identification system, these metrics can be plotted as a Receiver Operating
Characteristic Curve (ROC) curve for fixed database sizes. Besides the ROC curve, three ad-
ditional biometric performance points are used: TP0.5, TP0.1 and TP0, which correspond to
the TPIR at 0.5%, 0.1% and 0% FPIR, respectively. These will be used where single-value
biometric performance indicators are feasible.
The ROC curves for the MHD comparison are plotted in figure 9.2 with TP0.5, TP0.1 and
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Figure 9.2: ROC curves for the MHD baseline system

Dataset TP0.5 TP0.1 TP0

PolyU 63.6% 59.7% 49.8%
CASIA 14.1% -* 12.7%
PUT 4.4% -* 4.1%
* Database to small to determine

TP0.1.

Table 9.3: TP0.5, TP0.1 and TP0 for the MHD comparison of the PolyU, CASIA and PUT datasets.

TP0 listed in table 9.3. As expected facing the results of the verification experiment, the MHD
achieves the best biometric performance on the PolyU dataset, while CASIA and PUT are lagging
far behind with an unacceptable TP0. However, with a TP0.1 of 59.7% and a TP0 of 49.8%,
the MHD yield results far from an acceptable performance.

9.2 Spectral Minutiae Representation
The initial SMR approach in [XVK+08] targeted fingerprints and their minutiae for biometric
identification and verification. Image capturing of fingerprint samples is a much cleaner process
then the image capturing of the vascular pattern. In fingerprint recognition the observed bio-
metric characteristics are on the sufrace of the skin, and thus are easily collectable in various
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ways. However, recall section 2.1, the palm veins are internal to the individual’s body and
only an blurred approximation of the vein pattern is represented in the captured vein images.
Thus, even with a very stable feature extraction pipeline, more noise than in fingerprint feature
extraction case must expected.
All three datasets show different properties. Therefore, it is necessary to run exhaustive exper-
iments for all datasets since assumptions and results for one dataset are hardly applicable for
the other datasets.

9.2.1 PolyU dataset

The PolyU dataset achieved the best biometric performance on the MHD baseline experiments.
It features the best characteristics among all three datasets: homogeneous illumination, no
translation, consistent noise levels and most poor-quality images have been removed. The in-
put minutiae for the experiments are generated using the same feature extraction pipeline and
settings as presented in table 9.1.

In section 5.1, three SMR types are presented. Further, every type can be compared absolute-
valued or real-valued and additionally supplied with quality informations about single minutiae.
Since the SMO does not yield a better performance than the SML (as stated by the authors in
[XVB+09]), only SMC and SML will be used in the experiments. As shown in figure 9.3 for both
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Figure 9.3: ROC curves of the SML, SMC, QSML and QSMC type for the PolyU dataset.

types the real-valued comparison performs much better than the absolute-valued comparison.
The best performance for basic SMR identification approach is achieved by the real-valued SML
with TP0.1 = 75.1% and TP0 = 72.4% followed by the real-valued QSML with TP0.1 = 77.3%
and TP0 = 70.1%. All six experiments were run with the settings recommended in [XVB+09];
σ = 0.32, λmin = 0.1 and λmax = 0.6. Note: the quality information extracted by the maximum-
curvature algorithm for the quality data enhanced SMR (QSMR) is multiplied by 4 to achieve
the plotted results. Refer to appended figure A.2 for a comprehensive plot of gain 2 to 8 for
the QSML representation. Further, no qL data were used for the QSMR experiments: the qL
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data made little to no difference in the pre-experiments. In theory, the QSML should perform
better than the SML. Refer to the discussion (chapter 10) why the QSML is not able to achieve
a higher performance in these experiments.

At this point, the real-valued SML, QSML and SMC representation achieve higher biometric
performances than the basic MHD approach.

As mentioned in section 5.8, it is possible to use a minutiae pre-selection to exclude potential
spurious minutiae. Figure 9.4 shows the ROC curves for the five minutiae selection approaches
applied for the real-valued SML, SMC, QSML and QSMC3.
Only the SMC and QSMC profit from a minutiae pre-selection, albeit insufficiently to reach
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(b) QSML
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Figure 9.4: ROC curves of the real-valued SML, SMC, QSML and QSMC type for the PolyU dataset
with applied minutiae pre-selection for determining a PSMR configuration.

the performance of the SML.
After determining the most promising SMR types, the final step is to tune the SMR sampling

to fit the quality of the data (noise level) as mentioned in [XVB+09]. As for the SML, the tuning
has not achieved a better biometric performance in terms of TP0.1 and TP0. However, in terms
of the overall performance the tuned sampling does not achieve much better results.

The top three configurations in terms of identification biometric performance for the PolyU
3Since the QSML and QSMC already include quality information (see section 5.7), the reliability selection

is skipped.
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Figure 9.5: ROC curves of the most promising SMR types, tuned and untuned, for the PolyU dataset.
Note: the tuned SML and the untuned SML are the same ROC since the SML achieves the best
biometric performance at λmax = 0.6.

dataset are summarized in table 9.4. For each of the top three configurations, a verification
experiment has been run and the EER is also stated.

SMR Ident. Verif.

Type Pre-Selection λmin λmax TP0.5 TP0.1 TP0 EER

SML - 0.1 0.6 78.1% 75.1% 72.4% 3.4%
QSML - 0.1 0.64 80.8% 76.2% 70.5% 3.3%
PSMC Bifurcations 0.1 0.57 72.2% 69.4% 68.0% 7.1%

Table 9.4: Top three configurations (TP0.1), for a SMR biometric identification system using the PolyU
dataset, with their corresponding verification EER, ordered by TP0.

9.2.2 CASIA dataset

The CASIA achieved the second best, but worse, biometric performance on the MHD baseline
experiments. It features the worst characteristics among all three datasets: inhomogeneous illu-
mination, inconsistent noise levels, misplaced or tilted hands and no poor-quality image, except
those with a falsely-detected ROI, have been removed. Again, the input minutiae for the ex-
periments are generated using the same feature extraction pipeline and settings as presented
in table 9.1.

Repeating the same experiments as for the PolyU dataset above, the initial SML, SMC,
QSML and QSMC plots are presented in figure 9.6. The real-valued comparison again outper-
forms their absolute-valued counterpart. As expected from the MHD results, the results using
SMR are not acceptable either. Unfortunately, the original SMR approaches even perform worse
than the MHD approach.
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Figure 9.6: ROC curves of the SML, SMC, QSML and QSMC type for the CASIA dataset.

As already applied to the PolyU dataset, the CASIA dataset might profit from applying vari-
ous minutiae pre-selection approaches. Since the real-valued SMR again yield a better basis,
the very same minutiae pre-selection approaches as for the PolyU dataset are applied for the
PolyU dataset on the real-valued SMR in figure 9.7. Unfortunately, even the various minutiae
pre-selection approaches are unable to compensate the bad quality of the CASIA dataset. Only
the performance of the SMC is improved by removing all endpoint minutiae.

The last outstanding experiment for the CASIA dataset is to tune the λ values for the
different, most promising SMR. Since only the SMC and the only-bifurcation-minutiae-PSMC
yield results that can be concerned, the plot in figure 9.8 only features the tuning of these types.
Finally, table 9.5 summarizes the best configurations as for the CASIA dataset. The performance

SMR Ident. Verif.

Type Pre-Selection λmin λmax TP0.5 TP0 EER

PSMC Bifurcations 0.1 0.60 27.9% 27.6% 16.4%
SMC - 0.1 0.45 24.6% 22.8% 17.5%

Table 9.5: Top two configurations (TP0), for a SMR biometric identification system using the CASIA
dataset, with their corresponding verification EER.

on the CASIA dataset is astonishingly poor. Compared to the MHD approach, the SMR gains
around 10% points in the means of TP0 and TP0.5. These poor performances (MHD and SMR)
hint that there might be a problem with the feature extraction pipeline.

9.2.3 PUT dataset

Finally, the PUT achieved the worst biometric performance on the MHD baseline experiments.
The results are dominated by two good and two bad properties: homogeneous illumination and
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(b) QSML
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(c) SMC
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Figure 9.7: ROC curves of the real-valued SML, SMC, QSML and QSMC type for the CASIA dataset
with applied minutiae pre-selection for determining a PSMR configuration.
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Figure 9.8: ROC curves of the most promising SMR types, tuned and untuned, for the CASIA dataset.
Note: the tuned PSMC (SMC with only bifurcation minutiae pre-selection) and the untuned PSMC
are the same ROC since the PSMC achieves the best biometric performance at λmax = 0.6.

very good contrast but strong noise4 and it is impossible to automatically compensate the ROI
translation. Through the latter, it is expected that the absolute-valued SMR performs better
than the real-valued ones. Again, the input minutiae for the experiments are generated using
the same feature extraction pipeline and settings as presented in table 9.1.

4Recall (section 8.1), there are hints of some additional, manual image enhancements that also boost the
noise.
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Once again repeating the same experiments as for the PolyU and CASIA dataset above,
the initial SML, SMC, QSML5 and QSMC plots are presented in figure 9.9. As expected, the
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Figure 9.9: ROC curves of the SML, SMC, QSML and QSMC type for the PUT dataset.

absolute-valued SMR yield better biometric performance than their real-valued counterparts.
Again, the SMR performs better than the MHD, but the SMR still does not yield a accept-
able performance. The performance gains achieved by applying the minutiae pre-selection ap-
proaches to the PUT dataset, shown in figure 9.10, still do not yield desirable results. A deviation
from the other datasets is the, in perspective, enormous performance gain of the PSMC (with
applied nighbourhood cleaning; figure 9.10c) compared to the SMC.

To complete the experiments for the PUT dataset, the last experiment is run to tune λ

for the SMR sampling as for the other datasets. Figure 9.11 shows the ROC of the tuned and
untuned SMR for the best five configurations yielded by the previous experiment (figure 9.10).

Finally, the top three configurations for the PUT dataset are summarized in table 9.6. Com-

SMR Ident. Verif.

Type Pre-Selection λmin λmax TP0.5 TP0 EER

PSML Bifurc. & qM > 0.2 0.1 0.68 41.8% 41.1% 8.3%
PSML Bifurc. & qM > 0.1 0.1 0.47 41.4% 40.8% 8.5%
SML - 0.1 0.68 43.3% 40.8% 8.5%

Table 9.6: Top three configurations, for a SMR biometric identification system using the PUT dataset,
with their corresponding verification EER, ordered by TP0.

pared to the MHD, the SMR performs much better, although the results are still unacceptable.
5Note: since the PUT features a much higher contrast than the other two datasets, the multiplier (gain)

for the quality information extracted with the maximum curvature algorithm was redetermined using the same
procedure as the initial gain determination.
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(b) QSML
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(c) SMC
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(d) QSMC

Figure 9.10: ROC curves of the absolute-valued SML, SMC, QSML and QSMC type for the PUT
dataset with applied minutiae pre-selection for determining a PSMR configuration.
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Figure 9.11: ROC curves of the most promising SMR types, tuned and untuned, for the PUT dataset.

Again, these poor performances (especially MHD) hint that there might be a problem with the
feature extraction pipeline.

9.2.4 Aging / Further experiments

All presented datasets suffer from aging. Figure 9.12 exemplary shows the ROC for the PolyU
dataset analysing intra-session comparison trials (both probe and reference stem from the same
session) versus inter-session comparison trials (probe and reference are not from the same
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Figure 9.12: ROC for images of different sessions from the PolyU dataset.

session). Refer to the discussion in chapter 10 for an explanation for these results.
In order to continue the main experiments for this project on a reasonable basis, all following
experiments will only be run with the first session of the PolyU dataset. However, all final
experiments will be repeated twice for the PolyU dataset: once only using the second session,
the second with an inter-session analysis.
Refer to table A.1 for the top three configurations for the first session. The best result6 is
yielded by the PSML with a minutiae pre-selection of qM > 0.2 (TP0 = 90.4%).

9.3 Workload reduction by feature reduction
With the best-performing SMR configuration, PSML with minutiae pre-selection by qM > 0.2
(further just called PSML-Baseline), determined, the first workload reduction experiments are
executed. This section begins by determining the workload baseline, followed by the PSML-
CPCA, binary PSML and the binary PSML-CPCA.

9.3.1 Workload baseline for the PSML-pipeline

Recall (section 8.5), to state the workload reduction, a baseline workload is needed. The work-
load is defined as ω = S ∗ p ∗ τ .
For this experimental setup, 256 subjects are enrolled (S = 256)7. The naïve biometric system
compares all enrolled templates (penetration rate (p) = 1.0). Recall (section 5.2), one PSML
(and SMR in general) template comprises N×M = 32768 floating point numbers. There is no
deterministic way to calculate the cost (e.g. CPU cycle count) of one floating point operation
on a modern x86 (x86_64) since it depends too much on e.g. accessing data in cache, branch

6In terms of TP0 and TP0.1, the highest TP0.5 = 92.0% is achieved by the QSML.
7S is misleading in this context: since every user contributes two hands, 256 templates are enrolled from 128

subjects. In the PolyU it is not possible to link two biometric instances to one subject. Therefore it is assumed,
that every subject presented one instance.
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Figure 9.13: ROC for the CPCA feature reduction on the PolyU dataset with a training set of L = 5,
15, 25, 50 and 100 PSML.

prediction and the instruction pipeline. Further, recall section 5.6.1: one SML comparison com-
prises the sum of N×M floating point multiplications with one division, thus two operations
are actually executed per floating point: one multiplication and one addition.
Therefore, it is assumed that these two floating point operations equal 32 bit-operations8. This
assumption yields τ = 1048576.
The final baseline workload is therefore ω = 256 ∗ 1 ∗ 1048576 ≈ 2.68×108.

9.3.2 CPCA

The first workload reduction approach uses the CPCA feature reduction. Applying the CPCA
to the PSML-Baseline, yields little-to-no performance impairment, as shown in figure 9.13. No
performance improvements could be achieved by using different SMR settings or CPCA train-
ing. Refer to table A.2 for a full listing of TP0, TP0.1, TP0.5 and EER for different L, and to
table 9.7. The CPCA applied to the PSML-Baseline is further called PSML-CPCA. Note: the

SMR Ident. Verif.

Label λmin λmax TP0.5 TP0.1 TP0 EER

PSML-Baseline 0.1 0.51 91.2% 91.1% 90.4% 2.1%
PSML-CPCA L = 100 0.1 0.51 91.5% 90.6% 90.2% 2.1%

Table 9.7: TP0, TP0.1, TP0.5 and EER for the CPCA feature reduction on the PSML-Baseline.

experiment was run with L = 5, 15, 25, 50, 100 PSML for the CPCA. There are no mentionable
differences between the training set sizes9. Therefore, even small databases with a very small
training set can apply the CPCA reduction for their SMR-based system and are able to train

8This follows the recommendation in [DRB17] to count the number of compared bits.
9In fact, the training set with L = 15 performs better than all others in the means of TP0. The introduced

error depends more on the quality (e.g. the significance) of the templates used.
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Figure 9.14: ROC for the binary PSML feature vector of the PSML-Baseline on the PolyU dataset.

a completely different CPCA, if necessary.

A additional minor SMR-CPCA configuration is the λCP CA
max , which states λmax for the SMR

that are used as CPCA training templates. Using a larger λCP CA
max then λmax results in a larger

SMR-CPCA projection necessary to keep the biometric performance at the level of the full-
featured SMR. When using λCP CA

max = λmax with small λmax the SMR-CPCA templates might
be reduced too much, which (drastically) lowers the biometric performance. If not stated oth-
erwise, all following SMR-CPCA-based experiments are run with λCP CA

max = 0.6.

After the CPCA feature reduction with λCP CA
max = 0.6, it is safe to crop the PSML-CPCA

to MCP CA = 24 rows, yielding N×MCP CA = 6144, thus ω = 256 ∗ 1 ∗ (6144 ∗ 32) ≈ 5.03×107.
This alone results in a workload reduction to 𝟋 ≈ 5.03×107

2.68×108 ≈ 0.1875 = 18.75%.

9.3.3 Binary SMR

A further workload reduction approach is the binarisation of the floating point feature vector
SMR. Reducing the feature vector from a 32bit to a 1bit feature vector results in a workload
of ω = 256 ∗ 1 ∗ 32768≈8.39×106, therefore achieving 𝟋 = 0.03125 = 3.125%. The binarisation
experiment was run in two stages: first, the performance has been evaluated using the PSML-
Baseline settings with the recommended MT for the binarisation; and second, an exhaustive
experiment has been run to determine the best performing settings for the binary PSML in
the means of λmax and mask thresholds. In the second experiment, different mask thresholds
for the enrolled templates and the query templates have been used. As seen in figure 9.14 and
stated in table 9.8, the binarisation step does not drastically impair the performance of the
original PSML-Baseline.
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MT SMR Ident. Verif.

Label Enrol Query λmin λmax TP0.5 TP0.1 TP0 EER

Binary PSML 0.8 0.8 0.1 0.51 89.6% 87.9% 86.7% 2.4%
Binary PSML (Tuned: TP 0) 0.7 0.6 0.1 0.47 89.6% 88.6% 88.2% 2.2%
Binary PSML (Tuned: TP 0.1) 0.7 0.2 0.1 0.55 90.0% 89.4% 85.0% 2.3%
Binary PSML (Set-Bits/TP 0) 0.6 0.6 0.1 0.51 89.4% 88.5% 87.7% 2.2%

Table 9.8: TP0 with corresponding TP0.1 and TP0.5 for a binary PSML biometric identification system
using the PolyU dataset, with their corresponding verification EER, ordered by TP0.
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Figure 9.15: ROC for the binary PSML-CPCA feature vector on the PolyU dataset.

9.3.4 Binary SMR-CPCA

Combining the two feature reduction approaches above (CPCA and binarisation) results in
an even greater workload reduction. Since MCP CA can be reduced to 20 for the binary PSML-
CPCA, the feature vector of size N×MCP CA = 5120 comprises 1bit elements, ω = 256∗1∗5120 ≈
1.31×106 is achieved, thus the workload reduction 𝟋 ≈ 0.004883 ≈ 0.4883%. Under consid-
eration of the performance-lossless feature compression achieved by the CPCA and the small
amount of performance loss by the binarisation, the PSML-CPCA should achieve a comparable
performance to the binary PSML.
The experiments confirm the previous assumption. Strictly speaking, the binary PSML-CPCA

performs better than the binary PSML, as seen in figure 9.15 and stated in table 9.9. The
experiments has been run as in the previous experiment: first, the performance has been eval-
uated using the best-performing PSML-CPCA settings with the recommended mask threshold
for the binarisation (MT = 0.8); and second, an exhaustive experiment has been run to de-
termine the best performing settings for the binary PSML-CPCA in the means of λmax and
mask thresholds. Additionally reported results feature a TP0 optimised configuration, a low
mask threshold configuration (MT = 0.3) and a high threshold, thus theoretically most stable
on the edges, configuration (MT = 0.9).
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MT SMR Ident. Verif.

Label Enrol Query λmin λmax TP0.5 TP0.1 TP0 EER

Binary PSML-CPCA TP0 0.6 0.4 0.1 0.36 89.7% 89.1% 89.0% 2.2%
Binary PSML-CPCA MT = 0.9 0.9 0.9 0.1 0.45 90.0% 89.0% 88.4% 2.2%
Binary PSML-CPCA MT = 0.3 0.3 0.3 0.1 0.51 88.9% 88.3% 86.9% 2.3%
Binary PSML-CPCA MT = 0.8 0.8 0.8 0.1 0.51 90.0% 88.4% 86.7% 2.3%

Table 9.9: TP0 with corresponding TP0.1 and TP0.5 for a binary PSML-CPCA biometric identification
system using the PolyU dataset, with their corresponding verification EER, ordered by TP0.

9.3.5 Summary

With the feature reduction approaches, a significant workload reduction is already achieved.
The smallest workload reduction 𝟋≈0.4883% is reached by the binary PSML-CPCA with a re-
lative TP0 recognition performance loss of only 1.4%-points compared to the PSML-Baseline.
Looking at the workload reduction achieved, the losses of the binary approaches are accept-

Workload Ident. Verif.

Approach ω256 𝟋 TP0.5 TP0.1 TP0 EER
TP0 loss to

PSML-Baseline

PSML-Baseline 2.68×108 − 91.2% 91.1% 90.4% 2.1% −
PSML-CPCA 5.03×107 18.748% 91.5% 90.6% 90.2% 2.1% 0.2%
Binary PSML 8.39×106 3.125% 89.6% 88.6% 88.2% 2.2% 2.2%
Binary PSML-CPCA 1.31×106 0.488% 89.7% 89.1% 89.0% 2.2% 1.4%

Table 9.10: Summary of achieved TP0 with corresponding TP0.1 and TP0.5 for SMR biometric identi-
fication system using the PolyU dataset and their corresponding verification EER with applied feature
reduction approaches, ordered by TP0.

able. Furthermore, both Bloom filter-indexing and CPCA-Tree-indexing require the binary
representation. Therefore, the next experiments base on the results of this section. The next
sections will explore the capabilities of two indexing approaches to reach a workload reduction
by penetration rate reduction.

9.4 Bloom filter-indexing Approach
The Bloom filter-indexing approach applied in a iris recognition application achieved a workload
reduction down to 𝟋≈1% in [DRB17]. However, the binary SMR shows different properties
compared to the iris-code. This section presents the results achieved with the Bloom filter for
the binary PSML-CPCA, starting with the main identification experiments, followed by a brief
overview of the Bloom filter’s verification capabilities.

92



9.4.1 Binary SMR-CPCA Bloom filter-indexing

The binary PSML-CPCA achieved better results than the binary PSML, in terms of both re-
garding biometric performance and workload reduction. Therefore, the binary PSML-CPCA is
chosen as the first input for the Bloom filter-indexing.

First, the best-performing H and W need to be found. Since the PSML-CPCA is compar-
atively small, Bloom filter block sizes 4 ≤ H ≤ 8 respectively 4 ≤ W ≤ 16 are tested. For
every H and W pair, the binarisation mask thresholds 0.1, 0.2, . . . , 0.9 are used to find the
optimal mask-block size combination. To obtain the most clean results for finding H and W in
identification scenarios, a Bloom filter tree configuration with no workload reduction is chosen;
T = 64, without quick traversal decision and without tree pre-selection.
The results of the first Bloom filter experiments are listed in table 9.11. Even with no workload

Bloom filter SMR Workload Recognition Performance

W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

4 5 0.1 2.09 ∗ 106 0.7812% 160.0% 82.1% 80.9% 79.6% 10.8%
4 5 0.2 2.09 ∗ 106 0.7812% 160.0% 82.1% 78.0% 76.6% 13.8%
5 4 0.5 1.04 ∗ 106 0.3906% 80.0% 80.2% 78.0% 76.6% 13.8%
4 5 0.3 2.09 ∗ 106 0.7812% 160.0% 79.1% 77.7% 76.6% 13.8%
4 4 0.4 1.31 ∗ 106 0.4882% 100.0% 80.9% 76.8% 73.6% 16.8%
5 4 0.6 1.04 ∗ 106 0.3906% 80.0% 77.1% 75.4% 73.5% 16.9%
6 4 0.7 8.73 ∗ 105 0.3256% 66.7% 76.9% 75.9% 72.3% 18.1%
6 4 0.8 8.73 ∗ 105 0.3256% 66.7% 74.5% 71.8% 68.5% 21.9%
7 4 0.9 7.48 ∗ 105 0.2790% 57.1% 70.3% 69.2% 69.2% 21.2%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table 9.11: Best achieved binary PSML-CPCA Bloom filter TP0 with corresponding TP0.1 and TP0.5

for every tested binarisation mask threshold with their corresponding H and W (T = 64), ordered by
TP0,TP0.1.

reduction by using lesser trees, the Bloom filter loses ∼10.8%-points of TP0 in its best con-
figuration for the binary PSML-CPCA. Furthermore, the best configuration reintroduces 60%
workload compared to the naïve binary PSML-CPCA approach, due to the small Bloom filter
block size. Using a larger Bloom filter block size drastically reduces the achieved performance.

The origin of the poor performance of the Bloom filter applied to binary PSML-CPCA
templates is the high number of bit errors when comparing two mated binary PSML-CPCA,
visualised in figure 9.16. Even at a very high mask threshold of 0.9, the bit-error rate is 12.4%
with an error in more than 50% of columns, which is excessive for a reliable Bloom filter trans-
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(a) Threshold 0.1 (b) Threshold 0.4 (c) Threshold 0.9

Figure 9.16: Bit-errors between two mated binary PSML-CPCA templates at three different binarisa-
tion mask thresholds (white = bit-error).

formation that needs stable column-bits. Several bit-error correction methods for more robust
columns were tried to achieve a higher recognition performance for the PSML-CPCA Bloom
filter: majority-voting (3 rows), majority-voting (5 rows), majority-voting (N4), majority-voting
(N8) and a median filter. Every correction method was also tested with a transposed PSML-
CPCA. Among all correction methods, the majority-voting over 3 rows achieved the highest
performance, albeit much less than without bit-error correction. Appended table A.3 lists the
results of the majority-voting, the transposed PSML-CPCA and the transposed PSML-CPCA
with majority-voting.

While analysing the poor performance of the Bloom filter for the binary PSML-CPCA, it
was noticeable that the pre-selection error rate (PER; rate of pre-selection error events) was
small, but their genuine comparison scores overlapped too much with the scores of impostor
queries. Therefore, another experiment was run to test whether an additional comparison
between the original enrolled binary PSML-CPCA template of the retrieved candidate and the
original query binary PSML-CPCA template could increase the biometric performance while
sacrificing10 a minimal amount of workload reduction.
As listed in table 9.12, employing an additional PSML-CPCA comparison increases the per-

formance up to 15% points. In some configurations, the generated overhead of the additional
comparison is compensated by the increased Bloom filter block size (used to achieve a lower
PER) compared to the previous experiment. Unfortunately, in the best-performing configura-
tion the workload is doubled compared to the naïve PSML-CPCA.

However, the Bloom filter in combination with the binary search tree approach is able to
reduce the workload by reducing the number of trees built and using the tree pre-selection.
The next experiment is a repetition of the previous experiment with halved and quartered tree
count (T = 32, T = 16, no tree pre-selection, additional PSML-CPCA comparison). As listed
in table 9.13, reducing T to 1/16 of enrolled templates introduces a very high performance loss
while hardly reducing the workload compared to 1/8 of enrolled templates due to too many bit
collisions and overly-populated tree nodes for a correct traversal direction decision. Note: one
configuration T = 32 (W = 5,H = 4, mask threshold = 0.7) yields a higher biometric perform-
ance than all T = 64 results while achieving a much higher workload reduction. Comparing all

10Recall, the number of bit comparisons for a Bloom filter template equals its size: 2H ∗MCP CA/H ∗N/W; thus
ω256 = 256 ∗ 2H ∗MCP CA/H ∗N/W. With the additional binary PSML-CPCA comparison, the workload increases
to ω256 = 256 ∗ 2H ∗MCP CA/H ∗ N/W + MCP CA ∗N .
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Bloom filter SMR Workload Recognition Performance

W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

5 6 0.4 2.80 ∗ 106 1.044% 213.7% 87.3% 87.1% 86.2% 4.2%
6 5 0.9 1.40 ∗ 106 0.523% 107.1% 86.9% 86.2% 85.8% 4.6%
6 6 0.6 2.33 ∗ 106 0.870% 178.2% 87.3% 86.6% 85.6% 4.8%
4 7 0.2 5.99 ∗ 106 2.234% 457.5% 86.6% 85.5% 85.2% 5.2%
6 6 0.3 2.33 ∗ 106 0.870% 178.2% 87.1% 86.1% 84.9% 5.5%
5 8 0.5 8.39 ∗ 106 3.127% 640.4% 83.9% 83.6% 83.0% 7.4%
7 7 0.7 3.42 ∗ 106 1.277% 261.6% 83.7% 83.6% 83.2% 7.2%
5 6 0.8 2.80 ∗ 106 1.044% 213.7% 85.8% 85.3% 83.7% 6.7%
4 7 0.1 5.99 ∗ 106 2.234% 457.5% 85.9% 84.9% 83.7% 6.7%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table 9.12: Best achieved binary PSML-CPCA Bloom filter TP0 with corresponding TP0.1 and TP0.5,
with a final binary PSML-CPCA comparison, for every tested binarisation mask threshold with their
corresponding H and W (T = 64), ordered by TP0,TP0.1.

Bloom filter SMR Workload Recognition Performance

T W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

16

4 4 0.2 6.60 ∗ 105 0.246% 50.4% 84.5% 83.8% 83.0% 7.4%
4 6 0.4 1.75 ∗ 106 0.653% 133.7% 83.0% 82.7% 82.5% 7.90%
4 6 0.5 1.75 ∗ 106 0.653% 133.7% 83.0% 82.5% 82.3% 8.1%

. . . ‡

32

5 4 0.7 7.91 ∗ 105 0.295% 60.4% 87.8% 87.6% 86.6% 3.8%
5 5 0.8 1.26 ∗ 106 0.471% 96.4% 87.7% 87.3% 86.2% 4.2%
8 5 0.4 7.91 ∗ 105 0.295% 60.4% 87.0% 86.6% 86.1% 4.3%

. . . ‡

* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.4.

Table 9.13: Top three achieved binary PSML-CPCA Bloom filter TP0 with corresponding TP0.1 and
TP0.5, with a final binary PSML-CPCA comparison using T = 32 and T = 16 trees.

other T = 32 and T = 64 configurations, this could be serendipity.

Since the biometric performance loss introduced by using T less than 1/8 of enrolled tem-
plates is too high, another T = 64 and T = 32 experiment has been run with enabled tree
pre-selection. Tree pre-selection introduces additional workload by first comparing all tree root
nodes with the query template, thus selecting more than 48 trees for T = 64 and more than
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26 trees for T = 32 would actually increase the workload. Observe table 9.14, reducing the

Bloom filter SMR Workload Recognition Performance

t W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

1 4 4 0.2 3.53 ∗ 105 0.1316% 26.9% 78.2% 77.3% 77.1% 13.3%
2 4 4 0.3 3.73 ∗ 105 0.1392% 28.5% 82.0% 81.4% 81.3% 9.1%
3 4 4 0.4 3.94 ∗ 105 0.1469% 30.1% 84.7% 84.3% 83.4% 7.0%

. . . ‡

18 5 5 0.6 8.96 ∗ 105 0.3339% 68.4% 89.2% 88.6% 87.7% 2.7%
19 5 5 0.6 9.22 ∗ 105 0.3437% 70.4% 89.5% 88.9% 88.0% 2.4%
20 5 5 0.6 9.48 ∗ 105 0.3535% 72.4% 89.5% 88.9% 88.0% 2.4%

. . . ‡

46 5 6 0.4 2.71 ∗ 106 1.0113% 207.1% 87.3% 87.1% 86.2% 4.2%
47 5 6 0.4 2.75 ∗ 106 1.0278% 210.4% 87.3% 87.1% 86.2% 4.2%
48 5 6 0.4 2.80 ∗ 106 1.0444% 213.7% 87.3% 87.1% 86.2% 4.2%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.5.

Table 9.14: Best achieved binary PSML-CPCA Bloom filter TP0 with corresponding TP0.1 and TP0.5,
with a final binary PSML-CPCA comparison and tree pre-selection of t = 1, . . . , 48 trees at T = 64.

Bloom filter SMR Workload Recognition Performance

t W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

1 4 5 0.1 3.16 ∗ 105 0.1179% 24.1% 66.6% 65.9% 65.7% 24.7%
2 4 5 0.1 3.65 ∗ 105 0.1362% 27.9% 74.2% 73.8% 73.2% 17.2%
3 4 5 0.3 4.14 ∗ 105 0.1545% 31.6% 76.6% 76.2% 76.0% 14.4%

. . . ‡

16 4 4 0.5 6.60 ∗ 105 0.2460% 50.4% 87.7% 86.7% 86.6% 3.8%
17 4 5 0.6 1.10 ∗ 106 0.4108% 84.1% 88.1% 87.2% 86.7% 3.7%
18 4 5 0.6 1.15 ∗ 106 0.4292% 87.9% 88.1% 87.2% 86.7% 3.7%

. . . ‡

26 5 4 0.7 7.75 ∗ 105 0.2888% 59.1% 87.4% 87.2% 86.2% 4.2%
27 5 4 0.7 7.99 ∗ 105 0.2979% 61.0% 87.5% 87.3% 86.3% 4.1%
28 5 4 0.7 8.24 ∗ 105 0.3071% 62.9% 87.6% 87.3% 86.4% 4.0%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.6.

Table 9.15: Best achieved binary PSML-CPCA Bloom filter TP0 with corresponding TP0.1 and TP0.5,
with a final binary PSML-CPCA comparison and tree pre-selection of t = 1, . . . , 26 trees at T = 32.
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number of pre-selected trees to 19 to 21 increased the performance while reducing the workload
∼30%. In its best performance, the Bloom filter with T = 32 suffers a ∼1.3%-points perform-
ance loss compared to the T = 64 setup. Because a smaller Bloom filter block size is needed to
receive this performance for T = 32 with tree pre-selection (table 9.15), the workload reduction
is less11 than the workload reduction with T = 64 and tree pre-selection.

The binary PSML-CPCA Bloom filter achieved the best biometric performance of TP0 =
88% with T = 64, a tree pre-selection of t≈5/16 and an additional binary PSML-CPCA com-
parison. This is a TP0 loss of 1%-point compared to the binary PSML-CPCA baseline while
reaching a workload reduction of just 30%. One final experiment is run to test whether using
the real-valued PSML-CPCA as the additional comparison is able to achieve a higher biomet-
ric performance compared to the binary PSML-CPCA baseline while receiving at least a small
amount of workload reduction, even if the comparison cost for a real-valued PSML-CPCA is
32 times higher than the binary PSML-CPCA comparison. Since the three template protection
requirements are proven in section 7.2, it is safe to keep these templates. As listed in table 9.16,

Bloom filter SMR Workload Recognition Performance

t W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

1 4 4 0.2 3.53 ∗ 105 0.1316% 26.95% 78.9% 78.4% 78.0% 12.4%
2 4 5 0.3 5.94 ∗ 105 0.2216% 45.39% 83.6% 83.1% 82.7% 7.7%
3 4 4 0.4 3.94 ∗ 105 0.1469% 30.08% 85.4% 84.7% 84.6% 5.8%

. . . ‡

25 6 4 0.5 5.64 ∗ 105 0.2104% 43.1% 89.8% 89.1% 89.0% 1.4%
26 6 4 0.5 5.78 ∗ 105 0.2155% 44.14% 89.9% 89.1% 89.0% 1.4%
27 6 4 0.5 5.92 ∗ 105 0.2206% 45.18% 90.0% 89.1% 89.0% 1.4%

. . . ‡

46 6 5 0.6 1.35 ∗ 106 0.5065% 103.7% 90.2% 89.4% 88.8% 1.6%
47 4 5 0.6 2.06 ∗ 106 0.7710% 157.9% 90.0% 89.4% 88.8% 1.6%
48 4 5 0.6 2.10 ∗ 106 0.7832% 160.4% 90.0% 89.4% 88.8% 1.6%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.7.

Table 9.16: Best achieved binary PSML-CPCA Bloom filter TP0 with corresponding TP0.1 and TP0.5,
with a final real-valued PSML-CPCA comparison and tree pre-selection of t = 1, . . . , 48 trees at
T = 64.

the additional real-valued PSML-CPCA comparison achieves a higher biometric performance,
than the binary PSML-CPCA baseline.

11When sacrificing a another small amount of biometric performance, a workload reduction ∼50% is achievable
with T = 32.
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This and the two previous experiments use the Bloom filter-indexing as a rank 1 pre-selection
approach with one final real-valued PSML-CPCA, respective one final binary PSML-CPCA
comparison. With a tree pre-selection of t = 25 trees at T = 64 and with the comparison
cost of the real-valued comparison calculated, an additional12 workload reduction of ∼57% is
reached at TP0 = 89% - just ∼1.42%-points less than the heavy, naïve PSML approach, while
achieving the same biometric performance as the naïve binary PSML-CPCA approach and
outperforming all previous binary PSML-CPCA Bloom filter-indexing approaches in terms of
both biometric performance and workload.

9.4.2 Binary SMR Bloom filter-indexing

Bloom filter-indexing with binary PSML-CPCA templates yielded in their best performing con-
figuration a TP0 of 88% with an additional workload reduction of ∼30%. Workload reductions
of ∼50% are achieved with a TP0 of 86%. The following experiments are run to test whether
the binary PSML is able to achieve a higher biometric performance than the smaller binary
PSML-CPCA, although the base performance is lower.

Again, the best-performing H andW need to be found. The experiment is run the same way
as for the binary PSML-CPCA Bloom filter. In the most basic experiment, the binary PSML

Bloom filter SMR Workload Recognition Performance

W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

5 4 0.2 6.71 ∗ 106 2.500% 512.0% 85.3% 83.6% 82.5% 7.9%
5 4 0.1 6.71 ∗ 106 2.500% 512.0% 85.5% 82.7% 81.2% 9.2%
6 4 0.3 5.59 ∗ 106 2.083% 426.9% 83.9% 82.7% 80.5% 9.9%
7 4 0.4 4.79 ∗ 106 1.786% 364.8% 82.4% 80.5% 79.9% 10.5%
8 6 0.5 1.11 ∗ 107 4.167% 853.2% 82.0% 80.5% 79.0% 11.4%
7 4 0.6 4.79 ∗ 106 1.786% 365.4% 80.9% 77.0% 76.3% 14.1%
7 4 0.7 4.79 ∗ 106 1.786% 365.4% 78.7% 76.1% 72.1% 18.3%
8 8 0.8 3.35 ∗ 107 12.500% 2560.0% 71.2% 70.2% 66.2% 24.2%
8 8 0.9 3.35 ∗ 107 12.500% 2560.0% 67.3% 61.9% 52.7% 37.7%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table 9.17: Best achieved binary PSML Bloom filter TP0 with corresponding TP0.1 and TP0.5 for
every tested binarisation mask threshold with their corresponding H and W (T = 64), ordered by
TP0,TP0.1.

is able to achieve higher TP0 values (table 9.17) than the binary PSML-CPCA, although the
12Workload reduction on top of the workload-reduction-by-feature-reduction.
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performance loss compared to the baseline is too high.

By inspecting the bit-errors between two mated binary PSML templates, it is clearly visible
that the binary PSML also suffers from a high bit-error rate. Even at a high mask threshold
of 0.9, a bit-error rate of ∼14% is recorded. Figure 9.17 exemplary shows the bit-error between
mated templates for different mask thresholds.

(a) Threshold 0.1 (b) Threshold 0.4 (c) Threshold 0.9

Figure 9.17: Bit-errors between two mated binary PSML templates from one subject (i.e. one instance)
at three different binarisation mask thresholds (white = bit-error).

Therefore, the same bit-error correction methods as in the binary PSML-CPCA experi-
ments are tested for the binary PSML. Both transposing the PSML and using majority voting

Bit-error Bloom filter SMR Workload Recognition Performance

correction W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

Transposed

4 5 0.1 1.34 ∗ 107 5.000% 1024.0% 84.5% 84.1% 83.0% 7.4%
4 4 0.2 8.38 ∗ 106 3.125% 640.0% 84.4% 82.8% 82.1% 8.3%
6 4 0.3 5.59 ∗ 106 2.083% 426.9% 83.8% 81.9% 81.6% 8.8%

. . . ‡

Majority Voting

5 4 0.1 6.71 ∗ 106 2.500% 512.0% 84.7% 83.0% 81.6% 8.8%
5 4 0.2 6.71 ∗ 106 2.500% 512.0% 84.7% 84.0% 81.6% 8.8%
6 4 0.3 5.59 ∗ 106 2.083% 426.9% 84.1% 82.0% 80.9% 9.5%

. . . ‡

Transposed
&

Majority Voting

4 5 0.1 1.34 ∗ 107 5.000% 1024.0% 84.3% 83.4% 82.9% 7.5%
4 4 0.2 8.38 ∗ 106 3.125% 640.0% 84.8% 82.9% 82.3% 8.1%
6 6 0.3 1.49 ∗ 107 5.556% 1137.9% 82.3% 81.3% 79.7% 10.7%

. . . ‡

* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.8.

Table 9.18: Top three achieved TP0 with corresponding TP0.1 and TP0.5 for every tested binarisation
mask threshold with their corresponding H and W (T = 64) using the binary PSML with several
bit-error reduction strategies, ordered by mask threshold.

increased the biometric performance, but transposing and using majority voting fails to increase
the biometric performance compared to only using the transposed PSML. Unfortunately, trans-
posing the binary PSML introduces additional workload due to the Bloom filter transformation
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process.

Since the error introduced by the Bloom filter is still too high with the bit-error correction
methods, the additional comparison strategy as for the binary PSML-CPCA is tested for the
normal, transposed and majority voting binary PSML. As listed in table 9.19, with enabled

Bit-error Bloom filter SMR Workload Recognition Performance

correction W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

None

8 6 0.6 1.12 ∗ 107 4.179% 855.6% 89.8% 89.5% 89.0% 1.4%
7 7 0.7 2.19 ∗ 107 8.175% 1674.2% 90.1% 89.1% 88.9% 1.5%
9 4 0.5 3.76 ∗ 106 1.401% 286.7% 89.2% 88.8% 88.8% 1.6%

. . . ‡

Transposed

6 6 0.5 1.49 ∗ 107 5.568% 1140.4% 89.4% 88.9% 88.5% 1.9%
5 5 0.6 1.07 ∗ 107 4.012% 821.7% 89.8% 88.7% 88.0% 2.3%
5 8 0.7 5.37 ∗ 107 20.008% 4098.4% 89.8% 88.8% 87.9% 2.5%

. . . ‡

Majority
Voting

8 5 0.8 6.74 ∗ 106 2.512% 514.5% 89.8% 89.5% 88.9% 1.5%
7 4 0.7 4.82 ∗ 106 1.798% 368.0% 90.2% 89.4% 88.6% 1.8%
6 5 0.6 8.98 ∗ 106 3.346% 685.4% 90.1% 89.1% 88.5% 1.9%

. . . ‡

* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.9.

Table 9.19: Top three achieved TP0 with corresponding TP0.1 and TP0.5 using the binary PSML with
and without bit-error reduction strategies, ordered by TP0.

additional comparison and without bit-error reduction strategies, a biometric performance of
up to TP0 = 89% is reached (0.9%-points more than the binary PSML baseline, equals the bin-
ary PSML-CPCA baseline) but with an increase of ∼33% in workload. Sacrificing 0.2% points
in TP0, a workload reduction of ∼55% is reached. With 𝟋 = 0.701%, the overall workload
reduction is still smaller than the workload reduction of the binary PSML-CPCA Bloom filter
(𝟋 = 0.172%, TP0 = 88%).

All previous binary SMR Bloom filter experiments have been run at T = 64. The experi-
ments were also run with T = 32 and T = 16, with their results listed in table 9.20. Again,
using T = 16 introduces too much error in the means of TP0. Unfortunately, the best con-
figuration with T = 32 fails to achieve a much higher workload reduction then the third best
T = 64 configuration and loses ∼0.6%-points TP0.

Finally, two last experiments are run at T = 32 and T = 64 with enabled tree pre-selection.
Using the final binary PSML comparison with tree pre-selection at T = 64 achieves a biometric
performance of TP0 = 88.9% with a pre-selection of t = 5/16 trees (table 9.21). Compared to
the naïve binary PSML approach, this is an TP0 increase of 0.9% and an additional workload
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Bloom filter SMR Workload Recognition Performance

T W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

16

5 5 0.5 5.40 ∗ 106 2.012% 412.1% 82.4% 81.8% 81.6% 8.8%
4 5 0.6 6.74 ∗ 106 2.512% 514.5% 84.1% 83.8% 83.3% 7.1%
4 6 0.7 1.12 ∗ 107 4.179% 855.6% 83.3% 82.5% 81.9% 8.5%

. . . ‡

32

7 4 0.7 3.62 ∗ 106 1.351% 277.1% 89.0% 88.1% 88.0% 2.3%
7 4 0.5 3.62 ∗ 106 1.351% 277.1% 89.2% 88.4% 87.9% 2.5%
5 4 0.6 5.06 ∗ 106 1.887% 386.5% 89.1% 88.5% 87.8% 2.6%

. . . ‡

* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.10.

Table 9.20: Top three achieved binary PSML Bloom filter TP0 with corresponding TP0.1 and TP0.5,
with a final binary PSML comparison using T = 32 and T = 16 trees.

Bloom filter SMR Workload Recognition Performance

t W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

1 4 5 0.1 3.59 ∗ 106 1.340% 274.5% 72.1% 72.0% 71.7% 18.7%
2 4 5 0.2 3.80 ∗ 106 1.418% 290.5% 79.1% 78.7% 78.0% 12.4%
3 4 4 0.6 2.52 ∗ 106 0.940% 192.6% 82.9% 82.1% 81.2% 9.2%

. . . ‡

19 7 4 0.7 2.65 ∗ 106 0.989% 202.2% 89.6% 88.8% 88.8% 1.6%
20 7 4 0.7 2.72 ∗ 106 1.017% 208.0% 89.8% 89.0% 88.9% 1.5%
21 4 7 0.6 2.22 ∗ 107 8.271% 1694.0% 89.8% 89.4% 88.6% 1.8%

. . . ‡

35 7 7 0.7 1.74 ∗ 107 6.517% 1335.0% 90.1% 89.1% 88.9% 1.5%
. . . ‡

44 8 6 0.6 1.05 ∗ 107 3.918% 802.5% 89.8% 89.5% 89.0% 1.4%
. . . ‡

* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.11.

Table 9.21: Best achieved binary PSML Bloom filter TP0 with corresponding TP0.1 and TP0.5, with
a final binary PSML comparison and tree pre-selection of t = 1, . . . , 48 trees at T = 64.

reduction down to ∼70%. The configuration with T = 32 (table 9.22) fails to yield equal TP0

values at a comparable workload reduction.

However, the binary PSML Bloom filter does not accomplish the overall workload reduc-
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Bloom filter SMR Workload Recognition Performance

t W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

1 4 5 0.4 2.02 ∗ 106 0.754% 154.2% 52.3% 52.2% 51.9% 38.5%
2 5 5 0.8 1.87 ∗ 106 0.699% 143.4% 62.7% 62.5% 62.5% 27.9%
3 5 5 0.8 2.12 ∗ 106 0.793% 162.6% 70.0% 69.8% 69.8% 20.6%

. . . ‡

15 4 5 0.6 6.42 ∗ 106 2.395% 490.2% 88.4% 87.7% 86.7% 3.7%
16 4 5 0.6 6.74 ∗ 106 2.512% 514.5% 88.6% 88.0% 87.0% 3.4%
17 4 5 0.6 7.05 ∗ 106 2.629% 538.2% 88.7% 88.0% 87.0% 3.4%

. . . ‡

24 7 4 0.7 3.32 ∗ 106 1.240% 254.1% 88.8% 87.9% 87.8% 2.6%
25 7 4 0.7 3.44 ∗ 106 1.282% 262.4% 88.8% 87.9% 87.8% 2.6%
26 7 4 0.7 3.55 ∗ 106 1.324% 270.7% 88.8% 88.0% 87.9% 2.5%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.12.

Table 9.22: Best achieved binary PSML Bloom filter TP0 with corresponding TP0.1 and TP0.5, with
a final binary PSML comparison and tree pre-selection of t = 1, . . . , 26 trees at T = 32.

tion13 and biometric performance of the binary PSML-CPCA Bloom filter. Using an additional
real-valued PSML comparison as in the binary PSML-CPCA Bloom filter experiments is not
feasible: the real-valued PSML does not fulfil the unlinkability and renewability template pro-
tection requirements. Therefore, keeping real-valued PSML is a privacy issue, and thus is irre-
sponsible for real-world scenarios.
For the sake of completeness, the appended table A.13 lists the results of such approach. With
a biometric performance of TP0 = 90.2%14 at a relative workload reduction of ∼64% compared
to the naïve binary PSML approach, this approach outperforms every other binary and Bloom
filter approach in the means of biometric performance, but the workload is still approximately
5 times higher than the best binary PSML-CPCA Bloom filter and approximate 2 times higher
than the naïve binary PSML-CPCA approach. Even an increase in TP0 of 0.1% compared to the
real-valued PSML-Baseline is achieved with 𝟋B = 6.653%. At least this result hints at a con-
firmation of the at-least-one-false-match problem from section 2.2.3: the biometric performance
increased by reducing the workload.

9.4.3 Binary SMR-CPCA Bloom filter-verification

In [DRB17], the Bloom filter achieved the best verification performance with comparatively
small block sizes. Looking at the biometric performance for the indexing approach with a small

13Workload reduction compared to the real-valued PSML-Baseline.
14When doubling the workload due to a bad Bloom filter block size, a TP0 of 90.4% is reached.
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Bloom filter block size, it has to be expected that the Bloom filter will not be feasible for
verification purposes with binary PSML-CPCA templates.
As shown in table 9.23, the best block size for verification purposes isW = 4,H = 2, resulting

For Bloom filter SMR Workload Recognition Performance

every W H MT ω1 𝟋B
* 𝟋R

† EER EER Loss to PSLM-Baseline

H

4 2 0.5 2.56 ∗ 103 0.244% 50.00% 2.8% 0.7%
4 3 0.5 3.41 ∗ 103 0.326% 66.7% 3.2% 1.1%
4 4 0.2 5.12 ∗ 103 0.488% 100.0% 3.3% 1.2%
5 5 0.2 6.55 ∗ 103 0.625% 128.0% 3.2% 1.1%
5 6 0.3 1.09 ∗ 104 1.042% 213.3% 4.2% 2.1%
4 7 0.2 2.34 ∗ 104 2.232% 457.1% 4.9% 2.8%
4 8 0.5 4.09 ∗ 104 3.906% 800.0% 5.2% 3.1%

W

2 2 0.5 5.12 ∗ 103 0.488% 100.0% 3.0% 0.9%
3 2 0.5 3.41 ∗ 103 0.326% 66.7% 3.0% 0.9%
4 2 0.5 2.56 ∗ 103 0.244% 50.0% 2.8% 0.7%
5 2 0.5 2.04 ∗ 103 0.195% 40.0% 3.0% 0.9%
6 2 0.6 1.70 ∗ 103 0.163% 33.3% 3.1% 1.0%
7 2 0.6 1.46 ∗ 103 0.140% 28.6% 3.1% 1.0%
8 2 0.6 1.28 ∗ 103 0.122% 25.0% 3.2% 1.1%

* 𝟋 compared to the PSML ω1.
† 𝟋 compared to the binary PSML-CPCA ω1.

Table 9.23: Best achieved EER by applying the Bloom filter to the binary PSML-CPCA, sorted by
each W and H.

in a workload reduction of 50% with an EER loss of 0.9%-points compared to the real-valued
PSML-Baseline and real-valued PSML-CPCA. Looking upon the score distribution, for the in
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Figure 9.18: Verification score distribution (Y-axis normalised to 1) of the Bloom filter configuration
achieving the best EER (W = 4,H = 2) for the binary PSML-CPCA in comparison to the score
distribution of the binary PSML-CPCA.
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table 9.23 highlighted configuration, in figure 9.18, the bad EER is easily explainable by the
strong overlap of the genuine and impostor scores.

9.4.4 Binary SMR Bloom filter-verification

The binary PSML achieved a higher biometric identification performance in the basic Bloom
filter approach. Therefore, it is expected that the binary PSML also results in a higher bio-
metric verification performance. The results of the verification experiment, listed in table 9.24,

For Bloom filter SMR Workload Recognition Performance

every W H MT ω1 𝟋B
* 𝟋R

† EER EER Loss to PSLM-Baseline

H

3 2 0.1 2.18 ∗ 104 2.083% 426.9% 2.50% 0.40%
2 3 0.1 4.37 ∗ 104 4.167% 853.1% 2.68% 0.60%
3 4 0.1 4.37 ∗ 104 4.167% 853.1% 2.73% 0.63%
2 5 0.1 1.05 ∗ 105 10.000% 2047.9% 2.76% 0.66%
5 6 0.1 6.99 ∗ 104 6.667% 1365.1% 2.94% 0.84%
2 7 0.1 3.00 ∗ 105 28.567% 5851.3% 2.89% 0.79%
2 8 0.1 5.24 ∗ 105 50.000% 10239.6% 3.13% 1.03%

W

2 2 0.1 3.28 ∗ 104 3.125% 640.0% 2.53% 0.43%
3 2 0.1 2.18 ∗ 104 2.083% 426.9% 2.50% 0.40%
4 2 0.1 1.64 ∗ 104 1.562% 320.0% 2.61% 0.51%
5 2 0.1 1.31 ∗ 104 1.250% 256.0% 2.68% 0.58%
6 2 0.1 1.09 ∗ 104 1.042% 213.1% 2.80% 0.70%
7 2 0.2 9.36 ∗ 103 0.893% 183.0% 2.89% 0.79%
8 3 0.3 1.09 ∗ 104 1.042% 213.1% 3.03% 0.93%

* 𝟋 compared to the PSML ω1.
† 𝟋 compared to the binary PSML-CPCA ω1.

Table 9.24: Best achieved EER by applying the Bloom filter to the binary PSML, sorted by each W
and H.

confirm these expectations. Looking at the score distribution in figure 9.19 for the highlighted
configuration, the genuine and impostor comparison scores are more separated than those for
the binary PSML-CPCA Bloom filter, thus achieving the lower EER, but still featuring a high
overlap. However, in consideration of the achieved workload reduction15 and the EER, applying
the Bloom filter on the binary SMR for verification purposes is not feasible at least for high
noise environments.

9.5 CPCA-Tree-indexing Approach
Applying the Bloom filter to the binary PSML-CPCA with additional real-valued comparison
outperformed the naïve binary PSML-CPCA approach in terms of both workload and biometric

15The workload ω does not consider the cost of transforming the binary input in the new Bloom filter
representation, therefore the real workload is a fraction higher.
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Figure 9.19: Verification score distribution of the Bloom filter configuration achieving the best EER
(W = 4,H = 2) for the binary PSML.

performance. The next experiments are run to determine whether the introduced CPCA-Tree
is able to outperform the Bloom filter approach in terms of workload reduction or biometric
performance in one of its three types.

9.5.1 Basic implementation

In the basic configuration, the CPCA-Tree is built using the binary PSML-CPCA created with
the high mask threshold configuration from section 9.3.4. As already discussed in section 7.1,
employing more than 8 templates per tree introduces a very high population count in the (root)
nodes, and thus is not feasible. Therefore, the experiments are run with T = 32 and T = 64.

Construction SMR Workload Recognition Performance

Type T λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

PSML-CPCA-Applied (PSML-CPCA-A)

64
0.49 0.6 0.65 1.31 ∗ 106 0.4883% 100.0% 4.141% 86.5% 85.4% 84.1% 6.3%
0.48 0.6 0.65 1.31 ∗ 106 0.4883% 100.0% 4.062% 84.7% 83.4% 83.4% 7.0%
0.47 0.7 0.66 1.31 ∗ 106 0.4883% 100.0% 4.531% 84.5% 83.3% 83.3% 7.1%

32
0.48 0.7 0.65 9.83 ∗ 105 0.3662% 75.0% 5.625% 85.2% 85.2% 84.8% 5.6%
0.48 0.6 0.65 9.83 ∗ 105 0.3662% 75.0% 5.625% 85.2% 85.2% 84.8% 5.6%
0.48 0.6 0.65 9.83 ∗ 105 0.3662% 75.0% 5.703% 85.5% 84.5% 83.8% 6.6%

PSML-CPCA-Components (PSML-CPCA-C)

64
0.46 0.6 0.70 1.31 ∗ 106 0.4883% 100.0% 3.828% 90.1% 89.8% 89.8% 0.6%
0.46 0.6 0.70 1.31 ∗ 106 0.4883% 100.0% 3.984% 90.6% 90.0% 89.7% 0.7%
0.46 0.6 0.70 1.31 ∗ 106 0.4883% 100.0% 3.828% 90.2% 89.9% 89.7% 0.7%

32
0.49 0.7 0.65 9.83 ∗ 105 0.3662% 75.0% 7.656% 87.0% 86.1% 85.9% 4.5%
0.47 0.6 0.65 9.83 ∗ 105 0.3662% 75.0% 7.266% 86.8% 86.6% 85.8% 4.6%
0.47 0.6 0.65 9.83 ∗ 105 0.3662% 75.0% 7.656% 86.6% 86.5% 85.8% 4.6%

PSML-CPCA-Mixed (PSML-CPCA-M)

64
0.46 0.6 0.65 1.31 ∗ 106 0.4883% 100.0% 3.672% 90.0% 90.0% 89.8% 0.6%
0.46 0.6 0.65 1.31 ∗ 106 0.4883% 100.0% 3.750% 89.9% 89.8% 89.5% 0.9%
0.46 0.6 0.65 1.31 ∗ 106 0.4883% 100.0% 3.594% 90.2% 89.7% 89.4% 1.0%

32
0.46 0.6 0.65 9.83 ∗ 105 0.3662% 75.0% 5.234% 88.9% 88.9% 88.8% 1.6%
0.46 0.6 0.65 9.83 ∗ 105 0.3662% 75.0% 5.391% 88.8% 88.8% 88.4% 2.0%
0.46 0.6 0.65 9.83 ∗ 105 0.3662% 75.0% 5.234% 89.0% 88.6% 88.3% 2.1%

* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table 9.25: Top three achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for each of the
three different template types with PSML-CPCA input at T = 64 and T = 32.

First, the performance of the three PSML-CPCA types are compared at T = 64 and
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T = 32. The top three of every type and T combination is listed in table 9.25. Simply using the
SMR-CPCA-A type of the PSML-CPCA, further called PSML-CPCA-A, fails to yield good
TP0, TP0.1 and TP0.5 due to a high overlap between genuine and impostor scores. Employ-
ing both components (SMR-CPCA-C) of the PSML-CPCA, further called PSML-CPCA-C,
drastically increases the biometric performance of the CPCA-Tree and reduces the PER by a
fraction. However, the hybrid type (SMR-CPCA-M) of the PSML-CPCA, further called PSML-
CPCA-M, achieves a equivalent biometric performance as the PSML-CPCA-C for T = 64 but
outperforms it for T = 32 due to the reduced population in the sign-bit.
Even in the most basic implementation, the CPCA-Tree is able to increase the biometric per-
formance compared to the naïve binary PSML-CPCA approach without additional workload
reduction (T = 64; PSML-CPCA-M and PSML-CPCA-C), and nearly reaches the biometric
performance of the naïve binary PSML-CPCA with a workload reduction of 25% (T = 32;
PSML-CPCA-M).

9.5.2 Tree pre-selection

By narrowing down the feasible types for T = 64 to the PSML-CPCA-C and PSML-CPCA-M,
for T = 32 to PSML-CPCA-M, the next experiments are run to determine the workload reduc-
tion capabilities with tree pre-selection. As in the Bloom filter sections, the tree pre-selection
experiments for T = 64 are run with t = 1, . . . , 48 trees and t = 1, . . . , 26 trees for T = 32
since selecting more trees would increase the workload.

Beginning with the PSML-CPCA-C, the tree pre-selection results are listed in table 9.26.
The quick decay of the biometric performance is very conspicuous: already at a pre-selection
of t = 1/2 trees, the biometric performance loses 0.5%-points in TP0 while only achieving an
additional workload reduction of ∼13% compared to the naïve PSML-CPCA baseline.

It can be observed from table 9.27 that the PSML-CPCA-M CPCA-Tree performs much
better with enabled tree pre-selection. With as little TP0 loss as 0.2%-points compared to the
naïve binary SMR-CPCA approach, a workload reduction of ∼32% is achieved. A workload
reduction of ∼50% is achievable with a performance gain of ∼1%-point compared to the naïve
binary PSML-CPCA approach.
These better results are trivially explainable with figure 7.3 and table 7.1. T = 64 yields 4 tem-
plates per tree. Comparing four merged (joined using a binary OR-operation) sign-bits (figure
7.3g) and four merged applied-bit16 (figure 7.3i), the merged sign-bit has an average popula-
tion rate of 93.5% while the applied-bit has an average population rate of 61.4%. Therefore, the
root node of a CPCA-Tree using PSML-CPCA-C templates at T = 64 is nearly set completely
and thus does not contain any useful information. A tree pre-selection is therefore rendered
serendipity, which may yield acceptable results with a high pre-selection rate, but drastically

16Which are identical to the sign-bit of the PSML-CPCA-M.
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SMR Workload Recognition Performance

t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.47 0.64 0.65 3.48 ∗ 105 0.1297% 26.6% 49.61% 49.3% 48.8% 48.6% 41.8%
2 0.49 0.63 0.65 3.69 ∗ 105 0.1373% 28.1% 37.27% 61.0% 60.5% 60.4% 30.0%
3 0.49 0.63 0.65 3.89 ∗ 105 0.1450% 29.7% 29.14% 68.9% 68.3% 68.1% 22.3%

. . . ‡

31 0.46 0.62 0.70 9.63 ∗ 105 0.3586% 73.4% 4.69% 90.1% 89.3% 89.3% 1.1%
32 0.46 0.62 0.70 9.83 ∗ 105 0.3662% 75.0% 4.53% 90.2% 89.4% 89.4% 1.0%
33 0.46 0.62 0.65 1.00 ∗ 106 0.3738% 76.6% 4.06% 89.8% 89.7% 89.5% 0.9%

. . . ‡

39 0.46 0.62 0.70 1.13 ∗ 106 0.4196% 85.9% 4.14% 89.9% 89.7% 89.7% 0.7%
40 0.46 0.62 0.70 1.15 ∗ 106 0.4272% 87.5% 3.98% 90.0% 89.8% 89.8% 0.6%

. . . ‡

46 0.46 0.62 0.70 1.27 ∗ 106 0.4730% 96.9% 3.83% 90.0% 89.8% 89.8% 0.6%
47 0.46 0.62 0.70 1.29 ∗ 106 0.4807% 98.4% 3.75% 90.1% 89.8% 89.8% 0.6%
48 0.46 0.62 0.70 1.31 ∗ 106 0.4883% 100.0% 3.75% 90.1% 89.8% 89.8% 0.6%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.14.

Table 9.26: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using PSML-CPCA-C templates at T = 64.

SMR Workload Recognition Performance

t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.64 0.65 3.48 ∗ 105 0.1297% 26.6% 28.75% 70.2% 69.5% 69.3% 21.1%
2 0.49 0.64 0.65 3.69 ∗ 105 0.1373% 28.1% 18.44% 79.0% 78.4% 78.0% 12.4%
3 0.49 0.67 0.70 3.89 ∗ 105 0.1450% 29.7% 14.22% 83.0% 82.7% 81.9% 8.5%

. . . ‡

16 0.47 0.61 0.65 6.55 ∗ 105 0.2441% 50.0% 5.08% 89.3% 89.2% 89.0% 1.4%
. . . ‡

21 0.46 0.62 0.65 7.58 ∗ 105 0.2823% 57.8% 4.22% 89.8% 89.8% 89.5% 0.9%
22 0.46 0.62 0.65 7.78 ∗ 105 0.2899% 59.4% 4.14% 89.8% 89.8% 89.6% 0.8%
23 0.46 0.62 0.65 7.99 ∗ 105 0.2975% 60.9% 3.91% 89.9% 89.9% 89.7% 0.7%

. . . ‡

28 0.46 0.62 0.65 9.00 ∗ 105 0.3357% 68.7% 3.75% 90.0% 90.0% 89.8% 0.6%
. . . ‡

48 0.46 0.62 0.65 1.31 ∗ 106 0.4883% 100.0% 3.67% 90.0% 90.0% 89.8% 0.6%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.15.

Table 9.27: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using PSML-CPCA-M templates at T = 64.

increases the PER when using small pre-selection rates.
Looking at the results for T = 32 using the PSML-CPCA-C templates in table 9.28 a workload
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SMR Workload Recognition Performance

t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.60 0.70 1.95 ∗ 105 0.0725% 14.84% 55.23% 43.9% 43.8% 43.7% 46.7%
2 0.49 0.60 0.75 2.25 ∗ 105 0.0839% 17.19% 41.25% 57.4% 57.3% 57.0% 33.4%
3 0.49 0.60 0.75 2.56 ∗ 105 0.0954% 19.53% 33.20% 65.2% 64.5% 64.5% 25.9%

. . . ‡

20 0.46 0.62 0.65 7.78 ∗ 105 0.2899% 59.38% 7.11% 87.7% 87.7% 87.6% 2.8%
21 0.46 0.62 0.65 8.09 ∗ 105 0.3014% 61.72% 6.72% 88.1% 88.1% 88.0% 2.4%
22 0.46 0.62 0.65 8.40 ∗ 105 0.3128% 64.06% 6.48% 88.3% 88.3% 88.1% 2.3%
23 0.46 0.62 0.65 8.70 ∗ 105 0.3242% 66.41% 6.40% 88.4% 88.4% 88.2% 2.2%
24 0.46 0.62 0.66 9.01 ∗ 105 0.3357% 68.75% 6.02% 88.7% 88.7% 88.5% 1.9%
25 0.46 0.62 0.66 9.32 ∗ 105 0.3471% 71.09% 5.94% 88.7% 88.7% 88.5% 1.9%
26 0.46 0.62 0.66 9.63 ∗ 105 0.3586% 73.44% 5.62% 88.8% 88.8% 88.7% 1.7%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.16.

Table 9.28: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 26 trees using PSML-CPCA-M templates at T = 32.

reduction using lesser trees and lesser trees with tree pre-selection is not feasible: using T = 64
with a small tree pre-selection yields a much better workload reduction with respect to the bio-
metric performance. The CPCA-Tree with T = 32 using the PSML-CPCA-C templates suffers
a high PER referable to the same problem as for the PSML-CPCA-C templates: a higher pop-
ulation rate in the root node of every tree aggravates a successful tree pre-selection. Therefore,
it is advisable to keep the population rate in the tree roots smaller than ∼75%, desirable at
∼50% to ∼70%.

At this point, the PSML-CPCA-M results in an additional workload reduction of 50% com-
pared to the naïve binary PSML-CPCA approach at the best biometric performance achieved
with the binary PSML-CPCA Bloom filter, respectively with the biometric performance of the
naïve binary PSML-CPCA approach. It is hardly expectable to achieve a higher workload re-
duction with the CPCA-Tree than with the binary PSML-CPCA Bloom filter. However, looking
at the low PER of the CPCA-Tree it might be possible to increase the biometric performance
of the binary PSML-CPCA without increasing the workload compared to the naïve approach.
The next experiments are run to achieve this goal.

9.5.3 Additional binary comparison

As already conducted with the Bloom filter approaches, an additional binary PSML-CPCA
template comparison could help to increase the biometric performance since impostor and
genuine scores could be more separated. However, using the additional comparison approach is
expected to only affect the PSML-CPCA-A templates since CPCA-Trees with PSML-CPCA-C
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or PSML-CPCA-M templates already undertake these comparisons while traversing the trees.
This expectation is proven in the appended table A.17 in comparison with table 9.27: using an
additional binary PSML-CPCA template comparison for the PSML-CPCA-M does not yield
any improved biometric performance but increases the workload by one comparison.

An experiment using the additional binary comparison for CPCA-Trees with PSML-CPCA-
A templates is skipped. Due to the larger PER in CPCA-Trees with PSML-CPCA-A templates,
it is not expected that an additional comparison will increase the biometric performance through
the level of CPCA-Trees with PSML-CPCA-M templates.

9.5.4 Masking out most common bits

Masking out the most common bits in a binary PSML-CPCA template could increase the bio-
metric performance since it is more difficult for impostor queries to be accepted while genuine
queries are ideally unaffected. Since the PSML-CPCA-M templates achieve the highest biomet-
ric performance paired with the highest workload reduction, the PSML-CPCA-M templates
with T = 64 and T = 32 are used in this experiment.

To create a mask with the most common bits, a heat map is used: the set bits of all enrolled
templates are summed up and all sums are normalised to [0, 1]. The mask is created by selecting
all normalised sums exceeding a given threshold17.
Masking out the most common bits successfully reduced the PER and increased TP0 by 0.1%-
points for both T = 64 (table 9.29) and T = 32 (table 9.30). For T = 64, a bit threshold of 0.6
to 0.7 seems feasible.

It has to be noted that the experiment can be further optimised. The heat map used for
this experiment was created using a fixed binarisation threshold of 0.7. Better results could be
achieved when creating the heat map with every tested mask threshold.

9.5.5 Additional real-valued comparison

Employing an additional real-valued PSML-CPCA comparison noteably increased the biomet-
ric performance for the Bloom filter approaches. Since the CPCA-Tree yield comperatively low
PER, it could also gain in TP0. The experiment is only run with 1, . . . , 32 pre-selected trees:
selecting more trees would increase the workload due to the additional real-valued comparison
and the tree pre-selection workload.
The TP0 values in tables 9.31 and 9.32 are disappointing, while the TP0.1 values indicate a

much higher performance. When analysing the TP values for every threshold at T = 64, it is
noticeable that the bad TP0 bases on one single impostor query that early exceeds the decision

17Called bit threshold in the tables.
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SMR Workload Recognition Performance

t λmax λCP CA
max MT Bit Threshold ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.65 0.65 0.7 3.53 ∗ 105 0.1316% 26.9% 28.91% 70.0% 69.7% 69.3% 21.1%
2 0.49 0.64 0.70 0.5 3.74 ∗ 105 0.1392% 28.5% 18.67% 79.1% 78.4% 78.4% 12.0%
3 0.49 0.64 0.70 0.6 3.94 ∗ 105 0.1469% 30.1% 14.22% 82.9% 82.1% 82.0% 8.5%

. . . ‡

16 0.46 0.62 0.70 0.6 6.60 ∗ 105 0.2460% 50.4% 4.844% 89.5% 89.1% 89.1% 1.3%
. . . ‡

21 0.46 0.62 0.65 0.8 7.63 ∗ 105 0.2842% 58.2% 4.219% 89.8% 89.8% 89.5% 0.9%
22 0.46 0.62 0.65 0.7 7.83 ∗ 105 0.2918% 59.8% 4.219% 89.8% 89.8% 89.6% 0.8%
23 0.46 0.62 0.65 0.7 8.04 ∗ 105 0.2995% 61.3% 3.984% 89.9% 89.9% 89.7% 0.7%

. . . ‡

28 0.46 0.62 0.70 0.6 9.06 ∗ 105 0.3376% 69.1% 3.828% 90.2% 89.9% 89.9% 0.5%
. . . ‡

46 0.46 0.62 0.70 0.5 1.27 ∗ 106 0.4749% 97.3% 3.750% 90.2% 89.9% 89.9% 0.5%
47 0.46 0.62 0.70 0.6 1.30 ∗ 106 0.4826% 98.8% 3.672% 90.2% 89.9% 89.9% 0.5%
48 0.46 0.62 0.70 0.6 1.32 ∗ 106 0.4902% 100.4% 3.672% 90.2% 89.9% 89.9% 0.5%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.18.

Table 9.29: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using PSML-CPCA-M templates at T = 64 with an additional binary
PSML-CPCA comparison and masking out most common set bits.

SMR Workload Recognition Performance

t λmax λCP CA
max MT Bit Threshold ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.60 0.70 0.9 2.00 ∗ 105 0.0744% 15.23% 55.23% 43.9% 43.8% 43.7% 46.7%
2 0.49 0.60 0.75 0.8 2.30 ∗ 105 0.0858% 17.58% 41.25% 57.5% 57.4% 57.0% 33.4%
3 0.49 0.60 0.75 0.5 2.61 ∗ 105 0.0973% 19.92% 32.97% 65.4% 64.7% 64.7% 25.7%

. . . ‡

20 0.48 0.66 0.75 0.5 7.83 ∗ 105 0.2918% 59.77% 6.95% 88.3% 88.2% 87.7% 2.7%
21 0.48 0.66 0.75 0.5 8.14 ∗ 105 0.3033% 62.11% 6.64% 88.6% 88.5% 88.0% 2.4%
22 0.48 0.66 0.75 0.5 8.45 ∗ 105 0.3147% 64.45% 6.02% 89.1% 88.7% 88.2% 2.2%
23 0.48 0.66 0.75 0.5 8.76 ∗ 105 0.3262% 66.80% 5.86% 89.1% 88.8% 88.3% 2.1%
24 0.46 0.62 0.65 0.9 9.06 ∗ 105 0.3376% 69.14% 6.02% 88.7% 88.7% 88.5% 1.9%
25 0.48 0.66 0.75 0.5 9.37 ∗ 105 0.3490% 71.48% 5.86% 89.1% 89.1% 88.6% 1.8%
26 0.46 0.62 0.65 0.7 9.68 ∗ 105 0.3605% 73.83% 5.70% 88.8% 88.8% 88.7% 1.7%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.19.

Table 9.30: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 26 trees using PSML-CPCA-M templates at T = 32 with an additional binary
PSML-CPCA comparison and masking out most common set bits.

threshold. If this query is removed from the query set, TP0 = 90.8%18 is achieved when pre-
selecting 32 trees and TP0 = 90.3% when pre-selecting 16 trees. However, in terms of TP0, the

18∼0.4%-points more than the naïve real-valued PSML approach; does not increase the workload compared
to the naïve binary PSML-CPCA approach while achieving a much higher biometric performance.
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SMR Workload Recognition Performance

t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.64 0.65 6.76 ∗ 105 0.2518% 51.56% 28.67% 70.5% 70.2% 69.8% 20.6%
2 0.49 0.64 0.70 6.96 ∗ 105 0.2594% 53.12% 17.81% 80.5% 80.1% 79.9% 10.5%
3 0.49 0.64 0.70 7.17 ∗ 105 0.2670% 54.69% 13.98% 84.1% 83.8% 83.6% 6.8%

. . . ‡

9 0.47 0.65 0.70 8.40 ∗ 105 0.3128% 64.06% 6.094% 89.6% 89.4% 88.8% 1.7%
. . . ‡

14 0.48 0.66 0.70 9.42 ∗ 105 0.3510% 71.88% 4.609% 90.6% 90.2% 88.0% 2.4%
15 0.48 0.65 0.70 9.63 ∗ 105 0.3586% 73.44% 4.219% 90.9% 90.4% 88.1% 2.3%
16 0.48 0.65 0.75 9.83 ∗ 105 0.3662% 75.00% 4.062% 90.8% 90.3% 88.1% 2.3%

. . . ‡

30 0.48 0.64 0.65 1.27 ∗ 106 0.4730% 96.88% 3.359% 91.2% 90.9% 88.5% 1.9%
31 0.47 0.64 0.70 1.29 ∗ 106 0.4807% 98.44% 3.359% 91.2% 90.8% 88.5% 1.9%
32 0.47 0.64 0.70 1.31 ∗ 106 0.4883% 100.00% 3.359% 91.2% 90.8% 88.5% 1.9%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.20.

Table 9.31: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 32 trees using PSML-CPCA-M templates at T = 64 with an additional real
PSML-CPCA comparison.

SMR Workload Recognition Performance

t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.60 0.70 5.22 ∗ 105 0.1945% 39.84% 55.23% 44.1% 43.8% 43.8% 46.7%
2 0.49 0.60 0.75 5.53 ∗ 105 0.2060% 42.19% 41.25% 58.0% 57.7% 57.3% 33.1%
3 0.48 0.65 0.75 5.84 ∗ 105 0.2174% 44.53% 32.66% 66.0% 65.9% 65.6% 24.8%

. . . ‡

21 0.47 0.64 0.70 1.14 ∗ 106 0.4234% 86.72% 5.78% 89.6% 89.1% 87% 3.5%
22 0.47 0.64 0.70 1.17 ∗ 106 0.4349% 89.06% 5.62% 89.7% 89.2% 87% 3.5%
23 0.48 0.62 0.70 1.20 ∗ 106 0.4463% 91.41% 5.31% 89.5% 89.2% 88.5% 1.9%
24 0.49 0.65 0.65 1.23 ∗ 106 0.4578% 93.75% 5.08% 89.8% 89.5% 87.3% 1.1%
25 0.49 0.65 0.65 1.26 ∗ 106 0.4692% 96.09% 4.92% 90% 89.6% 87.5% 2.9%
26 0.48 0.62 0.65 1.29 ∗ 106 0.4807% 98.44% 4.77% 90.2% 89.8% 87.5% 2.9%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.21.

Table 9.32: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 26 trees using PSML-CPCA-M templates at T = 32 with an additional real
PSML-CPCA comparison.

approach using an additional binary comparison yields a higher performance. It has to be noted
that the configuration using a pre-selection of 15 trees in table 9.31 surpasses all naïve binary
workload-reduction-by-feature-reduction approaches while introducing an additional workload
reduction of ∼27% compared to the naïve binary PSML-CPCA approach. The highlighted row
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in table 9.31 achieves the highest TP0 with just 9 searched trees. Since this is the only con-
figuration in this area and TP0.1 and TP0.5 are lower than the configuration with 10 searched
trees, it could be serendipity.

Another experiment with most common bit masking and additional real comparison was
run but did not achieve better results. Refer to appended table A.22 for the results.

9.6 Using the full vascular pattern in the SMR
Facing the overall acceptable baseline performance in intra-session experiments but poor baseline
performance in the inter-session experiments, an additional experiment has been run to exam-
ine whether the SMR hits its limit in this fuzzy environment, or if employing more information
achieves a higher biometric performance.
The average count19 of minutiae in the PolyU dataset is ∼70, whilst the whole vascular pattern
is represented by an average of ∼950 points. Therefore, ∼93% of the extracted information is
not represented in the SMR. Using more information does not necessarily result in an increased
biometric performance, although the chances are high that with a careful selection concerning
which parts of the vein pattern to include as input for the SMR, at least the overlap between
impostor and genuine attempt scores shrinks.
The results in figure 9.20 show a significant biometric performance improvement over the whole
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Figure 9.20: ROC of the PSML-Baseline (minutiae PSML) and full vein pattern SML.

ROC for inter-session and intra-session data. Table 9.33 lists the corresponding TP values for
figure 9.20. Note how the full vascular pattern SML in the inter-session experiment achieves
a similar or higher biometric performance than the intra-session experiments using minutiae
PSML.

19Before the removal of spurious minutiae.
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Experiment Recognition Performance

Session Input TP0.5 TP0.1 TP0 EER

Inter Pattern 92.9% 91.0% 90.5% 1.3%
Intra Pattern 97.9% 97.7% 97.0% 0.28%
Inter Minutiae 78.1% 75.1% 72.4% 3.4%
Intra Minutiae 91.2% 91.1% 90.4% 2.1%

Table 9.33: Biometric performance comparison between minutiae PSML and vascular pattern SML.

Therefore, using the full vascular pattern for the SMR greatly increases the biometric per-
formance without increasing the workload in any means: the full vascular pattern SMR is
sampled in the same way and size as the minutiae SMR and the same workload reduction
approaches can be utilised. Only the off-line cost of calculating the SMR is increased.

9.7 Summary
In summary, only five workload reduction methods, two using Bloom filter-indexing and three
using CPCA-Tree-indexing, are of concern and listed in table 9.34.

Workload Recognition Performance

Name ω256 𝟋B
* TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

PSML-Baseline† 2.68 ∗ 108 − 91.2% 91.1% 90.4% −
Binary PSML-CPCA† 1.31 ∗ 106 0.4880% 89.7% 89.1% 89.0% 1.4%
Bf CPCA ABC 9.22 ∗ 105 0.3437% 89.5% 88.9% 88.0% 2.4%
Bf CPCA ARC 5.23 ∗ 105 0.1952% 89.9% 89.1% 89.0% 1.4%
C-T SCM 9.01 ∗ 105 0.3357% 90.0% 90.0% 89.8% 0.6%
C-T SCM Masking 9.06 ∗ 105 0.3376% 90.2% 89.9% 89.9% 0.5%
C-T SCM ARC 1.13 ∗ 106 0.4196% 91.2% 90.8% 88.5% 1.9%
* 𝟋 compared to the PSML ω256.
† Naïve approach.

Table 9.34: Summary of relevant experiments, respectively workload reduction methods, with their
workload and biometric performance.

The configurations listed in the table are discussed below.

Bf CPCA ABC Using the Bloom filter with the binary PSML-CPCA and an additional
binary comparison achieved, as expected due to the usage of the PSML-CPCA, a much
better workload reduction, but fails to reach the biometric performance of the binary
PSML Bloom filter with additional binary comparison. The best workload-to-biometric-
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performance trade-off is achieved with a Bloom filter size of 5×5 with a MT of 0.6 at
t = 19, 20, 21, yielding ω256 ≈ 9.22 ∗ 106 (𝟋B = 0.3437%) at TP0 = 88.0%.

Bf CPCA ARC To address the biometric performance loss of the Bloom filter with binary
PSML-CPCA and an additional binary comparison, the additional binary comparison is
replaced with an additional real-valued PSML-CPCA comparison (ARC). This method
combines a low workload with a high biometric performance. Due to a more workload-
reducing Bloom filter size of 6×4, the even smaller workload of 5.23∗105 (𝟋B = 0.1952%)
at a biometric performance of TP0 = 89.0% with t = 22 is achieved. This is the recom-
mended Bloom filter approach.

C-T SCM The CPCA-Tree-indexing (C-T) approach using the PSML-CPCA-M (SCM) tem-
plates, which proved to achieve the best results in all CPCA-Tree configurations, already
achieves the highest biometric performance in the most basic implementation and is able
to maintain the high biometric performance with a workload of ∼70% to the naïve bin-
ary PSML-CPCA. It has to be noted that the biometric performance is above this naïve
approach. The highest TP0 of 89.8% is reached at t = 28 with 𝟋B = 0.3357%, which
is ∼30% workload less than the binary PSML-CPCA at a ∼0.8%-points higher TP0. If
the biometric performance of a naïve binary PSML-CPCA is desired, the workload can
further be reduced to 𝟋B = 0.2441 (half of the naïve approach) with t = 16.

C-T SCM Masking Masking out the most common bits set in a PSML-CPCA-M template
for CPCA-Tree-indexing increased the maximum TP0 to 89.9% for the sake of one ad-
ditional binary comparison20. A TP0 of 89.9% is reached at t = 28 with 𝟋B = 0.3376%
(TP0 = 89.8% is achieved with 𝟋B = 0.3147%). Again, if the biometric performance
of a naïve binary PSML-CPCA is desired, the workload can further be reduced to
𝟋B = 0.2384% with t = 15.

C-T SCM ARC Employing an additional real comparison to the CPCA-Tree with PSML-
CPCA-M templates increased both TP0.1 and TP0.5 to the highest values of all workload
reduction experiments, but reduces TP0. Therefore, this configuration is not recommen-
ded for high security scenarios. When selecting t = 23, the biometric performance of
TP0 = 88.5% and TP0 = 90.8% is achieved with at 𝟋B = 0.4196%.

Even if the Bloom filter-indexing using the binary PSML achieved an acceptable biometric
performance, it is not able to reach the workload reduction achieved with the indexing meth-
ods using the PSML-CPCA. Since the CPCA-Tree-indexing methods yield a similar or better
biometric performance, paired with an much lower workload, the binary PSML Bloom filter-
indexing is not considered necessary to highlight in this summary.

20When comparing equal TP0 values for the two approaches, the workload of the masking approach is actually
lower.
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For a better understanding of the workload-to-biometric-performance trade-off, figure 9.21
shows the workload reduction achieved in relation to the achieved biometric performance. It
is clearly visible that the CPCA-Tree-indexing with and without most common bits mask-
ing achieves a better biometric performance up to 𝟋B≈0.23% in the means of TP0. If a lesser
workload is desired, the PSML-CPCA Bloom filter with an additional real-valued PSML-CPCA
comparison passes the CPCA-Tree.

To deterministically benchmark the different indexing methods, the euclidean distance
between an optimal operation point (OT P = 90.4%, O𝟋 = 0.1%) and each performance-to-
workload sample from each experiment as shown in equation 9.1 can be used.

δ(TP,𝟋B) =
√

(TP −OT P )2 + (𝟋B −O𝟋)2 (9.1)

The smallest δ(TP,𝟋B) for each experiment rates the corresponding indexing method. Choosing
the baseline biometric performance (instead of TP0 = 100%) as optimal operation point moves
the emphasis more to the workload reduction than the biometric performance, to even the
scaling differences (TP0 scales from ∼70% to ∼90% while 𝟋B scales between ∼0.15% and
∼1.0%).

Name δ(TP0,𝟋B) 𝟋B
* TP0

C-T SCM Masking 0.55 0.3376 89.9
C-T SCM 0.64 0.3357 89.8
Bf CPCA ARC 1.40 0.1952 89.0
Binary PSML-CPCA† 1.45 0.4880 89.0
C-T SCM ARC 1.61 0.3128 88.8
Bf CPCA ABC 2.41 0.3437 88.0

Name δ(TP0.1,𝟋B) 𝟋B
* TP0.1

C-T SCM ARC 0.40 0.4425 90.9
C-T SCM 1.12 0.3357 90.0
C-T SCM Masking 1.22 0.2995 89.9
Bf CPCA ARC 1.31 0.2155 89.8
Binary PSML-CPCA† 2.04 0.4880 89.0
Bf CPCA ABC 2.21 0.3437 88.9
* 𝟋 compared to the PSML ω256.
† Naïve approach.

Table 9.35: Ranking for each relevant experiment, respectively workload reduction method, ordered by
δ(TP,𝟋B) with the optimal operation point at PSML-Baseline biometric performance (TP0 = 90.4)
and 𝟋 = 0.1%.

Table 9.35 lists the minimum recorded δ(TP,𝟋B) for every indexing method and figure
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9.22 plots their ROC. For both TP0 and TP0.1, the CPCA-Tree-indexing methods clearly yield
the smallest δ(TP,𝟋B) since the CPCA-Tree achieves the highest TP0 at an average workload
reduction. When moving the optimal operation point to the biometric performance of the naïve
binary PSML-CPCA approach and 𝟋 = 0.1%, the Bloom filter-indexing using binary PSML-
CPCA templates with an additional real-valued PSML-CPCA comparison takes the lead as
listed in appended table A.33.

Finally observe the figures in 9.21, for nearly every indexing method, the achieved TP values
rise with decreasing t until t≈3/5. The reduced number of template comparisons needed reduces
the number of false matches as predicted by the at-least-one-false-match problem described in
section 2.2.3.

The relevant experiments listed in this summary were repeated with inter-session data from
the PolyU dataset and also repeated only for the second session of the dataset. They confirm
most general statements by showing the same behaviour as the main experiments listed here
run on the first session of the dataset. However, some differences between the intra-session and
inter-session experiments are recorded and listed below.

• The Bloom filter-indexing methods suffer in biometric performance from the increased
number of bit-errors in the binary SMR and SMR-CPCA templates in inter-session exper-
iments. While the Bloom filter-indexing with additional real-valued SMR-CPCA compar-
ison yields a TP0 performance loss of ∼1.5% for 𝟋B ≈ 0.2% in intra-session experiments,
a TP0 performance loss of ∼5% for 𝟋B ≈ 0.2% is recorded in inter-session data.

• For intra-session data, masking out the most common bits in CPCA-Tree-indexing yielded
a TP0 biometric performance gain of ∼0.1%, for inter-session data a TP0 performance
gain up to ∼1% is recorded.

• While in intra-session experiments using an additional real-valued SMR-CPCA compar-
ison reduced the TP0 performance for CPCA-Tree-indexing, using an additional real-
valued SMR-CPCA comparison in inter-session experiments increased the TP0 perform-
ance by ∼0.7%. However, masking out the most common bits yields a higher TP0 per-
formance.
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Figure 9.21: TP0 and TP0.1 performance in respect to 𝟋B values for relevant experiments at selected
t. Used abbreviations: Bf (Bloom filter), C-T (CPCA-Tree), ABC (Additional Binary Comparison),
ARC (Additional Real Comparison), SCM (PSML-CPCA-M).
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9.8 Conclusions
The SMR is a feasible representation for a efficient biometric identification. 75 000 binary
SMR comparisons per second, ∼0.013ms per comparison, are achieved in a single-threaded
experiment on a modern Intel i7 CPU. Nearly 300 000 comparisons per second, ∼ 0.003ms

per comparison, are achieved using the binary SMR-CPCA. With the workload reduction ap-
proaches used, the comparison speed is not necessarily increased21 but the amount of compared
templates is reduced. Using e.g. the CPCA-Tree-indexing with t≈3/8 reduces the amount of
compared templates by around ∼40% without a significant loss in biometric performance, thus
in a S = 100 000 identification scenario, only ∼60 000 template comparisons are needed.

However, the baseline biometric performance achieved with the PSML only using extracted
minutiae, especially in inter-session scenarios, is not feasible for a real-world scenario. The last
experiment presented in section 9.6 shows that the biometric performance can be increased
to real-world capable levels by employing more data in the SMR then only bifurcations or
endpoints of the vascular pattern. With an increased biometric performance, it might be possible
to achieve a lower workload.

21Only in some Bloom filter configurations an increased comparison speed is expected, since some configura-
tions result in a smaller representation than the given input.
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Chapter 10

Discussion

In this chapter, the achieved results of the experiments in the previous chapter are discussed.
Additionally, several future research possibilities for palm vein indexing are presented.

10.1 Results
This section discusses issues that occurred during the course of this project and several obser-
vations that did not fit in the result chapter.

10.1.1 Poor performance on the CASIA and PUT datasets

The results obtained for the CASIA and PUT datasets are unusable. Already by comparing the
results yielded by the MHD for the CASIA and PUT datasets with the results for the PolyU it
is noticeable that there are issues with the feature extraction pipeline.
In the early stages of this thesis, during the implementation of the feature extraction pipeline
only the PolyU dataset was available. Therefore, every algorithm was tested and tuned with the
PolyU dataset. Tuning the first stages of the pipeline (e.g. the image enhancement, section 4.3)
is a notoriously difficult task that requires much time1. Reconfiguration of the first stages also
requires a reconfiguration of the following stages.
In order to avoid placing the main objective (workload reduction experiments) at risk, no further
reconfiguration of the pipeline for the datasets has been undertaken.

10.1.2 Towards SMR on palm-print datasets

As already mentioned multiple times, the PolyU and the CASIA (e.g. see section 8.1) data-
sets aim for palm-print modalities. In a real-world application, the raw data acquired by the
image-capturing device contains different properties and the image-capturing device utilises
approaches as described in section 4.1. Compare the two example images in figure 10.1: the left

1Even for the PolyU dataset it should be possible to achieve a higher performance when more time is spent
on tuning the first stages.
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(a) (b)

Figure 10.1: Raw data received by a (a) proprietary device and (b) by the PolyU dataset.

image is taken with an proprietary device that utilises the listed recommendations; the ROI is
extracted using the introduced method. Compared to the PolyU dataset, it is notable that the
proprietary device does not capture any skin texture and generates a very clean image of the
palm veins. Further, the ROI acquired in the PolyU dataset seems to be very small compared
to the ROI extracted from the proprietary device, thus capturing less veins.
The characteristics of the PolyU dataset therefore does not meet some expectations of the SMR:

• The SMR is a minutiae-based approach and therefore does not benefit from the skin
texture captured in the PolyU dataset: skin texture is recognized as spurious minutiae.

• The small ROI extracted in the PolyU contains much less minutiae for the SMR: on
average, the PolyU dataset contains 70 minutiae per sample; the proprietary device data
leads to around 130 minutiae per sample.

Therefore, the PolyU dataset is not a ideal dataset for a palm vein recognition experiments.
However, the PolyU dataset is the largest publicly-available dataset to the author’s knowledge;
it is the only dataset that features enough subjects to enrol a sufficient number of templates in
the trees of the Bloom filter or CPCA-Tree indexing approaches while allowing a satisfactory
number of impostor comparisons.

10.1.3 SML minutiae reliability quality data impact

Contrary to all expectations, the extracted quality data did not increase the biometric per-
formance in the experiments. On further consideration of this behaviour, it appears that the
quality data mainly affects absolute-valued SMR representations. Again, observe figure 9.3,
note how both SML and QSML yield a nearly equal ROC in the real-valued representation.
When comparing the absolute-valued representations of both SML and QSML, a strong dif-
ference is visible: the quality enhanced QSML achieves a higher ROC, since the complex part,
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which the absolute-valued representation is based on, is much more sensitive regarding single
minutiae.
On the other hand, the SMC suffers from using the quality data (QSMC) in both representa-
tions. This most likely is based on the higher sensitivity of the SMC due to the employment
of rotation information. The extracted rotation information is much more fuzzy than the loc-
ation information. Using many minutiae, all of the same value, balances out some fuzziness.
When reducing the value of some minutiae with reliability quality information, the other minu-
tiae become much more dominant. If these dominant minutiae contain many errors in their
rotation-representation, resulting (mated) SMC also contain many errors.
Therefore, in a fuzzy environment, the quality data should only be applied to the SML.

10.1.4 Ageing and environmental effects in the datasets

In section 9.2.4, the different results for same day (first session; intra-session) and different
day (first versus second session; inter-session) are presented. The doubling of the FNIR corres-
ponds to the doubling of the FNMR reported by the International Biometric Group in [The06]
between same day and different day results. Observe figure 10.2 where the DET curves of dif-
ferent commercial biometric systems are shown. Note that the FNMR has doubled between
same and different day experiments for the Fujitsu PalmSecure palm vein system as listed in
table 10.1. Since DET and ROC curves are hardly comparable, figure 10.3 shows the same (first

Security* Same-Day/Intra-Session Different-Day/Inter-Session

FNMR FMR FNMR FMR

Low 3.13% 0.0380% 6.17% 0.0395%
Default 4.23% 0.0118% 8.52% 0.0135%
High 5.64% 0.0018% 11.86% 0.0007%
* According to Fujitsu.

Table 10.1: FMR and FNMR for the Fujitsu PalmSecure palm vein biometric system taken from
[The06].

session) and different day (first and second session) DET curve achieved with the PolyU dataset
in an early state of this project where the pipeline was optimized for verification. With FNMR
= 6.5% at FMR = 0.01% (same day) and FNMR = 13.6% at FMR = 0.01% (different day),
the FNMR is doubled between same and different day, as expected from the results in [The06].

The main focus of this project is the workload reduction, not a competitive feature ex-
traction pipeline. For this focus, it is irrelevant whether the data is generated by using one
or two sessions. Therefore, the exhaustive experiments only use the first session to better in-
spect the workload reduction performance, not the feature extraction pipeline performance.
However, with the results of FNMR = 6.5% at FMR = 0.01% by only using minutiae (not
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Figure 10.2: DET curves of different commercial biometric systems for same and different days (taken
from [The06]).
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Figure 10.3: DET curve for same (intra-session) and different day (inter-session) verification using the
PolyU dataset achieved with the SMR system.
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the whole palm vein structure and no other features), the pipeline yields acceptable results
compared to the presented commercial product. Further, using the full vascular pattern (like
the commercial product), the proposed system outperforms the commercial product in intra-
session experiments (FNMR = 1.28% at FMR = 0.01%) and yields competitive results for
inter-session experiments (FNMR = 8.65% at FMR = 0.01%).

10.1.5 Small number of templates per Bloom filter tree

The reader may have noticed that using T = 64 yields only 4 templates per tree when 256
templates are enrolled. This results in 4 comparisons per tree, therefore no workload reduction
is achieved in terms of comparisons. The results showed that when reducing the tree count to
T = 32 (8 templates, 6 comparisons per tree) or even T = 16 (16 templates, 8 comparisons per
tree) the biometric performance suffers quickly and thus the approach is not feasible.
In both Bloom filter-indexing sections, it is shown that nearly every column per block suffers
from bit-errors. This forces very small Bloom filter block heights, whereby the bit errors appear
in less blocks. However, reducing the block height automatically introduces more bit collisions,
since the Bloom filter features less bits. Therefore, already comparatively similar templates
become even more similar in the Bloom filter representation.
While this behaviour is desired in the verification mode, it is a huge disadvantage for the
identification scenario: similar enrolled templates are already also more similar in the Bloom
filter trees, thus it is more difficult to determine correct traversal direction or tree pre-selection
decisions which increases the template pre-selection error. Further, with fewer Bloom filter bits,
the tree root and all nodes (not leafs) are populated too quickly, which accelerates the point
where incorrect traversal direction or pre-selection decisions happen.

10.1.6 Results compared to state-of-the-art approaches

Different approaches based on local invariant feature extraction algorithms (i.e. [PK11, LT15])
use the whole image for recognition tasks. Even if the publications state conducting a palm
vein recognition, both actually use a palm print and palm vein combination.
In [LT15], the verification results for palm print and palm vein are reported separately, albeit
the palm vein approach still uses the whole palm image. The authors tested their method only
on 100 subjects with 1 reference and 5 probes per subject, with all samples taken from one
session. The in [LT15] proposed method achieved a EER of 2.4%, a different implementation
using the SURF algorithm achieved 3.1% and an implementation of the local binary patterns
(LBP) approach achieved 0.7%. Table 10.2 compares the EER2 achieved in this project with
the reported biometric performance from the publication. Using the minutiae SMR achieves a
lower EER than the vascular pattern SURF and GSM approaches but fails to achieve a lower
EER than the LBP. With the full vascular pattern SMR, an EER of 0.28% is achieved. This low

2Recall, optimisation was done for identification, not for verification.
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Input Method EER Verification (ms)§ Source

Minutiae SMR 2.11% 0.02 *

Minutiae Binary SMR 2.23% 0.01 *

Minutiae SMR-CPCA 2.22% 0.005 *

Minutiae Binary SMR-CPCA 2.24% 0.003 *

Pattern SMR 0.28% 0.02 *

Pattern Binary SMR 0.46% 0.01 *

Pattern SMR-CPCA 0.32% 0.005 *

Pattern Binary SMR-CPCA 0.52% 0.003 *

Pattern† LBP 0.71% 1.5 [LT15]
Pattern† SURF 3.14% 88 [LT15]
Pattern† GSM‡ 2.39% 1.7 [LT15]
Pattern & Palm Print LBP 0.42% 1.5 [LT15]
Pattern & Palm Print SURF 0.43% 88.0 [LT15]
Pattern & Palm Print GSM‡ 0.30% 1.7 [LT15]
* Experiments in this thesis.
† Extended with some palm print structure.
‡ Gray Surface Matching
§ Specifications of machine used in [LT15] unknown; specifications of tested machine: 2014 Intel i7
@ 3.60 GHz, single-threaded.

Table 10.2: Recorded EER of several intra-session experiments to compare the approaches in this
thesis with [LT15].

EER outperforms all other methods, even the vascular pattern and palm print combinations,
and is much faster. The binary full vascular pattern SMR drops back to a EER of 0.46%, still
outperforms the vascular pattern LBP, SURF and GSM, but is placed behind the vascular
pattern and palm print combinations.

Another mentionable approach is presented by Abbas and George in [AG14]. This approach
differs from the previous since it actually only observes the vein pattern as a biometric char-
acteristic. Unfortunately, the publication does not offer an ISO/IEC-conforming performance
reporting for the identification in a closed-set scenario and only reports the Correct Recognition
Rate (CRR); the ratio of the number of samples being correctly classified to the total number of
tested samples according to the publication. Further, is it not known which images of the PolyU
dataset are taken as enrolled templates and whether the identification was carried out inter- or
intra-session. Therefore, it is difficult to compare these results with those obtained through this
project since no CRR optimisation experiments have been run and every identification experi-
ment is run as an open-set. The publication also summarizes other vein recognition approaches
for different vein modalities not run on the PolyU dataset.
However, to compare the results achieved in this thesis, experiments have been run to determine

125



the CRR. Without optimisation to achieve the highest CRR, the inter-session vascular pattern

Data Type Recognition Performance

Input Session Method Workload-Reduction CRR EER Identification (ms)‡ Source

Pattern Inter LAVD† - 99.95% 0.24% 158.4 [AG14]
Pattern Inter SMR - 97.7% 1.28% 11.1 *

Pattern Inter SMR-CPCA - 97.7% 1.27% 1.2 *

Pattern Intra SMR - 99.8% 0.28% 11.1 *

Pattern Intra SMR-CPCA - 99.8% 0.32% 1.2 *

Minutiae Inter SMR - 93.7% 3.3% 11.1 *

Minutiae Intra SMR - 94.8% 2.1% 11.1 *

Minutiae Intra SMR-CPCA CPCA-Tree-indexing 94.7% 2.1% 0.9 *

* Experiments in this thesis.
† Local Average of Vein Direction
‡ Specifications of machine used in [AG14] unknown; specifications of tested machine: 2014 Intel i7 @ 3.60 GHz, single-threaded;
identification at S = 500.

Table 10.3: Recorded CRR of several experiments to compare the approaches in this thesis with [AG14].

SMR experiment recorded a CRR of 97.7% which did not outperform the Local Average of
Vein Direction (LAVD) method in terms of biometric performance. Comparing the execution
time of one single identification attempt, the SMR is more than 10 times, and the SMR-CPCA
more then 100 times faster than the LAVD. Again, the minutiae SMR are not able to achieve
good results compared to the vascular pattern SMR and LAVD.

The results achieved with the vascular pattern SMR were quick experiments without op-
timisation. Hence, it might be possible to achieve a even higher biometric performance with
dedicated research.

10.2 Workload of real-valued SMR templates
Recall (section 9.3.1), the workload of one real-valued SMR (respective SMR-CPCA) compar-
ison is calculated as 32 times the cost of a binary comparison as a floating point contains 32 bits.
An experiment has been run to review this claim, since the measurements in section 10.1.6 hint
at a workload increase of only ∼30%. 3 000 real-valued SMR (singe precision float) templates
and their binary representations3 were compared 1 000 times on a dedicated, completely stripped
down Linux server without graphical or network components. The server features a Intel Core
i7-4790 CPU at 3.60 GHz with 8192 kB cache and is equipped with 16 GB RAM. To receive
the most clean results, the kernel and all remaining daemons were pinned to core 0, while the
experiment was executed on core 2. As a reference, a completely stock MacBook Air (Mid 2011,
Intel Core i7-2677M at 1.80 GHz, 4 GB RAM) was used to verify the results.

3The binary representation is stored as 128×4 32 bit unsigned integers.
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The experiment was repeated multiple times. On the Linux server, the real-valued compar-
ison was only 1.3 times slower; the MacBook Air averaged 1.6 times slower.

Both processors are comparatively old (2011 and 2014). The newer processor (i7-4790)
appears to have a much better optimised floating point pipeline, since it is relative floating
point speed is much higher than the older i7-2677M. There is no guarantee that these results
also apply to other architectures (ARM, PowerPC, …).
It is safe to say, that a real-valued comparison does not yield a workload 32 times higher
than the binary approach, but an approximately 2 times higher workload for more realistic
calculations is reasonable. However, this can not be deterministically proven or generalised
for all architectures or processors of the same architecture. Therefore the naïve approach of
calculating the bit-count for each template is used in the results even if this does not reflect
real world scenarios or implementations.

10.3 Derived further research topics
As already mentioned in section 10.1.6, during the course of this project several other research
topics and ideas emerged that are not addressed in this thesis. This section lists the most
promising derived research topics selected by the author, divided into one subsection for other
biometric modalities and another for (palm) vein modalities.

10.3.1 (Palm) vein modalities

At least three further research topics for palm vein indexing can be derived from the results
and other publications. Two research topics extend or modify the approach presented in this
thesis, whereas the third discards the whole SMR approach.

Employing more reference points. It was shown in section 9.6 that using the full vascular
pattern as an input for the SMR strengthens the biometric performance in any concern.
Without any optimisations, quality assurance or adjustments in any means, an inter-
session TP0 = 90.5% (EER = 1.3%) and an intra-session TP0 = 97.0% (EER = 0.28%)
was reached. Therefore, without any optimisations, an increase in TP0 of ∼18% and ∼7%,
compared to the optimised results only using endpoints and bifurcations, is achieved. It
can be safely assumed that with careful optimisations and exhaustive research much
higher TP0 can be realised, which opens new possible avenues of research in the area.

Usage of absolute- and real-valued SMR in the CPCA-Tree. In the full vascular pat-
tern experiments, the absolute-valued SMR achieved much higher CRR than the real-
valued SMR, while the real-valued SMR achieved much higher TP0 values. This beha-
viour could be used in e.g. the CPCA-Tree-indexing by building the CPCA-Tree with
absolute-valued binary SMR-CPCA to achieve a low PER and employ a final real-valued
SMR-CPCA comparison for a high TP0. Thus, the advantages of both SMR are combined,
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which is expected to increase the overall biometric performance. Using both real-valued
and absolute-valued SMR is a non-issue in the means of computional workload since both
can be extracted from one single SMR calculation.

Adoption of a different feature extraction approach. In [AG14], a simpler and seem-
ingly more robust feature extraction approach is presented. A first next step could be
to reimplement the proposed feature extraction approach and replace the current feature
extraction pipeline before the thinning step (see section 4.5). This could be sufficient to
increase the overall biometric performance since it may yield more reliable minutiae.
The presented feature extraction pipeline could still be used to extract quality informa-
tion.

Bloom filter applied upon a not thinned vascular pattern. A more trivial and less com-
plex approach could be to apply the Bloom filter template transformation to a segmented,
binary vascular pattern. As an example, applying the Bloom filter on the 7th image of
figure 3 in [AG14] with some additional dilation or other enhancements could already
achieve acceptable results.

Creation of large-scale palm vein dataset For obvious reasons, the creation of a dedic-
ated, large-scale dataset for palm vein research is recommended. The desireable number
of subjects is S ≥ 1000 to cover both workload reduction and identification research.

10.3.2 Other modalities

The SMR is a versatile approach that can be used on most minutiae or reference-point based
approaches in different modalities. These presented further research topics aim to extend and
verify the presented indexing approaches based on the SMR in other modalities.

Fingerprint SMR-CPCA and CPCA-Trees. The feature representation used in this pro-
ject is extrapolated from and originally designed for the fingerprint modality. While the
SMR has not achieved a very high biometric performance using minutiae for the palm
vein characteristic, it originally achieved a very high biometric performance for the minu-
tiae of the fingerprint characteristic. This thesis has shown that the Bloom filter and
CPCA-Tree indexing approaches can be applied to the SMR to reduce the overall work-
load without losing a significant amount of biometric performance in this low-quality4.
Therefore it would be a reasonable next step to analyse the two indexing approaches in
a high minutiae quality environment.

Full pattern fingerprint SMR Inspired by the results of the full vascular pattern SMR, this
concept could also be applied to the fingerprint modality. [XVK+08] hinted at performance
issues with poor quality fingerprints. Employing more of the fingerprint pattern in the

4In the means of low minutiae count with many spurious minutiae.
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SMR could overcome this problem and enable the usage of this representation for poor
quality data.

10.4 Summary
In this chapter, the results of the project have been discussed in detail. First, the poor per-
formance on the CASIA and PUT was discussed, followed by a discussion of several observations
along the project. After a comparison of the experiments with state-of-the-art approaches, one
issue with the workload reporting was outlined.

Using the SMR for palm vein (and general vascular pattern) biometric systems offers a
multitude of future research possibilities, several of which have been briefly outlined in this
chapter.
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Chapter 11

Conclusions

The interest in biometrics among governmental and industrial operators of access control
systems has been steadily growing in recent years. With the adoption of biometrics in con-
sumer products like notebooks or smartphones, the wide public has accepted biometrics and
strengthened their trust in such systems. Different huge biometric systems are deployed world-
wide nowadays. Said systems are required to deliver high biometric performance while keeping
a low computational workload profile. These trends make not only biometrics a relevant and
attractive research area, but also workload reduction to increase the efficiency of high biomet-
ric performance approaches. This thesis has pertained to the topic of workload reduction for
biometric identification in large-scale palm vein databases.

A recently-published biometric indexing approach based on Bloom filters and binary search
trees for large-scale iris databases was adopted for the practical work for this thesis. To adopt
this indexing approach, the vascular pattern of the raw palm vein images was extracted using
an proposed signal processing subsystem. The minutiae - the endpoints and bifurcations - of
the extracted vascular pattern where then transformed using a Fourier transformation based
approach originally presented for the fingerprint characteristic. When transforming the real-
valued representation yielded by the Fourier transformation to a binary form, it is possible to
apply the Bloom filter-indexing. After implementing the Bloom filter system with careful con-
figuration of the components, it has been demonstrated that the system is capable of achieving a
biometric performance close to the baseline achieved with a naïve implementation of the Fourier
representation, while reducing the necessary workload by an additional ∼60% compared to a
naïve implementation using the reduced binary Fourier representation. Some of the approaches
used by the Bloom filter were not feasible and the fuzziness of the vascular pattern prevented a
higher workload reduction without losing too much biometric performance. However, the most
important approaches have been successfully applied, thus the system appears to be scalable
in terms of workload reduction, biometric performance and enrollees.

An additional, less complex, biometric indexing approach merely using a reduced form of
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the binary Fourier transformation representation and binary search trees has been presented. It
adopts most workload reduction strategies that are used for the Bloom filter-indexing approach.
In three of four biometric performance metrics, it outperformed the Bloom filter-indexing while
still reducing the workload compared to a naïve implementation using the reduced binary
Fourier representation by ∼40%. Since the presented approach follows the same theory and
implementations as the binary search trees of the Bloom filter-indexing, it also appears to be
scalable in terms of workload reduction, biometric performance and enrollees.

The overall workload is reduced to an average of 0.5% compared to the baseline of the naïve
implementation using the Fourier representation in both systems.

Facing the acceptable but not optimal result in the means of biometric performance yielded
by the baseline Fourier representation, several further research topics were presented to address
this issue. The most promising topic was briefly tested and already achieved a much better
biometric performance without any optimisation or tuning. Therefore, the system is not suitable
yet for real-world palm vein system deployments but appears to be a promising base for further
research with the proposed topics. Furthermore, the workload reduction achieved very promising
results, which were limited by the performance of the base system. Since the base system
achieved a very high biometric performance for fingerprints, the workload reduction approaches
can be adopted to the fingerprint modalities and should yield even better results in terms of
workload reduction.
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Appendix A

Appendix

A.1 Bloom filter-indexing - Quick traversal direction de-
cision first child favouring

Observe line 7 in algorithm 6: the next decision will be determined with the next-to-last score
when the second comparison is skipped. This falsifies the decision making process because it is
to be excepted, that the score of the comparison will be higher than the next-to-last score. In
other words, it is very likely, that the decision will always favour the first child if the previous
decision selected the second child.

Algorithm 6 Tree traversal for a single Bloom filter tree with single comparison strategy.
1: function TraverseTree(Node, Query, Threshold, LastScore)
2: if Node[left] ̸= nil and Node[right] ̸= nil then
3: scoreLeft← similarity(Node[left], Query)
4: if scoreLeft > LastScore then
5: return TraverseTree(Node[left], Query, Threshold, scoreLeft)
6: else
7: return TraverseTree(Node[right], Query, Threshold, LastScore)
8: end if
9: end if
10: score← similarity(Node[this], Query)
11: if score > Threshold and score > LastScore then ▷ Second condition optional
12: return Node[this]
13: end if
14: return nil
15: end function

A.2 Experiments
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Figure A.1: Used ROI for the PUT dataset.
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Figure A.2: QSML ROC for the PolyU dataset with different maximum-curvature output gains (mul-
tiplication).
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Figure A.3: ROC curves of the SML, SMC, QSML and QSMC type for the first session of the PolyU
dataset.

SMR Ident. Verif.

Type Pre-Selection λmin λmax TP0.5 TP0.1 TP0 EER

SML qM
*> 0.2 0.1 0.51 91.2% 91.1% 90.4% 2.1%

QSML* 0.1 0.55 91.4% 91.1% 90.3% 2.1%
SML 0.1 0.60 90.9% 90.5% 90.0% 2.2%
* Maximum curvature ×7.

Table A.1: Top three configurations (TP0.1), for a biometric identification system using the first session
PolyU dataset, with their corresponding verification EER, ordered by TP0.

L TP0.5 TP0.1 TP0 EER

5 91.3% 90.9% 89.7% 2.2%
15 91.3% 90.6% 90.6% 2.1%
25 91.6% 90.9% 90.3% 2.1%
50 91.8% 90.6% 90.4% 2.1%
100 91.4% 90.7% 90.2% 2.1%

Table A.2: TP0, TP0.1, TP0.5 and EER for the different CPCA feature reduction training set sizes
(L).
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Figure A.4: ROC curves of the real-valued SML, SMC, QSML and QSMC type for the first session of
the PolyU dataset with applied minutiae selection.
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Figure A.5: ROC curves of the most promising SMR types, tuned and untuned, for the first session
of the PolyU dataset.
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Bit-error Bloom filter SMR Workload Recognition Performance

correction W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

Majority Voting

4 4 0.1 1.31 ∗ 106 0.4883% 100% 70.2% 65.4% 61.1% 29.3%
6 4 0.2 8.73 ∗ 105 0.3255% 66.67% 66.5% 61.5% 59.5% 30.9%
4 4 0.3 1.31 ∗ 106 0.4883% 100% 63.2% 61.9% 57.5% 32.9%
8 4 0.4 6.55 ∗ 105 0.2441% 50% 57.3% 53.4% 53% 37.4%
5 4 0.5 1.04 ∗ 106 0.3906% 80% 53.1% 48.4% 45.7% 44.7%
8 5 0.6 1.04 ∗ 106 0.3906% 80% 49.8% 42.3% 34.8% 55.6%
6 5 0.7 1.39 ∗ 106 0.5208% 106.7% 45.2% 42% 39.6% 50.8%
8 4 0.8 6.55 ∗ 105 0.2441% 50% 46.9% 34.1% 32.2% 58.2%
6 5 0.9 1.39 ∗ 106 0.5208% 106.7% 33.6% 28.4% 26.9% 63.5%

Transposed

4 5 0.1 2.09 ∗ 106 0.7812% 160% 14.9% 13.2% 11.8% 78.6%
4 4 0.2 1.31 ∗ 106 0.4883% 100% 13.4% 11.4% 8.75% 81.7%
4 5 0.3 2.09 ∗ 106 0.7812% 160% 14.5% 13.4% 10.4% 80%
4 4 0.4 1.31 ∗ 106 0.4883% 100% 15.9% 9.92% 6.72% 83.7%
4 4 0.5 1.31 ∗ 106 0.4883% 100% 15.6% 11% 5.47% 84.9%
4 4 0.6 1.31 ∗ 106 0.4883% 100% 11.5% 7.97% 6.88% 83.5%
4 4 0.7 1.31 ∗ 106 0.4883% 100% 9.61% 7.11% 5.47% 85.9%
4 4 0.8 1.31 ∗ 106 0.4883% 100% 7.58% 6.09% 5% 85.4%
4 4 0.9 1.31 ∗ 106 0.4883% 100% 6.72% 5.39% 3.75% 86.7%

Transposed
&

Majority Voting

4 5 0.1 2.09 ∗ 106 0.7812% 160% 17% 14% 10.1% 80.3%
4 4 0.2 1.31 ∗ 106 0.4883% 100% 14.5% 9.61% 9.61% 80.8%
4 5 0.3 2.09 ∗ 106 0.7812% 160% 15.2% 13.2% 12.1% 78.3%
4 4 0.4 1.31 ∗ 106 0.4883% 100% 17% 10.3% 7.42% 83%
4 4 0.5 1.31 ∗ 106 0.4883% 100% 16.2% 9.53% 7.11% 83.3%
4 4 0.6 1.31 ∗ 106 0.4883% 100% 11.5% 7.66% 7.66% 82.7%
4 4 0.7 1.31 ∗ 106 0.4883% 100% 9.06% 6.48% 5.47% 84.9%
4 4 0.8 1.31 ∗ 106 0.4883% 100% 7.58% 5.7% 4.45% 85.9%
4 4 0.9 1.31 ∗ 106 0.4883% 100% 6.02% 5.16% 4.38% 86%

* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table A.3: Best achieved TP0 with corresponding TP0.1 and TP0.5 for every tested binarisation mask
threshold with their corresponding H and W (T = 64) using the binary PSML-CPCA with several
bit-error reduction strategies, ordered by mask threshold.
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Bloom filter SMR Workload Recognition Performance

T W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

16

6 4 0.1 4.42 ∗ 105 0.1647% 33.72% 82.3% 82% 80.9% 9.5%
4 4 0.2 6.60 ∗ 105 0.246% 50.39% 84.5% 83.8% 83% 7.43%
5 4 0.3 5.29 ∗ 105 0.1972% 40.39% 83.2% 82.6% 82.3% 8.06%
4 6 0.4 1.75 ∗ 106 0.6529% 133.7% 83% 82.7% 82.5% 7.9%
4 6 0.5 1.75 ∗ 106 0.6529% 133.7% 83% 82.5% 82.3% 8.06%
5 5 0.6 8.43 ∗ 105 0.3144% 64.39% 83.4% 82.5% 82.2% 8.21%
5 4 0.7 5.29 ∗ 105 0.1972% 40.39% 80.8% 80.5% 79.8% 10.6%
5 5 0.8 8.43 ∗ 105 0.3144% 64.39% 82.8% 82.6% 81% 9.4%
6 5 0.9 7.04 ∗ 105 0.2623% 53.72% 80.5% 79.1% 78.8% 11.6%

32

6 4 0.1 6.60 ∗ 105 0.246% 50.39% 87% 86.4% 85.1% 5.32%
4 7 0.2 4.49 ∗ 106 1.676% 343.2% 84.2% 83.4% 83% 7.35%
6 6 0.3 1.75 ∗ 106 0.6529% 133.7% 85.9% 85.2% 84.1% 6.26%
8 5 0.4 7.91 ∗ 105 0.2949% 60.39% 87% 86.6% 86.1% 4.31%
7 4 0.5 5.66 ∗ 105 0.2112% 43.25% 87.1% 86.1% 85.7% 4.7%
6 6 0.6 1.75 ∗ 106 0.6529% 133.7% 85.8% 85.2% 83.9% 6.49%
5 4 0.7 7.91 ∗ 105 0.2949% 60.39% 87.8% 87.6% 86.6% 3.84%
5 5 0.8 1.26 ∗ 106 0.4707% 96.39% 87.7% 87.3% 86.2% 4.15%
5 4 0.9 7.91 ∗ 105 0.2949% 60.39% 87.1% 85.6% 84.8% 5.63%

* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.
‡ Full table appended in A.4.

Table A.4: Achieved PSML-CPCA Bloom filter TP0 with corresponding TP0.1 and TP0.5, with a final
PSML-CPCA comparison using T = 32 and T = 16 trees.
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Bloom filter SMR Workload Recognition Performance

t W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

1 4 4 0.2 3.53 ∗ 105 0.1316% 26.9% 78.2% 77.3% 77.1% 13.30%
2 4 4 0.3 3.73 ∗ 105 0.1392% 28.5% 82.0% 81.4% 81.3% 9.10%
3 4 4 0.4 3.94 ∗ 105 0.1469% 30.1% 84.7% 84.3% 83.4% 6.96%
4 4 4 0.4 4.14 ∗ 105 0.1545% 31.6% 85.8% 85.5% 84.5% 5.95%
5 4 4 0.2 4.35 ∗ 105 0.1621% 33.2% 86.2% 85.3% 84.6% 5.79%
6 5 5 0.6 5.81 ∗ 105 0.2168% 44.4% 87.3% 86.6% 85.3% 5.09%
7 5 5 0.6 6.08 ∗ 105 0.2265% 46.4% 88.0% 87.2% 85.9% 4.54%
8 5 5 0.6 6.34 ∗ 105 0.2363% 48.4% 88.4% 87.4% 86.1% 4.31%
9 5 5 0.6 6.60 ∗ 105 0.2460% 50.4% 88.4% 87.4% 86.2% 4.15%
10 4 4 0.2 5.37 ∗ 105 0.2003% 41.0% 88.0% 86.6% 86.2% 4.15%
11 4 4 0.2 5.58 ∗ 105 0.2079% 42.6% 88.0% 86.6% 86.2% 4.15%
12 5 5 0.6 7.39 ∗ 105 0.2753% 56.4% 88.6% 88.0% 86.5% 3.92%
13 5 5 0.6 7.65 ∗ 105 0.2851% 58.4% 88.6% 88.0% 86.5% 3.92%
14 5 5 0.6 7.91 ∗ 105 0.2949% 60.4% 88.8% 88.1% 86.6% 3.76%
15 5 5 0.6 8.17 ∗ 105 0.3046% 62.4% 89.1% 88.4% 87.5% 2.90%
16 5 5 0.6 8.43 ∗ 105 0.3144% 64.4% 89.0% 88.4% 87.4% 2.98%
17 5 5 0.6 8.70 ∗ 105 0.3242% 66.4% 89.1% 88.4% 87.5% 2.90%
18 5 5 0.6 8.96 ∗ 105 0.3339% 68.4% 89.2% 88.6% 87.7% 2.74%
19 5 5 0.6 9.22 ∗ 105 0.3437% 70.4% 89.5% 88.9% 88.0% 2.43%
20 5 5 0.6 9.48 ∗ 105 0.3535% 72.4% 89.5% 88.9% 88.0% 2.43%
21 5 5 0.6 9.75 ∗ 105 0.3632% 74.4% 89.5% 88.9% 88.0% 2.43%
22 7 4 0.5 4.49 ∗ 105 0.1676% 34.3% 87.9% 87.0% 86.7% 3.68%
23 5 6 0.4 1.70 ∗ 106 0.6367% 130.4% 87.4% 87.2% 86.2% 4.23%
24 5 6 0.4 1.75 ∗ 106 0.6529% 133.7% 87.3% 87.1% 86.2% 4.23%
25 5 6 0.4 1.79 ∗ 106 0.6692% 137.1% 87.3% 87.0% 86.1% 4.31%
26 5 6 0.4 1.84 ∗ 106 0.6855% 140.4% 87.3% 87.0% 86.1% 4.31%
27 5 6 0.4 1.88 ∗ 106 0.7018% 143.7% 87.3% 87.1% 86.2% 4.23%
28 5 6 0.4 1.92 ∗ 106 0.7181% 147.1% 87.3% 87.1% 86.2% 4.23%
29 5 6 0.4 1.97 ∗ 106 0.7343% 150.4% 87.3% 87.1% 86.2% 4.23%
30 5 6 0.4 2.01 ∗ 106 0.7506% 153.7% 87.3% 87.1% 86.2% 4.23%
31 5 6 0.4 2.05 ∗ 106 0.7669% 157.1% 87.3% 87.1% 86.2% 4.23%
32 5 6 0.4 2.10 ∗ 106 0.7832% 160.4% 87.3% 87.1% 86.2% 4.23%
33 5 6 0.4 2.14 ∗ 106 0.7994% 163.7% 87.3% 87.1% 86.2% 4.23%
34 5 6 0.4 2.18 ∗ 106 0.8157% 167.1% 87.3% 87.1% 86.2% 4.23%
35 5 6 0.4 2.23 ∗ 106 0.8320% 170.4% 87.3% 87.1% 86.2% 4.23%
36 5 6 0.4 2.27 ∗ 106 0.8483% 173.7% 87.3% 87.1% 86.2% 4.23%
37 5 6 0.4 2.32 ∗ 106 0.8645% 177.1% 87.3% 87.1% 86.2% 4.23%
38 5 6 0.4 2.36 ∗ 106 0.8808% 180.4% 87.3% 87.1% 86.2% 4.23%
39 5 6 0.4 2.40 ∗ 106 0.8971% 183.7% 87.3% 87.1% 86.2% 4.23%
40 5 6 0.4 2.45 ∗ 106 0.9134% 187.1% 87.3% 87.1% 86.2% 4.23%
41 5 6 0.4 2.49 ∗ 106 0.9296% 190.4% 87.3% 87.1% 86.2% 4.23%
42 5 6 0.4 2.53 ∗ 106 0.9459% 193.7% 87.3% 87.1% 86.2% 4.23%
43 5 6 0.4 2.58 ∗ 106 0.9622% 197.1% 87.3% 87.1% 86.2% 4.23%
44 5 6 0.4 2.62 ∗ 106 0.9785% 200.4% 87.3% 87.1% 86.2% 4.23%
45 5 6 0.4 2.67 ∗ 106 0.9947% 203.7% 87.3% 87.1% 86.2% 4.23%
46 5 6 0.4 2.71 ∗ 106 1.0110% 207.1% 87.3% 87.1% 86.2% 4.23%
47 5 6 0.4 2.75 ∗ 106 1.0270% 210.4% 87.3% 87.1% 86.2% 4.23%
48 5 6 0.4 2.80 ∗ 106 1.0440% 213.7% 87.3% 87.1% 86.2% 4.23%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table A.5: Best achieved PSML-CPCA Bloom filter TP0 with corresponding TP0.1 and TP0.5, with
a final binary PSML-CPCA comparison and tree pre-selection of t = 1, . . . , 48 trees at T = 64.

138



Bloom filter SMR Workload Recognition Performance

t W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

1 4 5 0.1 3.16 ∗ 105 0.1179% 24.14% 66.6% 65.9% 65.7% 24.7%
2 4 5 0.1 3.65 ∗ 105 0.1362% 27.89% 74.2% 73.8% 73.2% 17.2%
3 4 5 0.3 4.14 ∗ 105 0.1545% 31.64% 76.6% 76.2% 76.0% 14.4%
4 4 5 0.4 4.63 ∗ 105 0.1728% 35.39% 79.3% 79.1% 78.4% 12%
5 4 5 0.5 5.13 ∗ 105 0.1911% 39.14% 80.7% 80.2% 80.2% 10.2%
6 4 4 0.3 3.53 ∗ 105 0.1316% 26.95% 82.3% 81.8% 81.6% 8.76%
7 4 4 0.3 3.84 ∗ 105 0.1431% 29.30% 83.5% 83.2% 83.1% 7.28%
8 4 5 0.5 6.60 ∗ 105 0.2460% 50.39% 84.3% 83.8% 83.8% 6.65%
9 4 5 0.5 7.09 ∗ 105 0.2644% 54.14% 85.1% 84.5% 84.5% 5.95%
10 4 5 0.5 7.58 ∗ 105 0.2827% 57.89% 85.5% 84.8% 84.8% 5.63%
11 4 5 0.5 8.07 ∗ 105 0.3010% 61.64% 85.9% 85.1% 85.1% 5.32%
12 4 5 0.5 8.57 ∗ 105 0.3193% 65.39% 86.3% 85.5% 85.5% 4.85%
13 4 5 0.6 9.06 ∗ 105 0.3376% 69.14% 87.3% 86.4% 86.1% 4.31%
14 4 5 0.6 9.55 ∗ 105 0.3559% 72.89% 87.5% 86.6% 86.2% 4.15%
15 4 5 0.6 1.00 ∗ 106 0.3742% 76.64% 87.8% 86.9% 86.4% 3.99%
16 4 4 0.5 6.60 ∗ 105 0.2460% 50.39% 87.7% 86.7% 86.6% 3.76%
17 4 5 0.6 1.10 ∗ 106 0.4108% 84.14% 88.1% 87.2% 86.7% 3.68%
18 4 5 0.6 1.15 ∗ 106 0.4292% 87.89% 88.1% 87.2% 86.7% 3.68%
19 4 5 0.6 1.20 ∗ 106 0.4475% 91.64% 88.0% 87.3% 86.1% 4.31%
20 4 4 0.5 7.83 ∗ 105 0.2918% 59.77% 88.0% 87.1% 86.1% 4.31%
21 4 4 0.5 8.14 ∗ 105 0.3033% 62.11% 88.0% 87.1% 86.1% 4.31%
22 4 4 0.5 8.44 ∗ 105 0.3147% 64.45% 88.0% 87.2% 86.2% 4.15%
23 6 5 0.6 9.33 ∗ 105 0.3478% 71.22% 87.7% 86.6% 86.6% 3.84%
24 4 4 0.5 9.06 ∗ 105 0.3376% 69.14% 88.2% 87.3% 86.4% 3.99%
25 4 4 0.5 9.36 ∗ 105 0.3490% 71.48% 88.2% 87.3% 86.4% 3.99%
26 5 4 0.7 7.75 ∗ 105 0.2888% 59.14% 87.4% 87.2% 86.2% 4.15%
27 5 4 0.7 7.99 ∗ 105 0.2979% 61.02% 87.5% 87.3% 86.3% 4.07%
28 5 4 0.7 8.24 ∗ 105 0.3071% 62.89% 87.6% 87.3% 86.4% 3.99%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table A.6: Best achieved PSML-CPCA Bloom filter TP0 with corresponding TP0.1 and TP0.5, with
a final binary PSML-CPCA comparison and tree pre-selection of t = 1, . . . , 28 trees at T = 32.
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Bloom filter SMR Workload Recognition Performance

t W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

1 4 4 0.2 3.53 ∗ 105 0.1316% 26.95% 78.9% 78.4% 78.0% 12.4%
2 4 5 0.3 5.94 ∗ 105 0.2216% 45.39% 83.6% 83.1% 82.7% 7.67%
3 4 4 0.4 3.94 ∗ 105 0.1469% 30.08% 85.4% 84.7% 84.6% 5.79%
4 4 4 0.4 4.14 ∗ 105 0.1545% 31.64% 87.0% 86.2% 86.1% 4.31%
5 4 4 0.5 4.35 ∗ 105 0.1621% 33.20% 87.6% 87.3% 86.6% 3.84%
6 4 4 0.5 4.55 ∗ 105 0.1698% 34.77% 88.2% 87.9% 87.2% 3.21%
7 4 4 0.5 4.76 ∗ 105 0.1774% 36.33% 88.8% 88.4% 87.7% 2.67%
8 4 4 0.5 4.96 ∗ 105 0.1850% 37.89% 89.0% 88.7% 88.0% 2.35%
9 4 4 0.5 5.17 ∗ 105 0.1926% 39.45% 89.3% 89.0% 88.4% 2.04%
10 4 4 0.5 5.37 ∗ 105 0.2003% 41.02% 89.6% 89.3% 88.4% 1.96%
11 4 4 0.5 5.58 ∗ 105 0.2079% 42.58% 89.9% 89.6% 88.7% 1.73%
12 4 4 0.5 5.78 ∗ 105 0.2155% 44.14% 90.1% 89.8% 88.8% 1.57%
13 4 4 0.5 5.99 ∗ 105 0.2232% 45.70% 89.9% 88.9% 88.8% 1.57%
14 5 4 0.5 4.96 ∗ 105 0.1850% 37.89% 89.5% 88.7% 88.6% 1.81%
15 5 4 0.5 5.13 ∗ 105 0.1911% 39.14% 89.5% 88.7% 88.6% 1.81%
16 5 4 0.5 5.29 ∗ 105 0.1972% 40.39% 89.5% 88.7% 88.6% 1.81%
17 5 4 0.5 5.45 ∗ 105 0.2033% 41.64% 89.5% 88.8% 88.7% 1.73%
18 4 5 0.6 1.11 ∗ 106 0.4169% 85.39% 90.2% 89.4% 88.8% 1.65%
19 4 5 0.6 1.15 ∗ 106 0.4292% 87.89% 90.2% 89.4% 88.8% 1.65%
20 4 5 0.6 1.18 ∗ 106 0.4414% 90.39% 90.2% 89.4% 88.8% 1.65%
21 4 5 0.6 1.21 ∗ 106 0.4536% 92.89% 90.3% 89.5% 88.8% 1.57%
22 6 4 0.5 5.23 ∗ 105 0.1952% 39.97% 89.9% 89.1% 89.0% 1.42%
23 6 4 0.5 5.37 ∗ 105 0.2003% 41.02% 89.8% 89.0% 88.9% 1.49%
24 6 4 0.5 5.51 ∗ 105 0.2054% 42.06% 89.8% 89.0% 88.9% 1.49%
25 6 4 0.5 5.64 ∗ 105 0.2104% 43.10% 89.8% 89.1% 89.0% 1.42%
26 6 4 0.5 5.78 ∗ 105 0.2155% 44.14% 89.9% 89.1% 89.0% 1.42%
27 6 4 0.5 5.92 ∗ 105 0.2206% 45.18% 90.0% 89.1% 89.0% 1.42%
28 4 5 0.6 1.44 ∗ 106 0.5390% 110.4% 90.2% 89.3% 88.7% 1.73%
29 4 5 0.6 1.47 ∗ 106 0.5512% 112.9% 90.2% 89.3% 88.7% 1.73%
30 4 5 0.6 1.51 ∗ 106 0.5634% 115.4% 90.2% 89.3% 88.7% 1.73%
31 4 5 0.6 1.54 ∗ 106 0.5756% 117.9% 89.9% 89.3% 88.7% 1.73%
32 4 5 0.6 1.57 ∗ 106 0.5878% 120.4% 89.9% 89.3% 88.7% 1.73%
33 4 5 0.6 1.61 ∗ 106 0.6001% 122.9% 89.9% 89.3% 88.7% 1.73%
34 4 5 0.6 1.64 ∗ 106 0.6123% 125.4% 89.9% 89.3% 88.7% 1.73%
35 4 5 0.6 1.67 ∗ 106 0.6245% 127.9% 90.0% 89.4% 88.8% 1.65%
36 4 5 0.6 1.70 ∗ 106 0.6367% 130.4% 90.0% 89.4% 88.8% 1.65%
37 4 5 0.6 1.74 ∗ 106 0.6489% 132.9% 90.0% 89.4% 88.8% 1.65%
38 4 5 0.6 1.77 ∗ 106 0.6611% 135.4% 90.0% 89.4% 88.8% 1.65%
39 4 5 0.6 1.80 ∗ 106 0.6733% 137.9% 90.0% 89.4% 88.8% 1.65%
40 4 5 0.6 1.84 ∗ 106 0.6855% 140.4% 90.0% 89.4% 88.8% 1.65%
41 4 5 0.6 1.87 ∗ 106 0.6977% 142.9% 90.0% 89.4% 88.8% 1.65%
42 4 5 0.6 1.90 ∗ 106 0.7099% 145.4% 90.0% 89.4% 88.8% 1.65%
43 6 5 0.6 1.29 ∗ 106 0.4821% 98.72% 90.2% 89.4% 88.8% 1.65%
44 6 5 0.6 1.31 ∗ 106 0.4902% 100.4% 90.2% 89.4% 88.8% 1.65%
45 6 5 0.6 1.33 ∗ 106 0.4983% 102.1% 90.2% 89.4% 88.8% 1.65%
46 6 5 0.6 1.35 ∗ 106 0.5065% 103.7% 90.2% 89.4% 88.8% 1.65%
47 4 5 0.6 2.06 ∗ 106 0.7710% 157.9% 90.0% 89.4% 88.8% 1.65%
48 4 5 0.6 2.10 ∗ 106 0.7832% 160.4% 90.0% 89.4% 88.8% 1.65%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table A.7: Best achieved binary PSML-CPCA Bloom filter TP0 with corresponding TP0.1 and TP0.5,
with a final real-valued PSML-CPCA comparison and tree pre-selection of t = 1, . . . , 48 trees at
T = 64.
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correction W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

Transposed

4 5 0.1 1.34 ∗ 107 5.0% 160% 84.5% 84.1% 83% 7.43%
4 4 0.2 8.38 ∗ 106 3.125% 100% 84.4% 82.8% 82.1% 8.29%
6 4 0.3 5.59 ∗ 106 2.083% 66.67% 83.8% 81.9% 81.6% 8.76%
6 4 0.4 5.59 ∗ 106 2.083% 66.67% 83.5% 81.4% 80.5% 9.9%
7 6 0.5 1.27 ∗ 107 4.762% 152.4% 79.2% 78.4% 77.6% 12.8%
7 5 0.6 7.66 ∗ 106 2.857% 91.43% 80.9% 77.7% 76.7% 13.7%
6 4 0.7 5.59 ∗ 106 2.083% 66.67% 77.1% 74.6% 73% 17.4%
8 4 0.8 4.19 ∗ 106 1.562% 50% 76.8% 73.4% 67% 23.4%
8 6 0.9 1.11 ∗ 107 4.167% 133.3% 68% 65% 60.2% 30.2%

Majority Voting

5 4 0.1 6.71 ∗ 106 2.5% 80% 84.7% 83% 81.6% 8.76%
5 4 0.2 6.71 ∗ 106 2.5% 80% 84.7% 84% 81.6% 8.76%
6 4 0.3 5.59 ∗ 106 2.083% 66.67% 84.1% 82% 80.9% 9.5%
7 4 0.4 4.79 ∗ 106 1.786% 57.14% 81.5% 80.9% 79.8% 10.6%
7 6 0.5 1.27 ∗ 107 4.762% 152.4% 81.2% 79.3% 78.4% 12%
7 4 0.6 4.79 ∗ 106 1.786% 57.14% 81.7% 77.5% 76.1% 14.3%
7 4 0.7 4.79 ∗ 106 1.786% 57.14% 78.7% 74.5% 72.7% 17.7%
8 8 0.8 3.35 ∗ 107 12.5% 400% 72.4% 68.9% 66.1% 24.3%
8 8 0.9 3.35 ∗ 107 12.5% 400% 68.4% 62% 54.5% 35.9%

Transposed
&

Majority Voting

4 5 0.1 1.34 ∗ 107 5.0% 160% 84.3% 83.4% 82.9% 7.51%
4 4 0.2 8.38 ∗ 106 3.125% 100% 84.8% 82.9% 82.3% 8.13%
6 6 0.3 1.49 ∗ 107 5.556% 177.8% 82.3% 81.3% 79.7% 10.7%
6 7 0.4 2.55 ∗ 107 9.524% 304.8% 83.2% 81.2% 79.4% 11%
7 6 0.5 1.27 ∗ 107 4.762% 152.4% 79.5% 78.2% 77.5% 12.9%
7 5 0.6 7.66 ∗ 106 2.857% 91.43% 80.2% 77.7% 76.4% 14%
6 4 0.7 5.59 ∗ 106 2.083% 66.67% 76.9% 75.9% 71.6% 18.8%
8 4 0.8 4.19 ∗ 106 1.562% 50% 77.2% 73.2% 66.5% 23.9%
7 4 0.9 4.79 ∗ 106 1.786% 57.14% 70.3% 67.8% 61.9% 28.5%

* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table A.8: Top three achieved TP0 with corresponding TP0.1 and TP0.5 for every tested binarisation
mask threshold with their corresponding H and W (T = 64) using the binary PSML with several
bit-error reduction strategies, ordered by mask threshold.

141



Bit-error Bloom filter SMR Workload Recognition Performance

correction W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

None

8 4 0.1 4.22 ∗ 106 0.7874% 50.39% 87.8% 86.9% 86.5% 3.92%
8 6 0.2 1.12 ∗ 107 2.089% 133.7% 88.7% 87.5% 87.1% 3.29%
5 5 0.3 1.07 ∗ 107 2.006% 128.4% 89.5% 88.8% 86.8% 3.6%
7 4 0.4 4.82 ∗ 106 0.899% 57.53% 89.8% 89% 87.4% 2.98%
9 4 0.5 3.76 ∗ 106 0.7005% 44.84% 89.2% 88.8% 88.8% 1.65%
8 6 0.6 1.12 ∗ 107 2.089% 133.7% 89.8% 89.5% 89% 1.42%
7 7 0.7 2.19 ∗ 107 4.088% 261.6% 90.1% 89.1% 88.9% 1.49%
7 5 0.8 7.70 ∗ 106 1.435% 91.82% 89.2% 88.8% 88.6% 1.81%
8 4 0.9 4.22 ∗ 106 0.7874% 50.39% 89.8% 88.7% 87.8% 2.59%

Transposed

8 5 0.1 6.74 ∗ 106 1.256% 80.39% 88% 87.5% 86.6% 3.76%
5 5 0.2 1.07 ∗ 107 2.006% 128.4% 88.5% 87.7% 87.3% 3.13%
8 12 0.3 3.57 ∗ 108 66.67% 4267% 88% 87.6% 87.3% 3.06%
7 4 0.4 4.82 ∗ 106 0.899% 57.53% 89.2% 87.7% 87.5% 2.9%
6 6 0.5 1.49 ∗ 107 2.784% 178.2% 89.4% 88.9% 88.5% 1.88%
5 5 0.6 1.07 ∗ 107 2.006% 128.4% 89.8% 88.7% 88% 2.35%
5 8 0.7 5.37 ∗ 107 10.01% 640.4% 89.8% 88.8% 87.9% 2.51%
5 8 0.8 5.37 ∗ 107 10.01% 640.4% 89.4% 88.3% 87.5% 2.9%
5 8 0.9 5.37 ∗ 107 10.01% 640.4% 89% 87.6% 86.9% 3.53%

Majority
Voting

8 4 0.1 4.22 ∗ 106 0.7874% 50.39% 87.7% 86.8% 86.4% 3.99%
7 7 0.2 2.19 ∗ 107 4.088% 261.6% 88.5% 87.4% 87% 3.37%
5 5 0.3 1.07 ∗ 107 2.006% 128.4% 89.5% 88.8% 86.8% 3.6%
5 5 0.4 1.07 ∗ 107 2.006% 128.4% 89.8% 89% 87.4% 2.98%
5 5 0.5 1.07 ∗ 107 2.006% 128.4% 89.3% 89% 88.6% 1.81%
6 5 0.6 8.98 ∗ 106 1.673% 107.1% 90.1% 89.1% 88.5% 1.88%
7 4 0.7 4.82 ∗ 106 0.899% 57.53% 90.2% 89.4% 88.6% 1.81%
8 5 0.8 6.74 ∗ 106 1.256% 80.39% 89.8% 89.5% 88.9% 1.49%
8 5 0.9 6.74 ∗ 106 1.256% 80.39% 89.3% 88.2% 87.7% 2.74%

* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table A.9: Top three achieved TP0 with corresponding TP0.1 and TP0.5 using the binary PSML with
and without bit-error reduction strategies, ordered by mask threshold.
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T W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

16

4 4 0.1 4.22 ∗ 106 0.7874% 50.39% 80.5% 79.6% 79.5% 10.9%
4 5 0.2 6.74 ∗ 106 1.256% 80.39% 81.2% 80.6% 78.6% 11.8%
5 5 0.3 5.40 ∗ 106 1.006% 64.39% 81.3% 80.9% 79.7% 10.7%
6 5 0.4 4.50 ∗ 106 0.8394% 53.72% 83.1% 83% 81.1% 9.3%
5 5 0.5 5.40 ∗ 106 1.006% 64.39% 82.4% 81.8% 81.6% 8.84%
4 5 0.6 6.74 ∗ 106 1.256% 80.39% 84.1% 83.8% 83.3% 7.12%
4 6 0.7 1.12 ∗ 107 2.089% 133.7% 83.3% 82.5% 81.9% 8.53%
5 5 0.8 5.40 ∗ 106 1.006% 64.39% 82.5% 82.3% 80.9% 9.5%
5 4 0.9 3.38 ∗ 106 0.6311% 40.39% 81.8% 81.3% 80.8% 9.6%

32

4 4 0.1 6.32 ∗ 106 1.178% 75.39% 86.8% 86.2% 85.9% 4.54%
4 9 0.2 8.95 ∗ 107 16.67% 1067% 87.2% 86.8% 85.9% 4.46%
4 8 0.3 5.03 ∗ 107 9.381% 600.4% 88.2% 87.1% 86.1% 4.31%
6 5 0.4 6.74 ∗ 106 1.256% 80.39% 89.1% 88.2% 86.9% 3.53%
7 4 0.5 3.62 ∗ 106 0.6757% 43.25% 89.2% 88.4% 87.9% 2.51%
5 4 0.6 5.06 ∗ 106 0.9436% 60.39% 89.1% 88.5% 87.8% 2.59%
7 4 0.7 3.62 ∗ 106 0.6757% 43.25% 89% 88.1% 88% 2.35%
8 5 0.8 5.06 ∗ 106 0.9436% 60.39% 88.4% 88% 87.6% 2.82%
8 4 0.9 3.17 ∗ 106 0.592% 37.89% 89.2% 87.9% 87% 3.45%

* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML ω256.

Table A.10: Achieved PSML Bloom filter TP0 with corresponding TP0.1 and TP0.5, with a final binary
PSML comparison using T = 32 and T = 16 trees.
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t W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

1 4 5 0.1 3.59 ∗ 106 0.6702% 42.89% 72.1% 72.0% 71.7% 18.7%
2 4 5 0.2 3.80 ∗ 106 0.7092% 45.39% 79.1% 78.7% 78.0% 12.4%
3 4 4 0.6 2.52 ∗ 106 0.4700% 30.08% 82.9% 82.1% 81.2% 9.2%
4 4 5 0.6 4.22 ∗ 106 0.7874% 50.39% 84.7% 84.3% 83.6% 6.81%
5 4 5 0.5 4.43 ∗ 106 0.8264% 52.89% 85.5% 84.9% 84.7% 5.71%
6 4 5 0.6 4.64 ∗ 106 0.8655% 55.39% 86.8% 85.9% 85.3% 5.09%
7 4 5 0.6 4.85 ∗ 106 0.9045% 57.89% 87.4% 86.6% 86.1% 4.31%
8 6 4 0.8 2.12 ∗ 106 0.3967% 25.39% 87.6% 87.3% 87.1% 3.29%
9 6 4 0.8 2.21 ∗ 106 0.4130% 26.43% 88.0% 87.7% 87.5% 2.9%
10 6 4 0.8 2.30 ∗ 106 0.4293% 27.47% 88.3% 88.0% 87.7% 2.67%
11 6 4 0.8 2.39 ∗ 106 0.4456% 28.52% 88.8% 88.4% 88.2% 2.2%
12 4 5 0.6 5.90 ∗ 106 1.1000% 70.39% 89.0% 88.4% 87.7% 2.74%
13 4 5 0.6 6.11 ∗ 106 1.1390% 72.89% 89.1% 88.6% 87.8% 2.59%
14 5 5 0.6 5.06 ∗ 106 0.9436% 60.39% 89.1% 88.6% 87.9% 2.51%
15 7 5 0.7 3.74 ∗ 106 0.6981% 44.68% 88.8% 88.2% 88.1% 2.28%
16 7 5 0.7 3.86 ∗ 106 0.7204% 46.10% 89.1% 88.4% 88.4% 2.04%
17 7 4 0.7 2.50 ∗ 106 0.4665% 29.85% 89.4% 88.6% 88.5% 1.88%
18 7 4 0.7 2.57 ∗ 106 0.4804% 30.75% 89.5% 88.7% 88.6% 1.81%
19 7 4 0.7 2.65 ∗ 106 0.4944% 31.64% 89.6% 88.8% 88.8% 1.65%
20 7 4 0.7 2.72 ∗ 106 0.5083% 32.53% 89.8% 89.0% 88.9% 1.49%
21 4 7 0.6 2.22 ∗ 107 4.1360% 264.7% 89.8% 89.4% 88.6% 1.81%
22 5 7 0.6 1.82 ∗ 107 3.3990% 217.5% 89.9% 89.4% 88.6% 1.81%
23 4 7 0.6 2.34 ∗ 107 4.3590% 279.0% 89.9% 89.5% 88.7% 1.73%
24 5 7 0.6 1.92 ∗ 107 3.5780% 229.0% 90.0% 89.5% 88.7% 1.73%
25 5 7 0.6 1.96 ∗ 107 3.6670% 234.7% 90.1% 89.5% 88.8% 1.65%
26 5 7 0.6 2.01 ∗ 107 3.7560% 240.4% 90.1% 89.5% 88.8% 1.65%
27 5 7 0.6 2.06 ∗ 107 3.8450% 246.1% 90.1% 89.5% 88.8% 1.65%
28 5 7 0.6 2.11 ∗ 107 3.9350% 251.8% 90.1% 89.5% 88.8% 1.65%
29 5 7 0.6 2.16 ∗ 107 4.0240% 257.5% 90.1% 89.5% 88.8% 1.65%
30 5 7 0.6 2.20 ∗ 107 4.1130% 263.2% 90.1% 89.5% 88.8% 1.65%
31 5 7 0.6 2.25 ∗ 107 4.2030% 269.0% 90.2% 89.6% 88.8% 1.57%
32 5 7 0.6 2.30 ∗ 107 4.2920% 274.7% 90.2% 89.6% 88.8% 1.57%
33 5 7 0.6 2.35 ∗ 107 4.3810% 280.4% 90.2% 89.6% 88.8% 1.57%
34 5 7 0.6 2.40 ∗ 107 4.4700% 286.1% 90.2% 89.6% 88.8% 1.57%
35 7 7 0.7 1.74 ∗ 107 3.2590% 208.6% 90.1% 89.1% 88.9% 1.49%
36 7 7 0.7 1.78 ∗ 107 3.3220% 212.6% 90.1% 89.1% 88.9% 1.49%
37 7 7 0.7 1.81 ∗ 107 3.3860% 216.7% 90.1% 89.1% 88.9% 1.49%
38 7 7 0.7 1.85 ∗ 107 3.4500% 220.8% 90.1% 89.1% 88.9% 1.49%
39 7 7 0.7 1.88 ∗ 107 3.5140% 224.9% 90.1% 89.1% 88.9% 1.49%
40 8 6 0.6 9.81 ∗ 106 1.8290% 117.1% 89.7% 89.3% 88.9% 1.49%
41 8 6 0.6 9.99 ∗ 106 1.8620% 119.1% 89.7% 89.3% 88.9% 1.49%
42 8 6 0.6 1.01 ∗ 107 1.8940% 121.2% 89.7% 89.3% 88.9% 1.49%
43 8 6 0.6 1.03 ∗ 107 1.9270% 123.3% 89.8% 89.4% 88.9% 1.49%
44 8 6 0.6 1.05 ∗ 107 1.9590% 125.4% 89.8% 89.5% 89.0% 1.42%
45 8 6 0.6 1.06 ∗ 107 1.9920% 127.5% 89.8% 89.5% 89.0% 1.42%
46 8 6 0.6 1.08 ∗ 107 2.0240% 129.6% 89.8% 89.5% 89.0% 1.42%
47 8 6 0.6 1.10 ∗ 107 2.0570% 131.6% 89.8% 89.5% 89.0% 1.42%
48 8 6 0.6 1.12 ∗ 107 2.0890% 133.7% 89.8% 89.5% 89.0% 1.42%
64 8 6 0.6 1.12 ∗ 107 2.0890% 133.7% 89.8% 89.5% 89.0% 1.42%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML ω256.

Table A.11: Best achieved PSML Bloom filter TP0 with corresponding TP0.1 and TP0.5, with a final
binary PSML comparison and tree pre-selection of t = 1, . . . , 48 trees at T = 64.
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t W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

1 4 5 0.4 2.02 ∗ 106 0.3772% 24.14% 52.3% 52.2% 51.9% 38.5%
2 5 5 0.8 1.87 ∗ 106 0.3499% 22.39% 62.7% 62.5% 62.5% 27.9%
3 5 5 0.8 2.12 ∗ 106 0.3967% 25.39% 70.0% 69.8% 69.8% 20.6%
4 5 5 0.8 2.38 ∗ 106 0.4436% 28.39% 74.3% 74.0% 73.9% 16.5%
5 4 5 0.7 3.28 ∗ 106 0.6116% 39.14% 77.0% 77.0% 76.4% 14.0%
6 4 4 0.6 2.26 ∗ 106 0.4211% 26.95% 79.1% 78.5% 77.5% 12.9%
7 6 5 0.6 2.61 ∗ 106 0.4879% 31.22% 80.6% 80.2% 79.6% 10.8%
8 4 5 0.6 4.22 ∗ 106 0.7874% 50.39% 83.3% 82.8% 82.0% 8.45%
9 4 5 0.6 4.54 ∗ 106 0.8459% 54.14% 84.6% 84.1% 83.2% 7.20%
10 4 5 0.6 4.85 ∗ 106 0.9045% 57.89% 85.7% 85.0% 84.1% 6.34%
11 4 5 0.6 5.17 ∗ 106 0.9631% 61.64% 86.4% 85.6% 84.7% 5.71%
12 4 5 0.6 5.48 ∗ 106 1.0220% 65.39% 86.6% 85.9% 85.0% 5.40%
13 4 5 0.6 5.79 ∗ 106 1.0800% 69.14% 87.4% 86.7% 85.8% 4.62%
14 4 5 0.6 6.11 ∗ 106 1.1390% 72.89% 88.0% 87.3% 86.4% 3.99%
15 4 5 0.6 6.42 ∗ 106 1.1980% 76.64% 88.4% 87.7% 86.7% 3.68%
16 4 5 0.6 6.74 ∗ 106 1.2560% 80.39% 88.6% 88.0% 87.0% 3.45%
17 4 5 0.6 7.05 ∗ 106 1.3150% 84.14% 88.7% 88.0% 87.0% 3.37%
18 5 7 0.6 1.68 ∗ 107 3.1310% 200.4% 87.9% 87.5% 86.8% 3.60%
19 4 7 0.6 2.19 ∗ 107 4.0800% 261.1% 88.5% 87.8% 87.0% 3.37%
20 4 7 0.6 2.28 ∗ 107 4.2470% 271.8% 88.7% 88.0% 87.2% 3.21%
21 4 7 0.6 2.37 ∗ 107 4.4150% 282.5% 88.6% 88.2% 87.4% 2.98%
22 8 5 0.8 4.33 ∗ 106 0.8069% 51.64% 88.3% 87.7% 87.5% 2.90%
23 5 7 0.6 2.04 ∗ 107 3.8010% 243.2% 88.7% 88.4% 87.6% 2.82%
24 7 4 0.7 3.32 ∗ 106 0.6199% 39.68% 88.8% 87.9% 87.8% 2.59%
25 7 4 0.7 3.44 ∗ 106 0.6409% 41.02% 88.8% 87.9% 87.8% 2.59%
26 7 4 0.7 3.55 ∗ 106 0.6618% 42.35% 88.8% 88.0% 87.9% 2.51%
32 7 4 0.7 3.62 ∗ 106 0.6757% 43.25% 89.0% 88.1% 88.0% 2.35%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML ω256.

Table A.12: Best achieved PSML Bloom filter TP0 with corresponding TP0.1 and TP0.5, with a final
binary PSML comparison and tree pre-selection of t = 1, . . . , 28 trees at T = 32.
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t W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

1 4 5 0.1 3.59 ∗ 106 1.340% 42.89% 72.7% 72.3% 72.3% 18.1%
2 4 5 0.2 3.80 ∗ 106 1.418% 45.39% 80.2% 79.9% 79.6% 10.8%
3 4 4 0.6 2.52 ∗ 106 0.940% 30.08% 83.4% 82.7% 82.7% 7.67%
4 4 5 0.4 4.22 ∗ 106 1.575% 50.39% 85.2% 84.8% 84.5% 5.95%
5 4 5 0.5 4.43 ∗ 106 1.653% 52.89% 86.9% 85.9% 85.8% 4.62%
6 4 5 0.6 4.64 ∗ 106 1.731% 55.39% 87.2% 86.5% 86.5% 3.92%
7 5 5 0.4 3.89 ∗ 106 1.450% 46.39% 88.4% 87.5% 87.4% 2.98%
8 4 4 0.6 3.17 ∗ 106 1.184% 37.89% 89.0% 88.2% 88.2% 2.2%
9 4 4 0.6 3.30 ∗ 106 1.233% 39.45% 89.4% 88.6% 88.6% 1.81%
10 4 4 0.6 3.44 ∗ 106 1.282% 41.02% 89.8% 89.1% 88.8% 1.57%
11 5 4 0.6 2.86 ∗ 106 1.067% 34.14% 89.8% 88.9% 88.9% 1.49%
12 4 4 0.6 3.70 ∗ 106 1.379% 44.14% 90.2% 89.4% 89.1% 1.26%
13 4 5 0.2 6.11 ∗ 106 2.278% 72.89% 90.1% 89.5% 89.3% 1.1%
14 4 5 0.2 6.32 ∗ 106 2.356% 75.39% 90.2% 89.7% 89.5% 0.95%
15 4 4 0.6 4.09 ∗ 106 1.526% 48.83% 90.6% 89.7% 89.5% 0.95%
16 4 4 0.6 4.22 ∗ 106 1.575% 50.39% 90.6% 89.7% 89.5% 0.95%
17 5 4 0.6 3.49 ∗ 106 1.301% 41.64% 90.5% 89.6% 89.6% 0.79%
18 6 4 0.6 3.00 ∗ 106 1.119% 35.81% 90.6% 89.7% 89.7% 0.71%
19 7 4 0.4 2.65 ∗ 106 0.989% 31.64% 90.6% 89.8% 89.8% 0.63%
20 7 4 0.4 2.72 ∗ 106 1.017% 32.53% 90.7% 89.9% 89.8% 0.56%
21 7 4 0.4 2.80 ∗ 106 1.045% 33.43% 90.8% 90.0% 89.9% 0.48%
22 7 4 0.4 2.87 ∗ 106 1.072% 34.32% 90.9% 90.1% 90.0% 0.4%
23 7 4 0.4 2.95 ∗ 106 1.100% 35.21% 90.9% 90.2% 90.1% 0.32%
24 7 4 0.4 3.02 ∗ 106 1.128% 36.10% 91.1% 90.3% 90.2% 0.17%
25 6 6 0.1 9.58 ∗ 106 3.571% 114.3% 91.1% 90.5% 90.4% 0.0%
26 6 6 0.1 9.81 ∗ 106 3.658% 117.1% 91.1% 90.5% 90.4% 0.0%
27 6 6 0.1 1.00 ∗ 107 3.745% 119.8% 90.6% 90.5% 90.4% 0.0%
28 6 6 0.1 1.02 ∗ 107 3.832% 122.6% 90.5% 90.5% 90.3% 0.1%
29 6 6 0.1 1.05 ∗ 107 3.918% 125.4% 90.5% 90.5% 90.3% 0.1%
30 6 6 0.1 1.07 ∗ 107 4.005% 128.2% 90.5% 90.5% 90.3% 0.1%
31 6 6 0.1 1.09 ∗ 107 4.092% 130.9% 90.5% 90.5% 90.3% 0.1%
32 6 6 0.1 1.12 ∗ 107 4.179% 133.7% 90.5% 90.5% 90.3% 0.1%
33 6 6 0.1 1.14 ∗ 107 4.266% 136.5% 90.5% 90.5% 90.3% 0.1%
34 6 6 0.1 1.16 ∗ 107 4.352% 139.3% 90.5% 90.5% 90.3% 0.1%
35 4 6 0.1 1.78 ∗ 107 6.653% 212.9% 90.9% 90.7% 90.5% +0.1%
36 4 6 0.1 1.82 ∗ 107 6.783% 217.1% 90.9% 90.7% 90.5% +0.1%
37 4 6 0.1 1.85 ∗ 107 6.913% 221.2% 90.9% 90.7% 90.5% +0.1%
38 4 6 0.1 1.89 ∗ 107 7.043% 225.4% 91.0% 90.8% 90.5% +0.1%
39 4 6 0.1 1.92 ∗ 107 7.174% 229.6% 91.0% 90.8% 90.5% +0.1%
40 4 6 0.1 1.96 ∗ 107 7.304% 233.7% 91.0% 90.8% 90.5% +0.1%
41 4 6 0.1 1.99 ∗ 107 7.434% 237.9% 91.0% 90.8% 90.5% +0.1%
42 4 6 0.1 2.03 ∗ 107 7.564% 242.1% 91.0% 90.8% 90.5% +0.1%
43 4 6 0.1 2.06 ∗ 107 7.694% 246.2% 91.0% 90.8% 90.5% +0.1%
44 4 6 0.1 2.10 ∗ 107 7.825% 250.4% 91.0% 90.8% 90.5% +0.1%
45 4 6 0.1 2.13 ∗ 107 7.955% 254.6% 91.0% 90.8% 90.5% +0.1%
46 4 6 0.1 2.17 ∗ 107 8.085% 258.7% 91.0% 90.8% 90.5% +0.1%
47 4 6 0.1 2.20 ∗ 107 8.215% 262.9% 91.0% 90.8% 90.5% +0.1%
48 4 6 0.1 2.24 ∗ 107 8.346% 267.1% 91.0% 90.8% 90.5% +0.1%
64 4 6 0.1 2.24 ∗ 107 8.346% 267.1% 91.0% 90.8% 90.5% +0.1%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML ω256.

Table A.13: Best achieved binary PSML Bloom filter TP0 with corresponding TP0.1 and TP0.5, with
a final real-valued PSML comparison and tree pre-selection of t = 1, . . . , 48 trees at T = 64.
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t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.47 0.64 0.65 3.48 ∗ 105 0.1297% 26.56% 49.61% 49.3% 48.8% 48.6% 41.8%
2 0.49 0.63 0.65 3.69 ∗ 105 0.1373% 28.12% 37.27% 61.0% 60.5% 60.4% 30.0%
3 0.49 0.63 0.65 3.89 ∗ 105 0.1450% 29.69% 29.14% 68.9% 68.3% 68.1% 22.3%
4 0.46 0.60 0.65 4.10 ∗ 105 0.1526% 31.25% 25.55% 72.4% 72.0% 72.0% 18.4%
5 0.46 0.60 0.65 4.30 ∗ 105 0.1602% 32.81% 22.27% 75.5% 75.3% 74.6% 15.8%
6 0.46 0.63 0.65 4.51 ∗ 105 0.1678% 34.38% 18.98% 78.0% 77.7% 77.3% 13.1%
7 0.46 0.60 0.65 4.71 ∗ 105 0.1755% 35.94% 16.72% 80.6% 80.0% 79.7% 10.7%
8 0.46 0.60 0.65 4.92 ∗ 105 0.1831% 37.50% 14.84% 82.1% 81.5% 81.2% 9.20%
9 0.46 0.60 0.65 5.12 ∗ 105 0.1907% 39.06% 13.83% 83.1% 82.3% 82.0% 8.37%
10 0.46 0.60 0.65 5.32 ∗ 105 0.1984% 40.62% 12.81% 83.9% 83.4% 83.0% 7.35%
11 0.46 0.60 0.65 5.53 ∗ 105 0.2060% 42.19% 11.80% 84.5% 84.1% 83.8% 6.57%
12 0.46 0.60 0.65 5.73 ∗ 105 0.2136% 43.75% 10.94% 85.3% 84.9% 84.6% 5.79%
13 0.46 0.60 0.65 5.94 ∗ 105 0.2213% 45.31% 10.00% 86.0% 85.5% 85.2% 5.24%
14 0.46 0.60 0.65 6.14 ∗ 105 0.2289% 46.88% 9.375% 86.4% 85.9% 85.5% 4.85%
15 0.46 0.60 0.65 6.35 ∗ 105 0.2365% 48.44% 8.750% 87.0% 86.5% 86.1% 4.31%
16 0.46 0.60 0.65 6.55 ∗ 105 0.2441% 50.00% 8.203% 87.4% 86.9% 86.5% 3.92%
17 0.46 0.63 0.65 6.76 ∗ 105 0.2518% 51.56% 7.656% 87.8% 87.5% 87.0% 3.45%
18 0.46 0.63 0.65 6.96 ∗ 105 0.2594% 53.12% 7.109% 88.3% 88.0% 87.4% 2.98%
19 0.46 0.63 0.65 7.17 ∗ 105 0.2670% 54.69% 6.719% 88.6% 88.2% 87.7% 2.74%
20 0.46 0.63 0.65 7.37 ∗ 105 0.2747% 56.25% 6.406% 89.0% 88.3% 88.0% 2.35%
21 0.46 0.63 0.65 7.58 ∗ 105 0.2823% 57.81% 6.094% 89.1% 88.4% 88.1% 2.28%
22 0.49 0.68 0.65 7.78 ∗ 105 0.2899% 59.38% 6.016% 88.8% 88.4% 88.4% 2.04%
23 0.49 0.68 0.65 7.99 ∗ 105 0.2975% 60.94% 5.859% 89.1% 88.6% 88.5% 1.88%
24 0.46 0.62 0.70 8.19 ∗ 105 0.3052% 62.50% 5.547% 89.5% 88.8% 88.8% 1.65%
25 0.46 0.62 0.70 8.40 ∗ 105 0.3128% 64.06% 5.469% 89.5% 88.8% 88.8% 1.57%
26 0.46 0.62 0.65 8.60 ∗ 105 0.3204% 65.62% 5.078% 89.5% 89.1% 88.8% 1.57%
27 0.46 0.62 0.70 8.81 ∗ 105 0.3281% 67.19% 4.922% 89.8% 89.1% 89.1% 1.26%
28 0.46 0.62 0.70 9.01 ∗ 105 0.3357% 68.75% 4.766% 90.0% 89.2% 89.2% 1.18%
29 0.46 0.62 0.70 9.22 ∗ 105 0.3433% 70.31% 4.766% 90.0% 89.2% 89.2% 1.18%
30 0.46 0.62 0.70 9.42 ∗ 105 0.3510% 71.88% 4.688% 90.1% 89.3% 89.3% 1.10%
31 0.46 0.62 0.70 9.63 ∗ 105 0.3586% 73.44% 4.688% 90.1% 89.3% 89.3% 1.10%
32 0.46 0.62 0.70 9.83 ∗ 105 0.3662% 75.00% 4.531% 90.2% 89.4% 89.4% 1.03%
33 0.46 0.62 0.65 1.00 ∗ 106 0.3738% 76.56% 4.062% 89.8% 89.7% 89.5% 0.95%
34 0.46 0.62 0.65 1.02 ∗ 106 0.3815% 78.12% 4.062% 89.8% 89.7% 89.5% 0.95%
35 0.46 0.62 0.70 1.04 ∗ 106 0.3891% 79.69% 4.375% 89.9% 89.5% 89.5% 0.87%
36 0.46 0.62 0.70 1.06 ∗ 106 0.3967% 81.25% 4.375% 89.9% 89.5% 89.5% 0.87%
37 0.46 0.62 0.70 1.09 ∗ 106 0.4044% 82.81% 4.375% 89.8% 89.5% 89.5% 0.87%
38 0.46 0.62 0.70 1.11 ∗ 106 0.4102% 84.38% 4.141% 89.9% 89.7% 89.7% 0.71%
39 0.46 0.62 0.70 1.13 ∗ 106 0.4196% 85.94% 4.141% 89.9% 89.7% 89.7% 0.71%
40 0.46 0.62 0.70 1.15 ∗ 106 0.4272% 87.50% 3.984% 90.0% 89.8% 89.8% 0.63%
41 0.46 0.62 0.70 1.17 ∗ 106 0.4349% 89.06% 3.984% 90.0% 89.8% 89.8% 0.63%
42 0.46 0.62 0.70 1.19 ∗ 106 0.4425% 90.62% 3.984% 90.0% 89.8% 89.8% 0.63%
43 0.46 0.62 0.70 1.21 ∗ 106 0.4501% 92.19% 3.906% 90.0% 89.8% 89.8% 0.63%
44 0.46 0.62 0.70 1.23 ∗ 106 0.4578% 93.75% 3.906% 90.0% 89.8% 89.8% 0.63%
45 0.46 0.62 0.70 1.25 ∗ 106 0.4654% 95.31% 3.906% 90.0% 89.8% 89.8% 0.63%
46 0.46 0.62 0.70 1.27 ∗ 106 0.4730% 96.88% 3.828% 90.0% 89.8% 89.8% 0.63%
47 0.46 0.62 0.70 1.29 ∗ 106 0.4807% 98.44% 3.750% 90.1% 89.8% 89.8% 0.56%
48 0.46 0.62 0.70 1.31 ∗ 106 0.4883% 100.0% 3.750% 90.1% 89.8% 89.8% 0.56%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table A.14: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using SMR-CPCA-C templates at T = 64.
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t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.64 0.65 3.48 ∗ 105 0.1297% 26.56% 28.75% 70.2% 69.5% 69.3% 21.1%
2 0.49 0.64 0.65 3.69 ∗ 105 0.1373% 28.12% 18.44% 79.0% 78.4% 78.0% 12.4%
3 0.49 0.67 0.70 3.89 ∗ 105 0.1450% 29.69% 14.22% 83.0% 82.7% 81.9% 8.53%
4 0.46 0.62 0.65 4.10 ∗ 105 0.1526% 31.25% 11.88% 84.5% 84.2% 83.9% 6.49%
5 0.48 0.66 0.70 4.30 ∗ 105 0.1602% 32.81% 10.00% 86.6% 85.8% 85.5% 4.93%
6 0.48 0.66 0.70 4.51 ∗ 105 0.1678% 34.38% 8.516% 87.2% 86.5% 86.3% 4.07%
7 0.49 0.64 0.70 4.71 ∗ 105 0.1755% 35.94% 7.734% 88.0% 87.3% 87.0% 3.37%
8 0.49 0.68 0.70 4.92 ∗ 105 0.1831% 37.50% 6.875% 88.8% 87.8% 87.4% 2.98%
9 0.46 0.62 0.65 5.12 ∗ 105 0.1907% 39.06% 7.266% 88.1% 88.0% 87.8% 2.59%
10 0.49 0.68 0.70 5.32 ∗ 105 0.1984% 40.62% 5.859% 89.1% 88.6% 88.1% 2.28%
11 0.49 0.68 0.70 5.53 ∗ 105 0.2060% 42.19% 5.391% 89.5% 88.9% 88.4% 2.04%
12 0.49 0.68 0.70 5.73 ∗ 105 0.2136% 43.75% 5.312% 89.5% 88.9% 88.4% 2.04%
13 0.45 0.78 0.65 5.94 ∗ 105 0.2213% 45.31% 5.703% 89.5% 88.8% 88.7% 1.73%
14 0.45 0.78 0.65 6.14 ∗ 105 0.2289% 46.88% 5.469% 89.6% 88.8% 88.8% 1.65%
15 0.47 0.61 0.65 6.35 ∗ 105 0.2365% 48.44% 5.312% 89.2% 89.1% 88.9% 1.49%
16 0.47 0.61 0.65 6.55 ∗ 105 0.2441% 50.00% 5.078% 89.3% 89.2% 89.0% 1.42%
17 0.46 0.62 0.65 6.76 ∗ 105 0.2518% 51.56% 4.453% 89.4% 89.4% 89.1% 1.26%
18 0.46 0.62 0.65 6.96 ∗ 105 0.2594% 53.12% 4.375% 89.5% 89.5% 89.3% 1.10%
19 0.46 0.62 0.65 7.17 ∗ 105 0.2670% 54.69% 4.297% 89.6% 89.6% 89.4% 1.03%
20 0.46 0.62 0.65 7.37 ∗ 105 0.2747% 56.25% 4.375% 89.6% 89.6% 89.4% 1.03%
21 0.46 0.62 0.65 7.58 ∗ 105 0.2823% 57.81% 4.219% 89.8% 89.8% 89.5% 0.87%
22 0.46 0.62 0.65 7.78 ∗ 105 0.2899% 59.38% 4.141% 89.8% 89.8% 89.6% 0.79%
23 0.46 0.62 0.65 7.99 ∗ 105 0.2975% 60.94% 3.906% 89.9% 89.9% 89.7% 0.71%
24 0.46 0.62 0.65 8.19 ∗ 105 0.3052% 62.50% 3.906% 89.9% 89.9% 89.7% 0.71%
25 0.46 0.62 0.65 8.40 ∗ 105 0.3128% 64.06% 3.906% 89.9% 89.9% 89.7% 0.71%
26 0.46 0.62 0.65 8.60 ∗ 105 0.3204% 65.62% 3.828% 89.9% 89.9% 89.7% 0.71%
27 0.46 0.62 0.65 8.81 ∗ 105 0.3281% 67.19% 3.828% 89.9% 89.9% 89.7% 0.71%
28 0.46 0.62 0.65 9.01 ∗ 105 0.3357% 68.75% 3.750% 90.0% 90.0% 89.8% 0.63%
29 0.46 0.62 0.65 9.22 ∗ 105 0.3433% 70.31% 3.750% 90.0% 90.0% 89.8% 0.63%
30 0.46 0.62 0.65 9.42 ∗ 105 0.3510% 71.88% 3.750% 90.0% 90.0% 89.8% 0.63%
31 0.46 0.62 0.65 9.63 ∗ 105 0.3586% 73.44% 3.672% 90.0% 90.0% 89.8% 0.63%
32 0.46 0.62 0.65 9.83 ∗ 105 0.3662% 75.00% 3.672% 90.0% 90.0% 89.8% 0.63%
33 0.46 0.62 0.65 1.00 ∗ 106 0.3738% 76.56% 3.672% 90.0% 90.0% 89.8% 0.63%
34 0.46 0.62 0.65 1.02 ∗ 106 0.3815% 78.12% 3.672% 90.0% 90.0% 89.8% 0.63%
35 0.46 0.62 0.65 1.04 ∗ 106 0.3891% 79.69% 3.672% 90.0% 90.0% 89.8% 0.63%
36 0.46 0.62 0.65 1.06 ∗ 106 0.3967% 81.25% 3.594% 90.0% 90.0% 89.8% 0.63%
37 0.46 0.62 0.65 1.09 ∗ 106 0.4044% 82.81% 3.594% 90.0% 90.0% 89.8% 0.63%
38 0.46 0.62 0.65 1.11 ∗ 106 0.4120% 84.38% 3.594% 90.0% 90.0% 89.8% 0.63%
39 0.46 0.62 0.65 1.13 ∗ 106 0.4196% 85.94% 3.594% 90.0% 90.0% 89.8% 0.63%
40 0.46 0.62 0.65 1.15 ∗ 106 0.4272% 87.50% 3.594% 90.0% 90.0% 89.8% 0.63%
41 0.46 0.62 0.65 1.17 ∗ 106 0.4349% 89.06% 3.594% 90.0% 90.0% 89.8% 0.63%
42 0.46 0.62 0.65 1.19 ∗ 106 0.4425% 90.62% 3.594% 90.0% 90.0% 89.8% 0.63%
43 0.46 0.62 0.65 1.21 ∗ 106 0.4501% 92.19% 3.672% 90.0% 90.0% 89.8% 0.63%
44 0.46 0.62 0.65 1.23 ∗ 106 0.4578% 93.75% 3.672% 90.0% 90.0% 89.8% 0.63%
45 0.46 0.62 0.65 1.25 ∗ 106 0.4654% 95.31% 3.672% 90.0% 90.0% 89.8% 0.63%
46 0.46 0.62 0.65 1.27 ∗ 106 0.4730% 96.88% 3.672% 90.0% 90.0% 89.8% 0.63%
47 0.46 0.62 0.65 1.29 ∗ 106 0.4807% 98.44% 3.672% 90.0% 90.0% 89.8% 0.63%
48 0.46 0.62 0.65 1.31 ∗ 106 0.4883% 100.0% 3.672% 90.0% 90.0% 89.8% 0.63%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table A.15: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using SMR-CPCA-M templates at T = 64.
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t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.60 0.70 1.95 ∗ 105 0.0725% 14.84% 55.23% 43.9% 43.8% 43.7% 46.7%
2 0.49 0.60 0.75 2.25 ∗ 105 0.0839% 17.19% 41.25% 57.4% 57.3% 57.0% 33.4%
3 0.49 0.60 0.75 2.56 ∗ 105 0.0954% 19.53% 33.20% 65.2% 64.5% 64.5% 25.9%
4 0.46 0.63 0.70 2.87 ∗ 105 0.1068% 21.88% 26.88% 71.1% 70.0% 69.8% 20.6%
5 0.49 0.68 0.75 3.17 ∗ 105 0.1183% 24.22% 22.73% 74.6% 73.8% 73.6% 16.8%
6 0.49 0.68 0.75 3.48 ∗ 105 0.1297% 26.56% 20.00% 77.0% 75.9% 75.9% 14.5%
7 0.49 0.68 0.70 3.79 ∗ 105 0.1411% 28.91% 17.34% 79.2% 78.3% 78.1% 12.3%
8 0.47 0.64 0.75 4.10 ∗ 105 0.1526% 31.25% 15.23% 81.2% 80.9% 79.9% 10.5%
9 0.49 0.68 0.70 4.40 ∗ 105 0.1640% 33.59% 13.44% 82.7% 81.8% 81.2% 9.20%
10 0.46 0.79 0.65 4.71 ∗ 105 0.1755% 35.94% 14.22% 82.6% 82.3% 82.3% 8.13%
11 0.48 0.66 0.70 5.02 ∗ 105 0.1869% 38.28% 11.33% 84.5% 83.7% 83.3% 7.12%
12 0.48 0.66 0.70 5.32 ∗ 105 0.1984% 40.62% 10.39% 85.3% 84.5% 84.1% 5.34%
13 0.48 0.66 0.70 5.63 ∗ 105 0.2098% 42.97% 9.688% 85.9% 84.9% 84.7% 5.71%
14 0.48 0.66 0.70 5.94 ∗ 105 0.2213% 45.31% 9.219% 86.2% 85.9% 85.3% 5.09%
15 0.49 0.67 0.70 6.25 ∗ 105 0.2327% 47.66% 8.281% 87.3% 87.0% 85.9% 4.46%
16 0.46 0.62 0.65 6.55 ∗ 105 0.2441% 50.00% 8.359% 86.7% 86.6% 86.5% 3.92%
17 0.46 0.62 0.65 6.86 ∗ 105 0.2556% 52.34% 7.891% 87.1% 87.1% 87.0% 3.45%
18 0.46 0.62 0.65 7.17 ∗ 105 0.2670% 54.69% 7.422% 87.4% 87.4% 87.3% 3.13%
19 0.46 0.62 0.65 7.48 ∗ 105 0.2785% 57.03% 7.344% 87.5% 87.5% 87.3% 3.06%
20 0.46 0.62 0.65 7.78 ∗ 105 0.2899% 59.38% 7.109% 87.7% 87.7% 87.6% 2.82%
21 0.46 0.62 0.65 8.09 ∗ 105 0.3014% 61.72% 6.719% 88.1% 88.1% 88.0% 2.43%
22 0.46 0.62 0.65 8.40 ∗ 105 0.3128% 64.06% 6.484% 88.3% 88.3% 88.1% 2.28%
23 0.46 0.62 0.65 8.70 ∗ 105 0.3242% 66.41% 6.406% 88.4% 88.4% 88.2% 2.20%
24 0.46 0.62 0.65 9.01 ∗ 105 0.3357% 68.75% 6.016% 88.7% 88.7% 88.5% 1.88%
25 0.46 0.62 0.65 9.32 ∗ 105 0.3471% 71.09% 5.938% 88.7% 88.7% 88.5% 1.88%
26 0.46 0.62 0.65 9.63 ∗ 105 0.3586% 73.44% 5.625% 88.8% 88.8% 88.7% 1.73%
27 0.46 0.62 0.65 9.93 ∗ 105 0.3700% 75.78% 5.469% 88.8% 88.8% 88.7% 1.73%
28 0.46 0.62 0.65 1.02 ∗ 106 0.3815% 78.12% 5.469% 88.8% 88.8% 88.7% 1.73%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table A.16: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 26 trees using SMR-CPCA-M templates at T = 32.
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t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.64 0.65 3.53 ∗ 105 0.1316% 26.95% 28.75% 70.2% 69.5% 69.3% 21.1%
2 0.49 0.64 0.65 3.74 ∗ 105 0.1392% 28.52% 18.44% 79% 78.4% 78% 12.4%
3 0.49 0.67 0.70 3.94 ∗ 105 0.1469% 30.08% 14.22% 83% 82.7% 81.9% 8.53%
4 0.46 0.62 0.65 4.15 ∗ 105 0.1545% 31.64% 11.88% 84.5% 84.2% 83.9% 6.49%
5 0.48 0.66 0.70 4.35 ∗ 105 0.1621% 33.20% 10.0% 86.6% 85.8% 85.5% 4.93%
6 0.48 0.66 0.70 4.56 ∗ 105 0.1698% 34.77% 8.516% 87.2% 86.5% 86.3% 4.07%
7 0.49 0.64 0.70 4.76 ∗ 105 0.1774% 36.33% 7.734% 88% 87.3% 87% 3.37%
8 0.49 0.68 0.70 4.97 ∗ 105 0.1850% 37.89% 6.875% 88.8% 87.8% 87.4% 2.98%
9 0.46 0.62 0.70 5.17 ∗ 105 0.1926% 39.45% 7.266% 88.1% 88% 87.8% 2.59%
10 0.49 0.68 0.70 5.38 ∗ 105 0.2003% 41.02% 5.859% 89.1% 88.6% 88.1% 2.28%
11 0.49 0.68 0.70 5.58 ∗ 105 0.2079% 42.58% 5.391% 89.5% 88.9% 88.4% 2.04%
12 0.49 0.68 0.70 5.79 ∗ 105 0.2155% 44.14% 5.312% 89.5% 88.9% 88.4% 2.04%
13 0.48 0.65 0.65 5.99 ∗ 105 0.2232% 45.70% 5.156% 89.5% 88.8% 88.4% 1.96%
14 0.48 0.65 0.65 6.20 ∗ 105 0.2308% 47.27% 4.844% 89.8% 89.1% 88.7% 1.73%
15 0.47 0.61 0.65 6.40 ∗ 105 0.2384% 48.83% 5.312% 89.2% 89.1% 88.9% 1.49%
16 0.47 0.61 0.65 6.60 ∗ 105 0.2460% 50.39% 5.078% 89.3% 89.2% 89% 1.42%
17 0.46 0.62 0.65 6.81 ∗ 105 0.2537% 51.95% 4.453% 89.4% 89.4% 89.1% 1.26%
18 0.46 0.62 0.65 7.01 ∗ 105 0.2613% 53.52% 4.375% 89.5% 89.5% 89.3% 1.1%
19 0.46 0.62 0.65 7.22 ∗ 105 0.2689% 55.08% 4.297% 89.6% 89.6% 89.4% 1.03%
20 0.46 0.62 0.65 7.42 ∗ 105 0.2766% 56.64% 4.375% 89.6% 89.6% 89.4% 1.03%
21 0.46 0.62 0.65 7.63 ∗ 105 0.2842% 58.20% 4.219% 89.8% 89.8% 89.5% 0.87%
22 0.46 0.62 0.65 7.83 ∗ 105 0.2918% 59.77% 4.141% 89.8% 89.8% 89.6% 0.79%
23 0.46 0.62 0.65 8.04 ∗ 105 0.2995% 61.33% 3.906% 89.9% 89.9% 89.7% 0.71%
24 0.46 0.62 0.65 8.24 ∗ 105 0.3071% 62.89% 3.906% 89.9% 89.9% 89.7% 0.71%
25 0.46 0.62 0.65 8.45 ∗ 105 0.3147% 64.45% 3.906% 89.9% 89.9% 89.7% 0.71%
26 0.46 0.62 0.65 8.65 ∗ 105 0.3223% 65.02% 3.828% 89.9% 89.9% 89.7% 0.71%
27 0.46 0.62 0.65 8.86 ∗ 105 0.3300% 67.58% 3.828% 89.9% 89.9% 89.7% 0.71%
28 0.46 0.62 0.65 9.06 ∗ 105 0.3376% 69.14% 3.75% 90% 90% 89.8% 0.63%
29 0.46 0.62 0.65 9.27 ∗ 105 0.3452% 70.70% 3.75% 90% 90% 89.8% 0.63%
30 0.46 0.62 0.65 9.47 ∗ 105 0.3529% 72.27% 3.75% 90% 90% 89.8% 0.63%
31 0.46 0.62 0.65 9.68 ∗ 105 0.3605% 73.83% 3.672% 90% 90% 89.8% 0.63%
32 0.46 0.62 0.65 9.88 ∗ 105 0.3681% 75.39% 3.672% 90% 90% 89.8% 0.63%
33 0.46 0.62 0.65 1.01 ∗ 106 0.3757% 76.95% 3.672% 90% 90% 89.8% 0.63%
34 0.46 0.62 0.65 1.03 ∗ 106 0.3834% 78.52% 3.672% 90% 90% 89.8% 0.63%
35 0.46 0.62 0.65 1.05 ∗ 106 0.3910% 80.08% 3.672% 90% 90% 89.8% 0.63%
36 0.46 0.62 0.65 1.07 ∗ 106 0.3986% 81.64% 3.594% 90% 90% 89.8% 0.63%
37 0.46 0.62 0.65 1.09 ∗ 106 0.4063% 83.20% 3.594% 90% 90% 89.8% 0.63%
38 0.46 0.62 0.65 1.11 ∗ 106 0.4139% 84.77% 3.594% 90% 90% 89.8% 0.63%
39 0.46 0.62 0.65 1.13 ∗ 106 0.4215% 86.33% 3.594% 90% 90% 89.8% 0.63%
40 0.46 0.62 0.65 1.15 ∗ 106 0.4292% 87.89% 3.594% 90% 90% 89.8% 0.63%
41 0.46 0.62 0.65 1.17 ∗ 106 0.4368% 89.45% 3.594% 90% 90% 89.8% 0.63%
42 0.46 0.62 0.65 1.19 ∗ 106 0.4444% 91.02% 3.594% 90% 90% 89.8% 0.63%
43 0.46 0.62 0.65 1.21 ∗ 106 0.4520% 92.58% 3.672% 90% 90% 89.8% 0.63%
44 0.46 0.62 0.65 1.23 ∗ 106 0.4597% 94.14% 3.672% 90% 90% 89.8% 0.63%
45 0.46 0.62 0.65 1.25 ∗ 106 0.4673% 95.70% 3.672% 90% 90% 89.8% 0.63%
46 0.46 0.62 0.65 1.27 ∗ 106 0.4749% 97.27% 3.672% 90% 90% 89.8% 0.63%
47 0.46 0.62 0.65 1.30 ∗ 106 0.4826% 98.83% 3.672% 90% 90% 89.8% 0.63%
48 0.46 0.62 0.65 1.32 ∗ 106 0.4902% 100.4% 3.672% 90% 90% 89.8% 0.63%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary SMR ω256.

Table A.17: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using SMR-CPCA-M templates at T = 64 with an additional binary
PSML-CPCA comparison.
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SMR Workload Recognition Performance

t λmax λCP CA
max MT Bit Threshold ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.65 0.65 0.7 3.53 ∗ 105 0.1316% 26.95% 28.91% 70.0% 69.7% 69.3% 21.1%
2 0.49 0.64 0.70 0.5 3.74 ∗ 105 0.1392% 28.52% 18.67% 79.1% 78.4% 78.4% 12.0%
3 0.49 0.64 0.70 0.6 3.94 ∗ 105 0.1469% 30.08% 14.22% 82.9% 82.1% 82.0% 8.45%
4 0.46 0.62 0.65 0.6 4.15 ∗ 105 0.1545% 31.64% 11.95% 84.8% 84.2% 83.9% 6.49%
5 0.48 0.66 0.70 0.5 4.35 ∗ 105 0.1621% 33.20% 10.16% 86.4% 86.0% 85.5% 4.85%
6 0.48 0.66 0.70 0.5 4.56 ∗ 105 0.1698% 34.77% 8.750% 87.4% 86.9% 86.5% 3.92%
7 0.49 0.64 0.70 0.7 4.76 ∗ 105 0.1774% 36.33% 7.734% 88.1% 87.3% 87.1% 3.29%
8 0.49 0.68 0.70 0.6 4.97 ∗ 105 0.1850% 37.89% 6.875% 88.9% 87.9% 87.5% 2.90%
9 0.49 0.68 0.70 0.6 5.17 ∗ 105 0.1926% 39.45% 6.484% 88.8% 88.3% 87.8% 2.59%
10 0.49 0.68 0.70 0.7 5.38 ∗ 105 0.2003% 41.02% 5.938% 89.2% 88.7% 88.2% 2.20%
11 0.49 0.68 0.70 0.7 5.58 ∗ 105 0.2079% 42.58% 5.391% 89.5% 89.0% 88.4% 1.96%
12 0.49 0.68 0.70 0.5 5.79 ∗ 105 0.2155% 44.14% 5.469% 89.5% 89.1% 88.4% 1.96%
13 0.47 0.64 0.65 0.7 5.99 ∗ 105 0.2232% 45.70% 5.078% 89.5% 89.2% 88.5% 1.88%
14 0.46 0.63 0.65 0.5 6.20 ∗ 105 0.2308% 47.27% 5.703% 89.8% 89.1% 88.8% 1.57%
15 0.46 0.63 0.65 0.5 6.40 ∗ 105 0.2384% 48.83% 5.312% 90.1% 89.3% 89.0% 1.42%
16 0.46 0.62 0.70 0.6 6.60 ∗ 105 0.2460% 50.39% 4.844% 89.5% 89.1% 89.1% 1.26%
17 0.46 0.63 0.65 0.5 6.81 ∗ 105 0.2537% 51.95% 5.000% 90.3% 89.5% 89.2% 1.18%
18 0.46 0.62 0.65 0.9 7.01 ∗ 105 0.2613% 53.52% 4.375% 89.5% 89.5% 89.3% 1.10%
19 0.46 0.62 0.70 0.6 7.22 ∗ 105 0.2689% 55.08% 4.453% 89.8% 89.5% 89.5% 0.95%
20 0.46 0.62 0.70 0.6 7.42 ∗ 105 0.2766% 56.64% 4.453% 89.8% 89.5% 89.5% 0.95%
21 0.46 0.62 0.65 0.8 7.63 ∗ 105 0.2842% 58.20% 4.219% 89.8% 89.8% 89.5% 0.87%
22 0.46 0.62 0.65 0.7 7.83 ∗ 105 0.2918% 59.77% 4.219% 89.8% 89.8% 89.6% 0.79%
23 0.46 0.62 0.65 0.7 8.04 ∗ 105 0.2995% 61.33% 3.984% 89.9% 89.9% 89.7% 0.71%
24 0.46 0.62 0.65 0.8 8.24 ∗ 105 0.3071% 62.89% 3.906% 89.9% 89.9% 89.7% 0.71%
25 0.46 0.62 0.70 0.6 8.45 ∗ 105 0.3147% 64.45% 3.984% 90.0% 89.8% 89.8% 0.63%
26 0.46 0.62 0.70 0.6 8.65 ∗ 105 0.3223% 66.02% 3.984% 90.0% 89.8% 89.8% 0.63%
27 0.46 0.62 0.70 0.5 8.86 ∗ 105 0.3300% 67.58% 3.984% 90.1% 89.8% 89.8% 0.56%
28 0.46 0.62 0.70 0.6 9.06 ∗ 105 0.3376% 69.14% 3.828% 90.2% 89.9% 89.9% 0.48%
29 0.46 0.62 0.70 0.6 9.27 ∗ 105 0.3452% 70.70% 3.828% 90.2% 89.9% 89.9% 0.48%
30 0.46 0.62 0.70 0.5 9.47 ∗ 105 0.3529% 72.27% 3.906% 90.2% 89.9% 89.9% 0.48%
31 0.46 0.62 0.70 0.5 9.68 ∗ 105 0.3605% 73.83% 3.906% 90.2% 89.9% 89.9% 0.48%
32 0.46 0.62 0.70 0.5 9.88 ∗ 105 0.3681% 75.39% 3.906% 90.2% 89.9% 89.9% 0.48%
33 0.46 0.62 0.70 0.5 1.01 ∗ 106 0.3757% 76.95% 3.828% 90.2% 89.9% 89.9% 0.48%
34 0.46 0.62 0.70 0.5 1.03 ∗ 106 0.3834% 78.52% 3.828% 90.2% 89.9% 89.9% 0.48%
35 0.46 0.62 0.70 0.6 1.05 ∗ 106 0.3910% 80.08% 3.750% 90.2% 89.9% 89.9% 0.48%
36 0.46 0.62 0.70 0.5 1.07 ∗ 106 0.3986% 81.64% 3.750% 90.2% 89.9% 89.9% 0.48%
37 0.46 0.62 0.70 0.6 1.09 ∗ 106 0.4063% 83.20% 3.672% 90.2% 89.9% 89.9% 0.48%
38 0.46 0.62 0.70 0.6 1.11 ∗ 106 0.4139% 84.77% 3.672% 90.2% 89.9% 89.9% 0.48%
39 0.46 0.62 0.70 0.5 1.13 ∗ 106 0.4215% 86.33% 3.750% 90.2% 89.9% 89.9% 0.48%
40 0.46 0.62 0.70 0.5 1.15 ∗ 106 0.4292% 87.89% 3.750% 90.2% 89.9% 89.9% 0.48%
41 0.46 0.62 0.70 0.5 1.17 ∗ 106 0.4368% 89.45% 3.750% 90.2% 89.9% 89.9% 0.48%
42 0.46 0.62 0.70 0.5 1.19 ∗ 106 0.4444% 91.02% 3.750% 90.2% 89.9% 89.9% 0.48%
43 0.46 0.62 0.70 0.6 1.21 ∗ 106 0.4520% 92.58% 3.672% 90.2% 89.9% 89.9% 0.48%
44 0.46 0.62 0.70 0.6 1.23 ∗ 106 0.4597% 94.14% 3.672% 90.2% 89.9% 89.9% 0.48%
45 0.46 0.62 0.70 0.6 1.25 ∗ 106 0.4673% 95.70% 3.672% 90.2% 89.9% 89.9% 0.48%
46 0.46 0.62 0.70 0.5 1.27 ∗ 106 0.4749% 97.27% 3.750% 90.2% 89.9% 89.9% 0.48%
47 0.46 0.62 0.70 0.6 1.30 ∗ 106 0.4826% 98.83% 3.672% 90.2% 89.9% 89.9% 0.48%
48 0.46 0.62 0.70 0.6 1.32 ∗ 106 0.4902% 100.4% 3.672% 90.2% 89.9% 89.9% 0.48%
64‡ 0.46 0.62 0.70 0.6 1.32 ∗ 106 0.4902% 100.4% 3.672% 90.2% 89.9% 89.9% 0.48%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary SMR ω256.
‡ Without tree pre-selection.

Table A.18: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using SMR-CPCA-M templates at T = 64 with an additional binary
PSML-CPCA comparison and masking out most common set bits.
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SMR Workload Recognition Performance

t λmax λCP CA
max MT Bit Threshold ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.60 0.70 0.9 2.00 ∗ 105 0.0744% 15.23% 55.23% 43.9% 43.8% 43.7% 46.7%
2 0.49 0.60 0.75 0.8 2.30 ∗ 105 0.0858% 17.58% 41.25% 57.5% 57.4% 57.0% 33.4%
3 0.49 0.60 0.75 0.5 2.61 ∗ 105 0.0973% 19.92% 32.97% 65.4% 64.7% 64.7% 25.7%
4 0.46 0.63 0.70 0.6 2.92 ∗ 105 0.1087% 22.27% 26.80% 71.2% 70.1% 69.9% 20.5%
5 0.48 0.66 0.75 0.5 3.23 ∗ 105 0.1202% 24.61% 23.28% 74.5% 73.8% 73.6% 16.8%
6 0.48 0.66 0.75 0.5 3.53 ∗ 105 0.1316% 26.95% 19.45% 77.9% 77.3% 76.7% 13.7%
7 0.48 0.66 0.75 0.5 3.84 ∗ 105 0.1431% 29.30% 17.34% 79.8% 79.1% 78.6% 11.8%
8 0.48 0.66 0.75 0.5 4.15 ∗ 105 0.1545% 31.64% 15.55% 81.2% 80.3% 80.0% 10.4%
9 0.49 0.68 0.70 0.9 4.45 ∗ 105 0.1659% 33.98% 13.44% 82.7% 81.8% 81.2% 9.20%
10 0.48 0.66 0.75 0.5 4.76 ∗ 105 0.1774% 36.33% 12.81% 83.1% 83.0% 82.7% 7.67%
11 0.48 0.66 0.70 0.6 5.07 ∗ 105 0.1888% 38.67% 11.56% 84.4% 84.1% 83.5% 6.88%
12 0.48 0.66 0.75 0.5 5.38 ∗ 105 0.2003% 41.02% 10.70% 85.1% 84.9% 84.6% 5.79%
13 0.48 0.66 0.75 0.5 5.68 ∗ 105 0.2117% 43.36% 10.00% 85.8% 85.6% 85.3% 5.09%
14 0.48 0.66 0.75 0.5 5.99 ∗ 105 0.2232% 45.70% 9.531% 86.1% 86.0% 85.7% 4.70%
15 0.48 0.66 0.75 0.5 6.30 ∗ 105 0.2346% 48.05% 8.984% 86.5% 86.4% 86.1% 4.31%
16 0.48 0.66 0.75 0.5 6.60 ∗ 105 0.2460% 50.39% 8.438% 87.0% 87.0% 86.6% 4.76%
17 0.48 0.66 0.75 0.5 6.91 ∗ 105 0.2575% 52.73% 7.969% 87.4% 87.3% 87.0% 3.37%
18 0.48 0.66 0.75 0.5 7.22 ∗ 105 0.2689% 55.08% 7.500% 88.0% 87.9% 87.5% 3.90%
19 0.48 0.66 0.75 0.5 7.53 ∗ 105 0.2804% 57.42% 7.188% 88.2% 88.1% 87.7% 2.74%
20 0.48 0.66 0.75 0.5 7.83 ∗ 105 0.2918% 59.77% 6.953% 88.3% 88.2% 87.7% 2.67%
21 0.48 0.66 0.75 0.5 8.14 ∗ 105 0.3033% 62.11% 6.641% 88.6% 88.5% 88.0% 2.35%
22 0.48 0.66 0.75 0.5 8.45 ∗ 105 0.3147% 64.45% 6.016% 89.1% 88.7% 88.2% 2.20%
23 0.48 0.66 0.75 0.5 8.76 ∗ 105 0.3262% 66.80% 5.859% 89.1% 88.8% 88.3% 2.12%
24 0.46 0.62 0.65 0.9 9.06 ∗ 105 0.3376% 69.14% 6.016% 88.7% 88.7% 88.5% 1.88%
25 0.48 0.66 0.75 0.5 9.37 ∗ 105 0.3490% 71.48% 5.859% 89.1% 89.1% 88.6% 1.81%
26 0.46 0.62 0.65 0.7 9.68 ∗ 105 0.3605% 73.83% 5.703% 88.8% 88.8% 88.7% 1.73%
32‡ 0.46 0.62 0.65 0.7 9.88 ∗ 1005 0.3681% 75.39% 5.312% 88.9% 88.9% 88.8% 1.65%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary SMR ω256.
‡ Without tree pre-selection.

Table A.19: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 26 trees using SMR-CPCA-M templates at T = 32 with an additional binary
PSML-CPCA comparison and masking out most common set bits.
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SMR Workload Recognition Performance

t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.64 0.65 6.76 ∗ 105 0.2518% 51.56% 28.67% 70.5% 70.2% 69.8% 20.6%
2 0.49 0.64 0.70 6.96 ∗ 105 0.2594% 53.12% 17.81% 80.5% 80.1% 79.9% 10.5%
3 0.49 0.64 0.70 7.17 ∗ 105 0.2670% 54.69% 13.98% 84.1% 83.8% 83.6% 6.8%
4 0.48 0.65 0.70 7.37 ∗ 105 0.2747% 56.25% 11.80% 85.4% 85.2% 84.5% 5.9%
5 0.48 0.66 0.70 7.58 ∗ 105 0.2823% 57.81% 9.844% 87.3% 86.5% 84.5% 5.9%
6 0.48 0.66 0.70 7.78 ∗ 105 0.2899% 59.38% 8.516% 87.9% 87.5% 85.5% 4.9%
7 0.49 0.68 0.65 7.99 ∗ 105 0.2975% 60.94% 7.578% 89.3% 88.4% 86.4% 4.0%
8 0.49 0.68 0.70 8.19 ∗ 105 0.3052% 62.50% 6.875% 89.9% 88.9% 87.0% 3.5%
9 0.47 0.65 0.70 8.40 ∗ 105 0.3128% 64.06% 6.094% 89.6% 89.4% 88.8% 1.7%
10 0.49 0.68 0.70 8.60 ∗ 105 0.3204% 65.62% 5.781% 90.2% 89.6% 87.5% 2.9%
11 0.47 0.60 0.75 8.81 ∗ 105 0.3281% 67.19% 5.312% 90.2% 89.7% 87.5% 2.9%
12 0.47 0.60 0.75 9.01 ∗ 105 0.3357% 68.75% 5.156% 90.5% 89.9% 87.6% 2.8%
13 0.48 0.66 0.70 9.22 ∗ 105 0.3433% 70.31% 4.844% 90.5% 90.0% 87.7% 2.7%
14 0.48 0.66 0.70 9.42 ∗ 105 0.3510% 71.88% 4.609% 90.6% 90.2% 88.0% 2.4%
15 0.48 0.65 0.70 9.63 ∗ 105 0.3586% 73.44% 4.219% 90.9% 90.4% 88.1% 2.3%
16 0.48 0.65 0.75 9.83 ∗ 105 0.3662% 75.00% 4.062% 90.8% 90.3% 88.1% 2.3%
17 0.49 0.67 0.70 1.00 ∗ 106 0.3738% 76.56% 3.906% 90.9% 90.5% 88.1% 2.3%
18 0.49 0.67 0.75 1.02 ∗ 106 0.3815% 78.12% 3.828% 91.0% 90.5% 88.2% 2.2%
19 0.49 0.67 0.75 1.04 ∗ 106 0.3891% 79.69% 3.828% 91.0% 90.5% 88.2% 2.2%
20 0.47 0.66 0.75 1.06 ∗ 106 0.3967% 81.25% 3.672% 91.0% 90.7% 88.4% 2.0%
21 0.47 0.64 0.70 1.09 ∗ 106 0.4044% 82.81% 3.594% 91.2% 90.7% 88.4% 2.0%
22 0.46 0.62 0.75 1.11 ∗ 106 0.4120% 84.38% 3.516% 91.2% 90.8% 88.5% 1.9%
23 0.46 0.62 0.75 1.13 ∗ 106 0.4196% 85.94% 3.516% 91.2% 90.8% 88.5% 1.9%
24 0.49 0.68 0.70 1.15 ∗ 106 0.4272% 87.50% 3.516% 91.1% 90.8% 88.4% 2.0%
25 0.49 0.68 0.70 1.17 ∗ 106 0.4349% 89.06% 3.516% 91.1% 90.8% 88.4% 2.0%
26 0.47 0.60 0.75 1.19 ∗ 106 0.4425% 90.62% 3.438% 91.2% 90.9% 88.5% 1.9%
27 0.47 0.63 0.60 1.21 ∗ 106 0.4501% 92.19% 3.438% 91.3% 90.9% 88.5% 1.9%
28 0.48 0.64 0.65 1.23 ∗ 106 0.4578% 93.75% 3.359% 91.2% 90.9% 88.5% 1.9%
29 0.48 0.64 0.65 1.25 ∗ 106 0.4654% 95.31% 3.359% 91.2% 90.9% 88.5% 1.9%
30 0.48 0.64 0.65 1.27 ∗ 106 0.4730% 96.88% 3.359% 91.2% 90.9% 88.5% 1.9%
31 0.47 0.64 0.70 1.29 ∗ 106 0.4807% 98.44% 3.359% 91.2% 90.8% 88.5% 1.9%
32 0.47 0.64 0.70 1.31 ∗ 106 0.4883% 100.0% 3.359% 91.2% 90.8% 88.5% 1.9%
33 0.47 0.60 0.75 1.33 ∗ 106 0.4959% 101.6% 3.281% 91.2% 90.8% 88.5% 1.9%
34 0.47 0.60 0.75 1.35 ∗ 106 0.5035% 103.1% 3.281% 91.2% 90.8% 88.5% 1.9%
35 0.47 0.60 0.75 1.37 ∗ 106 0.5112% 104.7% 3.281% 91.2% 90.8% 88.5% 1.9%
36 0.47 0.60 0.75 1.39 ∗ 106 0.5188% 106.2% 3.281% 91.2% 90.8% 88.5% 1.9%
37 0.46 0.70 0.70 1.41 ∗ 106 0.5264% 107.8% 3.281% 91.0% 90.7% 88.4% 2.0%
38 0.48 0.62 0.70 1.43 ∗ 106 0.5341% 109.4% 3.281% 91.2% 90.8% 88.5% 1.9%
39 0.46 0.70 0.70 1.45 ∗ 106 0.5417% 110.9% 3.203% 91.0% 90.7% 88.4% 2.0%
40 0.46 0.70 0.70 1.47 ∗ 106 0.5493% 112.5% 3.203% 91.0% 90.7% 88.4% 2.0%
41 0.46 0.70 0.70 1.50 ∗ 106 0.5569% 114.1% 3.203% 91.0% 90.7% 88.4% 2.0%
42 0.46 0.70 0.70 1.52 ∗ 106 0.5646% 115.6% 3.203% 91.0% 90.7% 88.4% 2.0%
43 0.46 0.70 0.70 1.54 ∗ 106 0.5722% 117.2% 3.203% 91.0% 90.7% 88.4% 2.0%
44 0.46 0.70 0.70 1.56 ∗ 106 0.5798% 118.8% 3.125% 91.1% 90.8% 88.4% 2.0%
45 0.46 0.70 0.70 1.58 ∗ 106 0.5875% 120.3% 3.125% 91.1% 90.8% 88.4% 2.0%
46 0.46 0.70 0.70 1.60 ∗ 106 0.5951% 121.9% 3.125% 91.1% 90.7% 88.4% 2.0%
47 0.46 0.70 0.70 1.62 ∗ 106 0.6027% 123.4% 3.125% 91.1% 90.7% 88.4% 2.0%
48 0.46 0.70 0.70 1.64 ∗ 106 0.6104% 125.0% 3.125% 91.1% 90.7% 88.4% 2.0%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary SMR ω256.

Table A.20: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using SMR-CPCA-M templates at T = 64 with an additional real
PSML-CPCA comparison.
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SMR Workload Recognition Performance

t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.60 0.70 5.22 ∗ 105 0.1945% 39.84% 55.23% 44.1% 43.8% 43.8% 46.7%
2 0.49 0.60 0.75 5.53 ∗ 105 0.206% 42.19% 41.25% 58% 57.7% 57.3% 33.1%
3 0.48 0.65 0.75 5.84 ∗ 105 0.2174% 44.53% 32.66% 66% 65.9% 65.6% 24.8%
4 0.46 0.63 0.70 6.14 ∗ 105 0.2289% 46.88% 26.88% 71.8% 71.7% 71.2% 19.2%
5 0.48 0.67 0.70 6.45 ∗ 105 0.2403% 49.22% 22.66% 75.7% 75.6% 74.5% 15.9%
6 0.48 0.66 0.75 6.76 ∗ 105 0.2518% 51.56% 19.45% 78.9% 78.3% 78.1% 12.3%
7 0.47 0.64 0.75 7.07 ∗ 105 0.2632% 53.91% 17.27% 80.4% 79.7% 79.1% 11.3%
8 0.49 0.68 0.70 7.37 ∗ 105 0.2747% 56.25% 15% 82.5% 82.2% 81.2% 9.2%
9 0.49 0.68 0.70 7.68 ∗ 105 0.2861% 58.59% 13.44% 83.8% 83.6% 82.7% 7.74%
10 0.47 0.64 0.70 7.99 ∗ 105 0.2975% 60.94% 12.34% 84.4% 83.6% 83.4% 7.04%
11 0.47 0.64 0.75 8.29 ∗ 105 0.309% 63.28% 11.25% 85.7% 84.7% 84.5% 5.87%
12 0.47 0.64 0.70 8.60 ∗ 105 0.3204% 65.62% 10.16% 86.4% 85.5% 85.4% 5.01%
13 0.48 0.65 0.70 8.91 ∗ 105 0.3319% 67.97% 9.141% 87.2% 86.3% 86.2% 4.23%
14 0.48 0.65 0.70 9.22 ∗ 105 0.3433% 70.31% 8.438% 87.9% 87% 86.9% 3.53%
15 0.48 0.65 0.70 9.52 ∗ 105 0.3548% 72.66% 7.734% 88.5% 87.7% 87.5% 2.9%
16 0.47 0.64 0.70 9.83 ∗ 105 0.3662% 75% 7.266% 89.1% 88.4% 88.2% 2.2%
17 0.47 0.64 0.70 1.01 ∗ 106 0.3777% 77.34% 6.875% 88.8% 88% 86.9% 3.53%
18 0.47 0.64 0.70 1.04 ∗ 106 0.3891% 79.69% 6.641% 89.2% 88.4% 87.2% 3.21%
19 0.47 0.64 0.70 1.08 ∗ 106 0.4005% 82.03% 6.25% 89.5% 88.7% 87.5% 2.9%
20 0.47 0.64 0.70 1.11 ∗ 106 0.412% 84.38% 5.859% 89.5% 89.1% 86.9% 3.53%
21 0.47 0.64 0.70 1.14 ∗ 106 0.4234% 86.72% 5.781% 89.6% 89.1% 87% 3.45%
22 0.47 0.64 0.70 1.17 ∗ 106 0.4349% 89.06% 5.625% 89.7% 89.2% 87% 3.45%
23 0.48 0.62 0.70 1.20 ∗ 106 0.4463% 91.41% 5.312% 89.5% 89.2% 88.5% 1.88%
24 0.49 0.65 0.65 1.23 ∗ 106 0.4578% 93.75% 5.078% 89.8% 89.5% 87.3% 3.06%
25 0.49 0.65 0.65 1.26 ∗ 106 0.4692% 96.09% 4.922% 90% 89.6% 87.5% 2.9%
26 0.48 0.62 0.65 1.29 ∗ 106 0.4807% 98.44% 4.766% 90.2% 89.8% 87.5% 2.9%
27 0.48 0.62 0.70 1.32 ∗ 106 0.4921% 100.8% 4.688% 90.2% 89.8% 87.5% 2.9%
28 0.49 0.65 0.65 1.35 ∗ 106 0.5035% 103.1% 4.531% 90.2% 89.8% 87.7% 2.74%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary SMR ω256.

Table A.21: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 26 trees using SMR-CPCA-M templates at T = 32 with an additional real
PSML-CPCA comparison.
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SMR Workload Recognition Performance

t λmax λCP CA
max MT Bit Threshold ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.49 0.64 0.65 0.8 6.76 ∗ 105 0.2518% 51.56% 28.05% 71.3% 70.9% 67.6% 22.8%
2 0.49 0.64 0.70 0.9 6.96 ∗ 105 0.2594% 53.12% 17.66% 80.9% 80.4% 73.9% 16.5%
3 0.49 0.64 0.70 0.7 7.17 ∗ 105 0.2670% 54.69% 12.81% 84.5% 84.1% 83.4% 7.0%
4 0.49 0.64 0.70 0.6 7.37 ∗ 105 0.2747% 56.25% 10.94% 85.7% 85.1% 84.8% 5.6%
5 0.48 0.66 0.70 0.9 7.58 ∗ 105 0.2823% 57.81% 9.844% 86.0% 85.8% 85.5% 4.9%
6 0.48 0.66 0.70 0.7 7.78 ∗ 105 0.2899% 59.38% 9.141% 86.5% 86.2% 85.8% 4.6%
7 0.49 0.68 0.65 0.8 7.99 ∗ 105 0.2975% 60.94% 8.359% 87.3% 87.1% 86.7% 3.7%
8 0.49 0.68 0.70 0.6 8.19 ∗ 105 0.3052% 62.50% 8.047% 87.6% 87.3% 86.9% 3.5%
9 0.47 0.65 0.70 0.9 8.40 ∗ 105 0.3128% 64.06% 7.500% 87.8% 87.4% 87.1% 3.3%
10 0.49 0.68 0.70 0.7 8.60 ∗ 105 0.3204% 65.62% 7.031% 88.5% 87.7% 87.3% 3.1%
11 0.47 0.60 0.75 0.9 8.81 ∗ 105 0.3281% 67.19% 6.406% 88.6% 87.9% 84.9% 5.5%
12 0.47 0.60 0.75 0.9 9.01 ∗ 105 0.3357% 68.75% 6.328% 88.7% 88.0% 84.9% 5.5%
13 0.48 0.66 0.70 0.9 9.22 ∗ 105 0.3433% 70.31% 5.469% 89.0% 88.7% 88.3% 2.1%
14 0.48 0.66 0.70 0.9 9.42 ∗ 105 0.3510% 71.88% 5.234% 89.0% 88.6% 87.4% 3.0%
15 0.48 0.65 0.70 0.9 9.63 ∗ 105 0.3586% 73.44% 5.156% 89.2% 88.8% 87.6% 2.8%
16 0.48 0.65 0.75 0.9 9.83 ∗ 105 0.3662% 75.00% 5.000% 89.2% 88.5% 85.3% 5.1%
17 0.49 0.67 0.70 0.7 1.00 ∗ 106 0.3738% 76.56% 4.844% 89.1% 88.4% 85.3% 5.1%
18 0.49 0.67 0.75 0.8 1.02 ∗ 106 0.3815% 78.12% 4.609% 89.3% 88.6% 85.4% 5.1%
19 0.49 0.67 0.75 0.9 1.04 ∗ 106 0.3891% 79.69% 4.375% 89.4% 88.8% 85.5% 4.9%
20 0.47 0.66 0.75 0.9 1.06 ∗ 106 0.3967% 81.25% 4.219% 89.9% 89.4% 88.0% 2.4%
21 0.47 0.64 0.70 0.9 1.09 ∗ 106 0.4044% 82.81% 4.375% 89.7% 89.0% 88.0% 2.4%
22 0.46 0.62 0.75 0.9 1.11 ∗ 106 0.4120% 84.38% 3.828% 89.6% 88.4% 81.6% 8.8%
23 0.46 0.62 0.75 0.8 1.13 ∗ 106 0.4196% 85.94% 3.750% 89.7% 88.4% 81.6% 8.8%
24 0.47 0.64 0.70 0.9 1.15 ∗ 106 0.4272% 87.50% 3.906% 90.1% 89.4% 88.4% 2.0%
25 0.47 0.66 0.75 0.9 1.17 ∗ 106 0.4349% 89.06% 3.906% 90.2% 89.5% 88.4% 2.0%
26 0.48 0.64 0.65 0.9 1.19 ∗ 106 0.4425% 90.62% 3.750% 90.1% 89.4% 88.4% 2.0%
27 0.48 0.64 0.65 0.9 1.21 ∗ 106 0.4501% 92.19% 3.594% 90.2% 89.5% 88.5% 1.9%
28 0.48 0.64 0.65 0.9 1.23 ∗ 106 0.4578% 93.75% 3.594% 90.2% 89.5% 88.5% 1.9%
29 0.48 0.64 0.65 0.9 1.25 ∗ 106 0.4654% 95.31% 3.672% 90.2% 89.5% 88.5% 1.9%
30 0.48 0.64 0.65 0.9 1.27 ∗ 106 0.4730% 96.88% 3.672% 90.2% 89.5% 88.5% 1.9%
31 0.47 0.64 0.70 0.9 1.29 ∗ 106 0.4807% 98.44% 3.594% 90.5% 89.8% 88.8% 1.7%
32 0.47 0.64 0.70 0.9 1.31 ∗ 106 0.4883% 100.0% 3.594% 90.5% 89.8% 88.8% 1.7%
33 0.47 0.60 0.75 0.9 1.33 ∗ 106 0.4959% 101.6% 3.828% 89.9% 88.8% 81.8% 8.6%
34 0.49 0.63 0.65 0.5 1.35 ∗ 106 0.5035% 103.1% 4.062% 90.4% 88.8% 86.0% 4.4%
35 0.49 0.63 0.65 0.5 1.37 ∗ 106 0.5112% 104.7% 4.062% 90.4% 88.8% 86.0% 4.4%
36 0.49 0.63 0.65 0.5 1.39 ∗ 106 0.5188% 106.2% 4.062% 90.4% 88.8% 86.0% 4.4%
37 0.49 0.63 0.65 0.5 1.41 ∗ 106 0.5264% 107.8% 4.062% 90.4% 88.8% 86.0% 4.4%
38 0.49 0.63 0.65 0.5 1.43 ∗ 106 0.5341% 109.4% 4.062% 90.4% 88.8% 86.0% 4.4%
39 0.46 0.70 0.70 0.9 1.45 ∗ 106 0.5417% 110.9% 3.438% 90.4% 89.7% 88.7% 1.7%
40 0.46 0.70 0.70 0.9 1.47 ∗ 106 0.5493% 112.5% 3.438% 90.4% 89.7% 88.7% 1.7%
41 0.46 0.70 0.70 0.9 1.50 ∗ 106 0.5569% 114.1% 3.359% 90.4% 89.7% 88.7% 1.7%
42 0.46 0.70 0.70 0.9 1.52 ∗ 106 0.5646% 115.6% 3.359% 90.4% 89.7% 88.7% 1.7%
43 0.46 0.70 0.70 0.9 1.54 ∗ 106 0.5722% 117.2% 3.359% 90.4% 89.7% 88.7% 1.7%
44 0.46 0.70 0.70 0.9 1.56 ∗ 106 0.5798% 118.8% 3.359% 90.4% 89.7% 88.7% 1.7%
45 0.46 0.70 0.70 0.9 1.58 ∗ 106 0.5875% 120.3% 3.359% 90.4% 89.7% 88.7% 1.7%
46 0.46 0.70 0.70 0.9 1.60 ∗ 106 0.5951% 121.9% 3.359% 90.4% 89.7% 88.7% 1.7%
47 0.46 0.70 0.70 0.9 1.62 ∗ 106 0.6027% 123.4% 3.359% 90.4% 89.7% 88.7% 1.7%
48 0.46 0.70 0.70 0.9 1.64 ∗ 106 0.6104% 125.0% 3.359% 90.4% 89.7% 88.7% 1.7%
* 𝟋 compared to the PSML ω256.
† 𝟋 compared to the naïve binary PSML-CPCA ω256.

Table A.22: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using SMR-CPCA-M templates at T = 64 with an additional real
SML-CPCA comparison and masking out most common bits.
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Workload Ident. Verif. Recognition Performance

Approach ω256 𝟋 TP0.5 TP0.1 TP0 EER Loss (TP0)

SML-Baseline 2.68×108 − 78.1% 75.1% 72.4% 3.4% −
Binary SML-CPCA (MT= 0.75) 1.31×106 0.4883% 77.5% 75.3% 73.5% 3.2% +1.1%

Table A.23: Summary of achieved TP0 with corresponding TP0.1 and TP0.5 for SMR biometric iden-
tification system using all sessions of the PolyU dataset and their corresponding verification EER with
applied feature reduction approaches, ordered by TP0.
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Figure A.6: TP0 and TP0.1 values for relevant experiments at each t. Used abbreviations: Bf (Bloom
filter), C-T (CPCA-Tree), ABC (Additional Binary Comparison), ARC (Additional Real Comparison),
SCM (SMR-CPCA-M).
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Bloom filter SMR Workload Recognition Performance

t W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

1 5 5 0.1 4.51 ∗ 105 0.1679% 34.39% 67.4% 65.6% 58.1% 14.3%
2 6 6 0.4 6.60 ∗ 105 0.2460% 50.39% 66.8% 65.8% 62.2% 10.2%
3 8 6 0.3 5.24 ∗ 105 0.1952% 39.97% 69.4% 68.2% 64.9% 7.5%
4 8 4 0.2 2.10 ∗ 105 0.0782% 16.02% 71.8% 68.5% 65.4% 7.0%
5 8 4 0.2 2.20 ∗ 105 0.0820% 16.80% 73.7% 69.9% 66.5% 5.9%
6 8 4 0.5 2.30 ∗ 105 0.0858% 17.58% 74.6% 70.7% 66.8% 5.6%
7 8 4 0.5 2.41 ∗ 105 0.0896% 18.36% 75.7% 71.8% 67.8% 4.6%
8 8 4 0.5 2.51 ∗ 105 0.0935% 19.14% 76.3% 72.5% 68.4% 4.0%
9 7 6 0.9 7.85 ∗ 105 0.2926% 59.91% 71.3% 69.6% 65.9% 6.5%
10 7 6 0.9 8.17 ∗ 105 0.3042% 62.30% 71.9% 70.1% 66.4% 6.0%
11 7 6 0.9 8.48 ∗ 105 0.3158% 64.68% 72.1% 70.6% 66.8% 5.6%
12 7 6 0.9 8.79 ∗ 105 0.3274% 67.06% 72.7% 71.1% 67.2% 5.2%
13 7 6 0.9 9.10 ∗ 105 0.3391% 69.44% 72.9% 70.6% 67.5% 4.9%
14 7 6 0.9 9.41 ∗ 105 0.3507% 71.82% 73.1% 70.7% 67.7% 4.7%
15 7 6 0.9 9.73 ∗ 105 0.3623% 74.20% 73.3% 71.0% 67.8% 4.6%
16 7 6 0.9 1.00 ∗ 106 0.3739% 76.58% 73.5% 71.2% 68.0% 4.4%
17 7 6 0.9 1.03 ∗ 106 0.3856% 78.96% 73.8% 71.4% 68.2% 4.2%
18 7 6 0.9 1.07 ∗ 106 0.3972% 81.34% 73.9% 71.6% 68.3% 4.1%
19 7 6 0.9 1.10 ∗ 106 0.4088% 83.72% 74.0% 71.7% 68.4% 4.0%
20 7 6 0.9 1.13 ∗ 106 0.4204% 86.10% 74.0% 71.7% 68.4% 4.0%
21 7 6 0.9 1.16 ∗ 106 0.4321% 88.49% 74.2% 71.9% 68.5% 3.9%
22 7 6 0.9 1.19 ∗ 106 0.4437% 90.87% 74.3% 71.9% 68.5% 3.9%
23 7 6 0.9 1.22 ∗ 106 0.4553% 93.25% 74.3% 71.9% 68.6% 3.8%
24 7 6 0.9 1.25 ∗ 106 0.4669% 95.63% 74.4% 72.1% 68.8% 3.7%
25 7 6 0.9 1.28 ∗ 106 0.4786% 98.01% 74.5% 72.1% 68.8% 3.6%
26 7 6 0.9 1.32 ∗ 106 0.4902% 100.39% 74.4% 72.1% 68.8% 3.6%
27 7 6 0.9 1.35 ∗ 106 0.5018% 102.77% 74.5% 72.2% 68.9% 3.5%
28 7 6 0.9 1.38 ∗ 106 0.5134% 105.15% 74.5% 72.2% 68.9% 3.5%
29 7 6 0.9 1.41 ∗ 106 0.5251% 107.53% 74.5% 72.2% 68.9% 3.5%
30 7 6 0.9 1.44 ∗ 106 0.5367% 109.91% 74.6% 72.3% 68.9% 3.5%
31 7 6 0.9 1.47 ∗ 106 0.5483% 112.30% 74.7% 72.3% 69.0% 3.4%
32 7 6 0.9 1.50 ∗ 106 0.5599% 114.68% 74.8% 72.4% 69.0% 3.4%
33 7 6 0.9 1.53 ∗ 106 0.5716% 117.06% 74.8% 72.4% 69.1% 3.3%
34 7 6 0.9 1.57 ∗ 106 0.5832% 119.44% 74.8% 72.4% 69.1% 3.3%
35 7 6 0.9 1.60 ∗ 106 0.5948% 121.82% 74.8% 72.4% 69.1% 3.3%
36 7 6 0.9 1.63 ∗ 106 0.6064% 124.20% 74.9% 71.6% 69.1% 3.3%
37 7 6 0.9 1.66 ∗ 106 0.6181% 126.58% 74.9% 71.6% 69.1% 3.3%
38 7 6 0.9 1.69 ∗ 106 0.6297% 128.96% 74.9% 71.6% 69.1% 3.3%
39 7 6 0.9 1.72 ∗ 106 0.6413% 131.34% 74.9% 71.7% 69.2% 3.2%
40 7 6 0.9 1.75 ∗ 106 0.6529% 133.72% 74.9% 71.7% 69.2% 3.2%
41 7 6 0.9 1.78 ∗ 106 0.6646% 136.10% 74.9% 71.7% 69.2% 3.2%
42 7 6 0.9 1.82 ∗ 106 0.6762% 138.49% 74.9% 71.7% 69.2% 3.2%
43 7 6 0.9 1.85 ∗ 106 0.6878% 140.87% 74.9% 71.7% 69.2% 3.2%
44 7 6 0.9 1.88 ∗ 106 0.6995% 143.25% 75.0% 71.7% 69.2% 3.2%
45 7 6 0.9 1.91 ∗ 106 0.7111% 145.63% 75.0% 71.7% 69.2% 3.2%
46 7 6 0.9 1.94 ∗ 106 0.7227% 148.01% 75.0% 71.7% 69.2% 3.2%
47 7 6 0.9 1.97 ∗ 106 0.7343% 150.39% 75.0% 71.7% 69.2% 3.2%
48 7 6 0.9 2.00 ∗ 106 0.7460% 152.77% 75.0% 71.7% 69.2% 3.2%
* 𝟋 compared to the SML ω256.
† 𝟋 compared to the naïve binary SML-CPCA ω256.

Table A.24: Best achieved binary SML-CPCA Bloom filter TP0 with corresponding TP0.1 and TP0.5,
with a final real-valued SML-CPCA comparison and tree pre-selection of t = 1, . . . , 48 trees at T = 64
using both sessions of the PolyU dataset.
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SMR Workload Recognition Performance

t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.48 0.64 0.75 3.48 ∗ 105 0.1297% 26.56% 37.18% 59.5% 58.5% 56.5% 15.9%
2 0.48 0.64 0.75 3.69 ∗ 105 0.1373% 28.12% 26.63% 67.5% 66.5% 63.6% 8.8%
3 0.45 0.60 0.80 3.89 ∗ 105 0.1450% 29.69% 23.40% 69.9% 68.4% 64.7% 7.7%
4 0.45 0.60 0.80 4.10 ∗ 105 0.1526% 31.25% 20.38% 71.9% 70.3% 66.4% 6.0%
5 0.45 0.60 0.80 4.30 ∗ 105 0.1602% 32.81% 18.00% 72.9% 71.8% 67.8% 4.6%
6 0.45 0.60 0.80 4.51 ∗ 105 0.1678% 34.38% 16.34% 74.1% 72.9% 68.8% 3.6%
7 0.45 0.60 0.80 4.71 ∗ 105 0.1755% 35.94% 15.20% 74.7% 73.4% 69.2% 3.2%
8 0.45 0.60 0.80 4.92 ∗ 105 0.1831% 37.50% 13.60% 75.3% 74.0% 69.7% 2.7%
9 0.45 0.60 0.80 5.12 ∗ 105 0.1907% 39.06% 13.03% 75.8% 74.4% 70.0% 2.4%
10 0.45 0.60 0.80 5.32 ∗ 105 0.1984% 40.62% 12.50% 76.2% 73.1% 70.2% 2.2%
11 0.45 0.60 0.80 5.53 ∗ 105 0.2060% 42.19% 11.75% 76.7% 74.0% 70.6% 1.8%
12 0.45 0.60 0.80 5.73 ∗ 105 0.2136% 43.75% 11.12% 77.0% 74.3% 70.8% 1.6%
13 0.45 0.60 0.80 5.94 ∗ 105 0.2213% 45.31% 10.83% 77.1% 74.3% 70.8% 1.6%
14 0.45 0.60 0.80 6.14 ∗ 105 0.2289% 46.88% 10.58% 77.2% 74.5% 70.9% 1.5%
15 0.45 0.60 0.80 6.35 ∗ 105 0.2365% 48.44% 10.44% 77.3% 74.5% 70.9% 1.5%
16 0.45 0.60 0.80 6.55 ∗ 105 0.2441% 50.00% 10.30% 77.3% 74.5% 70.9% 1.5%
17 0.45 0.60 0.80 6.76 ∗ 105 0.2518% 51.56% 10.05% 77.2% 74.6% 71.0% 1.4%
18 0.45 0.60 0.80 6.96 ∗ 105 0.2594% 53.12% 9.80% 77.3% 74.6% 71.0% 1.4%
19 0.45 0.60 0.80 7.17 ∗ 105 0.2670% 54.69% 9.59% 77.3% 74.7% 71.0% 1.4%
20 0.45 0.60 0.80 7.37 ∗ 105 0.2747% 56.25% 9.38% 77.4% 74.8% 71.1% 1.3%
21 0.45 0.60 0.80 7.58 ∗ 105 0.2823% 57.81% 9.38% 77.4% 74.8% 71.1% 1.3%
22 0.45 0.60 0.80 7.78 ∗ 105 0.2899% 59.38% 9.41% 77.4% 74.8% 71.1% 1.3%
23 0.45 0.60 0.80 7.99 ∗ 105 0.2975% 60.94% 9.30% 77.5% 74.8% 71.1% 1.3%
24 0.45 0.60 0.80 8.19 ∗ 105 0.3052% 62.50% 9.23% 77.5% 74.9% 71.1% 1.3%
25 0.45 0.60 0.80 8.40 ∗ 105 0.3128% 64.06% 9.09% 77.5% 74.9% 71.1% 1.3%
26 0.45 0.60 0.80 8.60 ∗ 105 0.3204% 65.62% 9.06% 77.5% 74.9% 71.1% 1.3%
27 0.45 0.60 0.80 8.81 ∗ 105 0.3281% 67.19% 8.88% 77.6% 74.9% 71.1% 1.3%
28 0.45 0.60 0.80 9.01 ∗ 105 0.3357% 68.75% 8.74% 77.6% 74.9% 71.2% 1.2%
29 0.45 0.60 0.80 9.22 ∗ 105 0.3433% 70.31% 8.66% 77.6% 74.9% 71.2% 1.2%
30 0.45 0.60 0.80 9.42 ∗ 105 0.3510% 71.88% 8.59% 77.6% 75.0% 71.2% 1.2%
31 0.45 0.60 0.80 9.63 ∗ 105 0.3586% 73.44% 8.49% 77.7% 75.0% 71.2% 1.2%
32 0.45 0.60 0.80 9.83 ∗ 105 0.3662% 75.00% 8.31% 77.7% 75.0% 71.2% 1.2%
33 0.45 0.60 0.80 1.00 ∗ 106 0.3738% 76.56% 8.27% 77.7% 75.0% 71.2% 1.2%
34 0.45 0.60 0.80 1.02 ∗ 106 0.3815% 78.12% 8.24% 77.7% 75.0% 71.2% 1.2%
35 0.45 0.60 0.80 1.04 ∗ 106 0.3891% 79.69% 8.24% 77.7% 75.0% 71.2% 1.2%
36 0.45 0.60 0.80 1.06 ∗ 106 0.3967% 81.25% 8.17% 77.7% 75.1% 71.3% 1.1%
37 0.45 0.60 0.80 1.09 ∗ 106 0.4044% 82.81% 8.17% 77.7% 75.1% 71.3% 1.1%
38 0.45 0.60 0.80 1.11 ∗ 106 0.4120% 84.38% 8.13% 77.7% 75.1% 71.3% 1.1%
39 0.45 0.60 0.80 1.13 ∗ 106 0.4196% 85.94% 8.13% 77.7% 75.1% 71.3% 1.1%
40 0.45 0.60 0.80 1.15 ∗ 106 0.4272% 87.50% 8.13% 77.7% 75.1% 71.3% 1.1%
41 0.45 0.60 0.80 1.17 ∗ 106 0.4349% 89.06% 8.10% 77.7% 75.1% 71.3% 1.1%
42 0.45 0.60 0.80 1.19 ∗ 106 0.4425% 90.62% 8.03% 77.8% 75.1% 71.3% 1.1%
43 0.45 0.60 0.80 1.21 ∗ 106 0.4501% 92.19% 7.99% 77.8% 75.1% 71.3% 1.1%
44 0.45 0.60 0.80 1.23 ∗ 106 0.4578% 93.75% 7.99% 77.8% 75.1% 71.3% 1.1%
45 0.45 0.60 0.80 1.25 ∗ 106 0.4654% 95.31% 7.95% 77.8% 75.1% 71.3% 1.1%
46 0.45 0.60 0.80 1.27 ∗ 106 0.4730% 96.88% 7.92% 77.8% 75.1% 71.3% 1.1%
47 0.45 0.60 0.80 1.29 ∗ 106 0.4807% 98.44% 7.92% 77.8% 75.1% 71.3% 1.1%
48 0.45 0.60 0.80 1.31 ∗ 106 0.4883% 100.00% 7.92% 77.8% 75.1% 71.3% 1.1%
* 𝟋 compared to the SML ω256.
† 𝟋 compared to the naïve binary SML-CPCA ω256.

Table A.25: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using SMR-CPCA-M templates at T = 64 with both sessions of the
PolyU dataset.
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SMR Workload Recognition Performance

t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.48 0.64 0.75 6.76 ∗ 105 0.2518% 51.56% 37.18% 59.7% 58.3% 57.0% 15.4%
2 0.48 0.64 0.75 6.96 ∗ 105 0.2594% 53.12% 26.63% 68.1% 66.3% 64.7% 7.7%
3 0.45 0.60 0.80 7.17 ∗ 105 0.2670% 54.69% 23.40% 69.0% 67.2% 65.5% 6.9%
4 0.45 0.60 0.80 7.37 ∗ 105 0.2747% 56.25% 20.38% 71.0% 68.8% 67.2% 5.2%
5 0.45 0.60 0.80 7.58 ∗ 105 0.2823% 57.81% 18.00% 72.8% 70.5% 68.7% 3.7%
6 0.45 0.60 0.80 7.78 ∗ 105 0.2899% 59.38% 16.34% 73.7% 71.4% 69.5% 2.9%
7 0.45 0.60 0.80 7.99 ∗ 105 0.2975% 60.94% 15.20% 74.2% 72.2% 69.9% 2.5%
8 0.45 0.60 0.80 8.19 ∗ 105 0.3052% 62.50% 13.60% 74.8% 72.6% 70.3% 2.1%
9 0.45 0.60 0.80 8.40 ∗ 105 0.3128% 64.06% 13.03% 75.2% 72.9% 70.5% 1.9%
10 0.45 0.60 0.83 8.60 ∗ 105 0.3204% 65.62% 12.50% 75.5% 73.3% 70.9% 1.5%
11 0.45 0.60 0.80 8.81 ∗ 105 0.3281% 67.19% 11.75% 75.9% 73.5% 71.1% 1.3%
12 0.45 0.60 0.80 9.01 ∗ 105 0.3357% 68.75% 11.12% 76.2% 73.9% 71.3% 1.1%
13 0.45 0.60 0.80 9.22 ∗ 105 0.3433% 70.31% 10.83% 76.3% 73.9% 71.4% 1.0%
14 0.45 0.60 0.80 9.42 ∗ 105 0.3510% 71.88% 10.58% 76.5% 74.1% 71.5% 0.9%
15 0.45 0.60 0.80 9.63 ∗ 105 0.3586% 73.44% 10.44% 76.6% 74.1% 71.5% 0.9%
16 0.45 0.60 0.80 9.83 ∗ 105 0.3662% 75.00% 10.30% 76.4% 74.1% 71.5% 0.9%
17 0.45 0.60 0.80 1.00 ∗ 106 0.3738% 76.56% 10.05% 76.5% 74.2% 71.6% 0.8%
18 0.45 0.60 0.80 1.02 ∗ 106 0.3815% 78.12% 9.80% 76.6% 74.2% 71.6% 0.8%
19 0.45 0.60 0.80 1.04 ∗ 106 0.3891% 79.69% 9.59% 76.7% 74.3% 71.6% 0.8%
20 0.45 0.60 0.80 1.06 ∗ 106 0.3967% 81.25% 9.38% 76.7% 74.3% 71.6% 0.8%
21 0.45 0.60 0.80 1.09 ∗ 106 0.4044% 82.81% 9.38% 76.7% 74.3% 71.6% 0.8%
22 0.45 0.60 0.80 1.11 ∗ 106 0.4120% 84.38% 9.41% 76.7% 74.3% 71.6% 0.8%
23 0.45 0.60 0.80 1.13 ∗ 106 0.4196% 85.94% 9.30% 76.8% 74.4% 71.7% 0.7%
24 0.45 0.60 0.80 1.15 ∗ 106 0.4272% 87.50% 9.23% 76.8% 74.4% 71.7% 0.7%
25 0.45 0.60 0.80 1.17 ∗ 106 0.4349% 89.06% 9.09% 76.8% 74.4% 71.7% 0.7%
26 0.45 0.60 0.80 1.19 ∗ 106 0.4425% 90.62% 9.06% 76.8% 74.4% 71.7% 0.7%
27 0.45 0.60 0.80 1.21 ∗ 106 0.4501% 92.19% 8.88% 76.9% 74.5% 71.7% 0.7%
28 0.45 0.60 0.80 1.23 ∗ 106 0.4578% 93.75% 8.74% 77.0% 74.5% 71.8% 0.6%
29 0.45 0.60 0.80 1.25 ∗ 106 0.4654% 95.31% 8.66% 77.0% 74.5% 71.8% 0.6%
30 0.45 0.60 0.80 1.27 ∗ 106 0.4730% 96.88% 8.59% 77.0% 74.6% 71.8% 0.6%
31 0.45 0.60 0.80 1.29 ∗ 106 0.4807% 98.44% 8.49% 77.1% 74.6% 71.8% 0.6%
32 0.45 0.60 0.80 1.31 ∗ 106 0.4883% 100.00% 8.31% 77.1% 74.6% 71.9% 0.5%
33 0.45 0.60 0.80 1.33 ∗ 106 0.4959% 101.56% 8.27% 77.1% 74.6% 71.9% 0.5%
34 0.45 0.60 0.80 1.35 ∗ 106 0.5035% 103.12% 8.24% 77.2% 74.7% 71.9% 0.5%
35 0.45 0.60 0.80 1.37 ∗ 106 0.5112% 104.69% 8.24% 77.2% 74.7% 71.9% 0.5%
36 0.45 0.60 0.80 1.39 ∗ 106 0.5188% 106.25% 8.17% 77.2% 74.7% 71.9% 0.5%
37 0.45 0.60 0.80 1.41 ∗ 106 0.5264% 107.81% 8.17% 77.2% 74.7% 71.9% 0.5%
38 0.45 0.60 0.80 1.43 ∗ 106 0.5341% 109.38% 8.13% 77.2% 74.7% 71.9% 0.5%
39 0.45 0.60 0.80 1.45 ∗ 106 0.5417% 110.94% 8.13% 77.2% 74.7% 71.9% 0.5%
40 0.45 0.60 0.80 1.47 ∗ 106 0.5493% 112.50% 8.13% 77.2% 74.7% 71.9% 0.5%
41 0.45 0.60 0.80 1.50 ∗ 106 0.5569% 114.06% 8.10% 77.2% 74.7% 71.9% 0.5%
42 0.45 0.60 0.80 1.52 ∗ 106 0.5646% 115.62% 8.03% 77.2% 74.7% 71.9% 0.5%
43 0.45 0.60 0.80 1.54 ∗ 106 0.5722% 117.19% 7.99% 77.3% 74.7% 71.9% 0.5%
44 0.45 0.60 0.80 1.56 ∗ 106 0.5798% 118.75% 7.99% 77.3% 74.7% 71.9% 0.5%
45 0.45 0.60 0.80 1.58 ∗ 106 0.5875% 120.31% 7.95% 77.3% 74.7% 71.9% 0.5%
46 0.45 0.60 0.80 1.60 ∗ 106 0.5951% 121.88% 7.92% 77.3% 74.7% 71.9% 0.5%
47 0.45 0.60 0.80 1.62 ∗ 106 0.6027% 123.44% 7.92% 77.3% 74.7% 71.9% 0.5%
48 0.45 0.60 0.80 1.64 ∗ 106 0.6104% 125.00% 7.92% 77.3% 74.7% 71.9% 0.5%
* 𝟋 compared to the SML ω256.
† 𝟋 compared to the naïve binary SML-CPCA ω256.

Table A.26: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using SMR-CPCA-M templates at T = 64 with an additional real
SML-CPCA comparison employing both sessions of the PolyU dataset.
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SMR Workload Recognition Performance

t λmax λCP CA
max MT Bit Threshold ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.46 0.60 0.75 0.7 3.48 ∗ 105 0.1297% 26.56% 37.93% 59.3% 57.8% 56.9% 15.5%
2 0.45 0.60 0.75 0.7 3.69 ∗ 105 0.1373% 28.12% 27.81% 66.6% 65.1% 62.6% 9.8%
3 0.45 0.60 0.80 0.7 3.89 ∗ 105 0.1450% 29.69% 23.54% 70.0% 68.6% 65.2% 7.2%
4 0.45 0.60 0.80 0.7 4.10 ∗ 105 0.1526% 31.25% 20.38% 72.1% 70.1% 67.0% 5.4%
5 0.45 0.60 0.80 0.7 4.30 ∗ 105 0.1602% 32.81% 18.08% 73.5% 71.0% 68.4% 4.0%
6 0.45 0.60 0.80 0.7 4.51 ∗ 105 0.1678% 34.38% 16.34% 74.9% 72.2% 69.5% 2.9%
7 0.45 0.60 0.80 0.7 4.71 ∗ 105 0.1755% 35.94% 15.27% 75.5% 72.6% 69.9% 2.5%
8 0.45 0.60 0.80 0.7 4.92 ∗ 105 0.1831% 37.50% 13.67% 76.1% 73.2% 70.4% 2.0%
9 0.45 0.60 0.80 0.7 5.12 ∗ 105 0.1907% 39.06% 13.21% 76.5% 73.5% 70.6% 1.8%
10 0.45 0.60 0.80 0.7 5.32 ∗ 105 0.1984% 40.62% 12.50% 77.0% 73.8% 70.9% 1.5%
11 0.45 0.60 0.80 0.7 5.53 ∗ 105 0.2060% 42.19% 12.00% 77.1% 73.8% 71.2% 1.2%
12 0.45 0.60 0.80 0.7 5.73 ∗ 105 0.2136% 43.75% 11.40% 77.4% 74.1% 71.4% 1.0%
13 0.45 0.60 0.80 0.7 5.94 ∗ 105 0.2213% 45.31% 11.08% 77.5% 74.2% 71.5% 0.9%
14 0.45 0.60 0.80 0.7 6.14 ∗ 105 0.2289% 46.88% 10.94% 77.7% 74.3% 71.6% 0.8%
15 0.45 0.60 0.80 0.7 6.35 ∗ 105 0.2365% 48.44% 10.51% 77.8% 74.4% 71.6% 0.8%
16 0.45 0.60 0.80 0.7 6.55 ∗ 105 0.2441% 50.00% 10.48% 77.8% 74.4% 71.6% 0.8%
17 0.45 0.60 0.80 0.7 6.76 ∗ 105 0.2518% 51.56% 10.30% 77.3% 74.5% 71.7% 0.7%
18 0.45 0.60 0.80 0.7 6.96 ∗ 105 0.2594% 53.12% 9.98% 77.4% 74.5% 71.7% 0.7%
19 0.45 0.60 0.80 0.7 7.17 ∗ 105 0.2670% 54.69% 9.73% 77.5% 74.6% 71.8% 0.6%
20 0.45 0.60 0.80 0.7 7.37 ∗ 105 0.2747% 56.25% 9.62% 77.5% 74.6% 71.8% 0.6%
21 0.45 0.60 0.80 0.7 7.58 ∗ 105 0.2823% 57.81% 9.48% 77.6% 74.7% 71.9% 0.5%
22 0.45 0.60 0.80 0.7 7.78 ∗ 105 0.2899% 59.38% 9.48% 77.6% 74.7% 71.9% 0.5%
23 0.45 0.60 0.80 0.7 7.99 ∗ 105 0.2975% 60.94% 9.34% 77.6% 74.7% 71.9% 0.5%
24 0.45 0.60 0.80 0.7 8.19 ∗ 105 0.3052% 62.50% 9.27% 77.6% 74.7% 71.9% 0.5%
25 0.45 0.60 0.80 0.7 8.40 ∗ 105 0.3128% 64.06% 9.13% 77.6% 74.8% 71.9% 0.5%
26 0.45 0.60 0.80 0.7 8.60 ∗ 105 0.3204% 65.62% 9.09% 77.6% 74.8% 71.9% 0.5%
27 0.45 0.60 0.80 0.7 8.81 ∗ 105 0.3281% 67.19% 8.95% 77.7% 74.8% 71.9% 0.5%
28 0.45 0.60 0.80 0.7 9.01 ∗ 105 0.3357% 68.75% 8.81% 77.7% 74.8% 72.0% 0.4%
29 0.45 0.60 0.80 0.7 9.22 ∗ 105 0.3433% 70.31% 8.77% 77.7% 74.8% 72.0% 0.4%
30 0.45 0.60 0.80 0.7 9.42 ∗ 105 0.3510% 71.88% 8.63% 77.7% 74.9% 72.0% 0.4%
31 0.45 0.60 0.80 0.7 9.63 ∗ 105 0.3586% 73.44% 8.56% 77.8% 74.9% 72.1% 0.3%
32 0.45 0.60 0.80 0.7 9.83 ∗ 105 0.3662% 75.00% 8.38% 77.8% 74.9% 72.1% 0.3%
33 0.45 0.60 0.80 0.7 1.00 ∗ 106 0.3738% 76.56% 8.35% 77.8% 74.9% 72.1% 0.3%
34 0.45 0.60 0.80 0.7 1.02 ∗ 106 0.3815% 78.12% 8.31% 77.8% 74.9% 72.1% 0.3%
35 0.45 0.60 0.80 0.7 1.04 ∗ 106 0.3891% 79.69% 8.31% 77.8% 74.9% 72.1% 0.3%
36 0.45 0.60 0.80 0.7 1.06 ∗ 106 0.3967% 81.25% 8.24% 77.9% 75.0% 72.1% 0.3%
37 0.45 0.60 0.80 0.7 1.09 ∗ 106 0.4044% 82.81% 8.24% 77.9% 75.0% 72.1% 0.3%
38 0.45 0.60 0.80 0.7 1.11 ∗ 106 0.4120% 84.38% 8.20% 77.9% 75.0% 72.1% 0.3%
39 0.45 0.60 0.80 0.7 1.13 ∗ 106 0.4196% 85.94% 8.17% 77.9% 75.0% 72.1% 0.3%
40 0.45 0.60 0.80 0.7 1.15 ∗ 106 0.4272% 87.50% 8.17% 77.9% 75.0% 72.1% 0.3%
41 0.45 0.60 0.80 0.7 1.17 ∗ 106 0.4349% 89.06% 8.13% 77.9% 75.0% 72.1% 0.3%
42 0.45 0.60 0.80 0.7 1.19 ∗ 106 0.4425% 90.62% 8.10% 77.9% 75.0% 72.1% 0.3%
43 0.45 0.60 0.80 0.7 1.21 ∗ 106 0.4501% 92.19% 8.03% 77.9% 75.0% 72.1% 0.3%
44 0.45 0.60 0.80 0.7 1.23 ∗ 106 0.4578% 93.75% 7.99% 77.9% 75.0% 72.1% 0.3%
45 0.45 0.60 0.80 0.7 1.25 ∗ 106 0.4654% 95.31% 7.99% 77.9% 75.0% 72.1% 0.3%
46 0.45 0.60 0.80 0.7 1.27 ∗ 106 0.4730% 96.88% 7.95% 77.9% 75.0% 72.1% 0.3%
47 0.45 0.60 0.80 0.7 1.29 ∗ 106 0.4807% 98.44% 7.95% 77.9% 75.0% 72.1% 0.3%
48 0.45 0.60 0.80 0.7 1.31 ∗ 106 0.4883% 100.00% 7.95% 77.9% 75.0% 72.1% 0.3%
* 𝟋 compared to the SML ω256.
† 𝟋 compared to the naïve binary SML-CPCA ω256.

Table A.27: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using SMR-CPCA-M templates at T = 64 with an additional binary
SML-CPCA comparison and masking out most common set bits employing both sessions of the PolyU
dataset.
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Workload Ident. Verif. Recognition Performance

Approach ω256 𝟋 TP0.5 TP0.1 TP0 EER Loss (TP0)

SML-Baseline 2.68×108 − 89.9% 88.4% 88.1% 2.3% −
Binary SML-CPCA (MT= 0.75) 1.31×106 0.4883% 88.3% 86.3% 86% 2.4% 2.1%

Table A.28: Summary of achieved TP0 with corresponding TP0.1 and TP0.5 for the SMR biometric
identification system using session 2 of the PolyU dataset and their corresponding verification EER
with applied feature reduction approaches, ordered by TP0.
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Bloom filter SMR Workload Recognition Performance

t W H MT ω256 𝟋B
* 𝟋R

† TP0.5 TP0.1 TP0
TP0 loss to

PSML-Baseline

1 5 5 0.1 4.51 ∗ 105 0.1679% 34.39% 81.2% 80.9% 80.5% 7.7%
2 4 4 0.2 3.74 ∗ 105 0.1392% 28.52% 84.8% 84.4% 83.8% 4.3%
3 4 4 0.2 3.94 ∗ 105 0.1469% 30.08% 86.2% 85.4% 85.2% 2.9%
4 4 4 0.5 4.15 ∗ 105 0.1545% 31.64% 87.1% 86.5% 83.8% 4.3%
5 4 5 0.4 6.93 ∗ 105 0.2583% 52.89% 87.7% 87.0% 84.3% 3.8%
6 7 4 0.1 2.63 ∗ 105 0.0978% 20.03% 86.2% 85.5% 85.4% 2.7%
7 7 4 0.1 2.74 ∗ 105 0.1022% 20.93% 86.6% 85.9% 85.9% 2.3%
8 7 4 0.1 2.86 ∗ 105 0.1065% 21.82% 86.9% 86.2% 86.1% 2.0%
9 7 4 0.1 2.98 ∗ 105 0.1109% 22.71% 87.4% 86.6% 86.5% 1.6%
10 7 4 0.1 3.09 ∗ 105 0.1153% 23.60% 87.7% 86.8% 86.7% 1.4%
11 7 5 0.6 5.11 ∗ 105 0.1902% 38.96% 87.2% 86.9% 86.4% 1.7%
12 8 4 0.2 2.92 ∗ 105 0.1087% 22.27% 87.6% 86.9% 86.6% 1.5%
13 7 5 0.6 5.48 ∗ 105 0.2042% 41.82% 87.7% 87.3% 86.8% 1.3%
14 7 5 0.6 5.67 ∗ 105 0.2112% 43.25% 87.7% 87.4% 87.0% 1.2%
15 7 5 0.6 5.86 ∗ 105 0.2181% 44.68% 88.0% 87.6% 87.1% 1.0%
16 7 5 0.6 6.04 ∗ 105 0.2251% 46.10% 88.0% 87.7% 87.3% 0.9%
17 7 5 0.6 6.23 ∗ 105 0.2321% 47.53% 88.3% 88.0% 87.5% 0.6%
18 7 5 0.6 6.42 ∗ 105 0.2391% 48.96% 88.3% 88.0% 87.5% 0.6%
19 7 5 0.6 6.60 ∗ 105 0.2460% 50.39% 88.4% 88.0% 87.6% 0.5%
20 7 5 0.6 6.79 ∗ 105 0.2530% 51.82% 88.4% 88.0% 87.6% 0.5%
21 7 5 0.6 6.98 ∗ 105 0.2600% 53.25% 88.4% 88.1% 87.6% 0.5%
22 7 5 0.6 7.17 ∗ 105 0.2670% 54.68% 88.5% 88.2% 87.7% 0.4%
23 7 5 0.6 7.35 ∗ 105 0.2739% 56.10% 88.4% 88.1% 87.6% 0.5%
24 7 5 0.6 7.54 ∗ 105 0.2809% 57.53% 88.4% 88.1% 87.6% 0.5%
25 7 5 0.6 7.73 ∗ 105 0.2879% 58.96% 88.6% 88.3% 87.7% 0.4%
26 7 5 0.6 7.92 ∗ 105 0.2949% 60.39% 88.6% 88.3% 87.7% 0.4%
27 7 5 0.6 8.10 ∗ 105 0.3019% 61.82% 88.6% 88.3% 87.7% 0.4%
28 7 5 0.6 8.29 ∗ 105 0.3088% 63.25% 88.6% 88.3% 87.7% 0.4%
29 7 5 0.6 8.48 ∗ 105 0.3158% 64.68% 88.5% 88.2% 87.7% 0.4%
30 7 5 0.6 8.66 ∗ 105 0.3228% 66.10% 88.7% 88.4% 87.7% 0.4%
31 7 5 0.6 8.85 ∗ 105 0.3298% 67.53% 88.7% 88.4% 87.7% 0.4%
32 7 5 0.6 9.04 ∗ 105 0.3367% 68.96% 88.7% 88.4% 87.7% 0.4%
33 7 5 0.6 9.23 ∗ 105 0.3437% 70.39% 88.7% 88.4% 87.7% 0.4%
34 7 5 0.6 9.41 ∗ 105 0.3507% 71.82% 88.7% 88.4% 87.7% 0.4%
35 7 5 0.6 9.60 ∗ 105 0.3577% 73.25% 88.6% 88.3% 87.7% 0.4%
36 7 5 0.6 9.79 ∗ 105 0.3646% 74.68% 88.6% 88.3% 87.7% 0.4%
37 7 5 0.6 9.98 ∗ 105 0.3716% 76.10% 88.6% 88.3% 87.7% 0.4%
38 7 5 0.6 1.02 ∗ 106 0.3786% 77.53% 88.6% 88.3% 87.7% 0.4%
39 7 5 0.6 1.03 ∗ 106 0.3856% 78.96% 88.6% 88.3% 87.7% 0.4%
40 7 5 0.6 1.05 ∗ 106 0.3925% 80.39% 88.6% 88.3% 87.7% 0.4%
41 7 5 0.6 1.07 ∗ 106 0.3995% 81.82% 88.6% 88.3% 87.7% 0.4%
42 7 5 0.6 1.09 ∗ 106 0.4065% 83.25% 88.6% 88.3% 87.7% 0.4%
43 7 5 0.6 1.11 ∗ 106 0.4135% 84.68% 88.6% 88.3% 87.7% 0.4%
44 7 5 0.6 1.13 ∗ 106 0.4204% 86.10% 88.6% 88.3% 87.7% 0.4%
45 7 5 0.6 1.15 ∗ 106 0.4274% 87.53% 88.6% 88.3% 87.7% 0.4%
46 7 5 0.6 1.17 ∗ 106 0.4344% 88.96% 88.6% 88.3% 87.7% 0.4%
47 7 5 0.6 1.18 ∗ 106 0.4414% 90.39% 88.6% 88.3% 87.7% 0.4%
48 7 5 0.6 1.20 ∗ 106 0.4483% 91.82% 88.6% 88.3% 87.7% 0.4%
* 𝟋 compared to the SML ω256.
† 𝟋 compared to the naïve binary SML-CPCA ω256.

Table A.29: Best achieved binary SML-CPCA Bloom filter TP0 with corresponding TP0.1 and TP0.5,
with a final real-valued SML-CPCA comparison and tree pre-selection of t = 1, . . . , 48 trees at T = 64
using for session 2 of the PolyU dataset.
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SMR Workload Recognition Performance

t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.50 0.62 0.70 3.48 ∗ 105 0.1297% 26.56% 27.34% 71.3% 71.2% 70.9% 17.3%
2 0.52 0.62 0.70 3.69 ∗ 105 0.1373% 28.12% 17.34% 80.4% 80.0% 79.5% 8.6%
3 0.51 0.61 0.70 3.89 ∗ 105 0.1450% 29.69% 13.44% 84.1% 83.3% 82.7% 5.5%
4 0.52 0.64 0.75 4.10 ∗ 105 0.1526% 31.25% 11.88% 85.4% 84.8% 84.5% 3.7%
5 0.52 0.62 0.70 4.30 ∗ 105 0.1602% 32.81% 10.62% 86.4% 85.5% 85.3% 2.8%
6 0.51 0.61 0.75 4.51 ∗ 105 0.1678% 34.38% 9.06% 86.7% 86.5% 85.6% 2.5%
7 0.51 0.61 0.75 4.71 ∗ 105 0.1755% 35.94% 7.97% 87.4% 87.2% 86.3% 1.8%
8 0.51 0.61 0.75 4.92 ∗ 105 0.1831% 37.50% 7.81% 87.5% 87.3% 86.4% 1.7%
9 0.50 0.60 0.70 5.12 ∗ 105 0.1907% 39.06% 7.50% 87.6% 87.2% 86.4% 1.7%
10 0.43 0.61 0.75 5.32 ∗ 105 0.1984% 40.62% 5.78% 87.7% 86.7% 86.4% 1.7%
11 0.43 0.61 0.75 5.53 ∗ 105 0.2060% 42.19% 5.47% 87.8% 86.9% 86.6% 1.6%
12 0.43 0.61 0.75 5.73 ∗ 105 0.2136% 43.75% 5.00% 87.8% 87.0% 86.7% 1.4%
13 0.43 0.61 0.75 5.94 ∗ 105 0.2213% 45.31% 4.92% 87.9% 87.0% 86.7% 1.4%
14 0.45 0.64 0.70 6.14 ∗ 105 0.2289% 46.88% 4.53% 88.7% 87.5% 86.7% 1.4%
15 0.44 0.63 0.70 6.35 ∗ 105 0.2365% 48.44% 4.45% 88.9% 88.1% 87.0% 1.2%
16 0.43 0.61 0.75 6.55 ∗ 105 0.2441% 50.00% 4.38% 88.4% 87.4% 87.1% 1.0%
17 0.43 0.61 0.75 6.76 ∗ 105 0.2518% 51.56% 4.22% 88.4% 87.4% 87.1% 1.0%
18 0.43 0.61 0.75 6.96 ∗ 105 0.2594% 53.12% 4.14% 88.4% 87.5% 87.2% 0.9%
19 0.43 0.61 0.75 7.17 ∗ 105 0.2670% 54.69% 3.91% 88.6% 87.7% 87.3% 0.8%
20 0.43 0.61 0.75 7.37 ∗ 105 0.2747% 56.25% 3.91% 88.6% 87.7% 87.3% 0.8%
21 0.43 0.61 0.75 7.58 ∗ 105 0.2823% 57.81% 3.91% 88.6% 87.7% 87.3% 0.8%
22 0.43 0.61 0.75 7.78 ∗ 105 0.2899% 59.38% 3.83% 88.7% 87.7% 87.4% 0.7%
23 0.43 0.61 0.75 7.99 ∗ 105 0.2975% 60.94% 3.83% 88.7% 87.7% 87.4% 0.7%
24 0.43 0.61 0.75 8.19 ∗ 105 0.3052% 62.50% 3.83% 88.7% 87.7% 87.4% 0.7%
25 0.43 0.61 0.75 8.40 ∗ 105 0.3128% 64.06% 3.91% 88.7% 87.7% 87.4% 0.7%
26 0.43 0.61 0.75 8.60 ∗ 105 0.3204% 65.62% 3.83% 88.7% 87.7% 87.4% 0.7%
27 0.43 0.61 0.75 8.81 ∗ 105 0.3281% 67.19% 3.83% 88.7% 87.7% 87.4% 0.7%
28 0.43 0.61 0.75 9.01 ∗ 105 0.3357% 68.75% 3.83% 88.7% 87.7% 87.4% 0.7%
29 0.44 0.62 0.75 9.22 ∗ 105 0.3433% 70.31% 4.06% 89.1% 87.6% 87.5% 0.6%
30 0.44 0.62 0.75 9.42 ∗ 105 0.3510% 71.88% 3.98% 89.1% 87.6% 87.5% 0.6%
31 0.44 0.62 0.75 9.63 ∗ 105 0.3586% 73.44% 3.98% 88.8% 87.6% 87.5% 0.6%
32 0.44 0.62 0.75 9.83 ∗ 105 0.3662% 75.00% 3.98% 88.8% 87.6% 87.5% 0.6%
33 0.44 0.62 0.75 1.00 ∗ 106 0.3738% 76.56% 3.98% 88.8% 87.6% 87.5% 0.6%
34 0.44 0.62 0.75 1.02 ∗ 106 0.3815% 78.12% 3.91% 88.8% 87.6% 87.5% 0.6%
35 0.44 0.62 0.75 1.04 ∗ 106 0.3891% 79.69% 3.91% 88.8% 87.6% 87.5% 0.6%
36 0.44 0.62 0.75 1.06 ∗ 106 0.3967% 81.25% 3.91% 88.8% 87.6% 87.5% 0.6%
37 0.44 0.62 0.75 1.09 ∗ 106 0.4044% 82.81% 3.91% 88.8% 87.6% 87.5% 0.6%
38 0.44 0.62 0.75 1.11 ∗ 106 0.4120% 84.38% 3.91% 88.8% 87.6% 87.5% 0.6%
39 0.44 0.62 0.75 1.13 ∗ 106 0.4196% 85.94% 3.91% 88.8% 87.6% 87.5% 0.6%
40 0.44 0.62 0.75 1.15 ∗ 106 0.4272% 87.50% 3.91% 88.8% 87.6% 87.5% 0.6%
41 0.44 0.62 0.75 1.17 ∗ 106 0.4349% 89.06% 3.91% 88.8% 87.6% 87.5% 0.6%
42 0.54 0.64 0.75 1.19 ∗ 106 0.4425% 90.62% 4.06% 88.5% 87.7% 87.5% 0.6%
43 0.54 0.64 0.75 1.21 ∗ 106 0.4501% 92.19% 4.14% 88.5% 87.7% 87.5% 0.6%
44 0.54 0.64 0.75 1.23 ∗ 106 0.4578% 93.75% 4.14% 88.5% 87.7% 87.5% 0.6%
45 0.54 0.64 0.75 1.25 ∗ 106 0.4654% 95.31% 4.14% 88.5% 87.7% 87.5% 0.6%
46 0.54 0.64 0.75 1.27 ∗ 106 0.4730% 96.88% 4.14% 88.5% 87.7% 87.5% 0.6%
47 0.54 0.64 0.75 1.29 ∗ 106 0.4807% 98.44% 4.14% 88.5% 87.7% 87.5% 0.6%
48 0.54 0.64 0.75 1.31 ∗ 106 0.4883% 100.00% 4.06% 88.5% 87.7% 87.5% 0.6%
* 𝟋 compared to the SML ω256.
† 𝟋 compared to the naïve binary SML-CPCA ω256.

Table A.30: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using SMR-CPCA-M templates at T = 64 with session 2 of the PolyU
dataset.
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SMR Workload Recognition Performance

t λmax λCP CA
max MT ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.54 0.63 0.75 6.76 ∗ 105 0.2518% 51.56% 27.50% 71.4% 70.8% 70.5% 17.7%
2 0.54 0.64 0.75 6.96 ∗ 105 0.2594% 53.12% 17.66% 80.4% 80.0% 79.5% 8.6%
3 0.54 0.64 0.75 7.17 ∗ 105 0.2670% 54.69% 13.28% 84.4% 83.2% 80.6% 7.5%
4 0.43 0.61 0.75 7.37 ∗ 105 0.2747% 56.25% 12.50% 84.8% 83.5% 82.6% 5.5%
5 0.45 0.63 0.75 7.58 ∗ 105 0.2823% 57.81% 10.08% 86.7% 85.7% 84.2% 3.9%
6 0.43 0.61 0.75 7.78 ∗ 105 0.2899% 59.38% 9.38% 87.2% 86.0% 85.1% 3.0%
7 0.43 0.60 0.80 7.99 ∗ 105 0.2975% 60.94% 8.44% 87.7% 86.6% 85.7% 2.4%
8 0.43 0.60 0.80 8.19 ∗ 105 0.3052% 62.50% 7.58% 88.4% 87.2% 86.2% 1.9%
9 0.43 0.61 0.75 8.40 ∗ 105 0.3128% 64.06% 6.41% 89.0% 87.8% 86.8% 1.3%
10 0.43 0.61 0.75 8.60 ∗ 105 0.3204% 65.62% 5.78% 89.4% 88.1% 87.1% 1.0%
11 0.43 0.61 0.75 8.81 ∗ 105 0.3281% 67.19% 5.47% 89.6% 88.3% 87.3% 0.9%
12 0.43 0.61 0.75 9.01 ∗ 105 0.3357% 68.75% 5.16% 89.8% 88.5% 87.5% 0.6%
13 0.43 0.61 0.75 9.22 ∗ 105 0.3433% 70.31% 5.08% 89.9% 88.5% 87.5% 0.6%
14 0.42 0.61 0.75 9.42 ∗ 105 0.3510% 71.88% 5.08% 89.7% 88.9% 87.7% 0.5%
15 0.43 0.62 0.75 9.63 ∗ 105 0.3586% 73.44% 4.69% 90.2% 88.9% 87.7% 0.5%
16 0.42 0.60 0.75 9.83 ∗ 105 0.3662% 75.00% 4.84% 90.0% 89.0% 87.7% 0.4%
17 0.43 0.61 0.75 1.00 ∗ 106 0.3738% 76.56% 4.14% 90.4% 88.9% 87.9% 0.2%
18 0.43 0.61 0.75 1.02 ∗ 106 0.3815% 78.12% 3.91% 90.5% 89.0% 88.0% 0.2%
19 0.43 0.61 0.75 1.04 ∗ 106 0.3891% 79.69% 3.83% 90.5% 89.1% 88.0% 0.1%
20 0.43 0.61 0.75 1.06 ∗ 106 0.3967% 81.25% 3.75% 90.6% 89.1% 88.1% 0.0%
21 0.43 0.61 0.75 1.09 ∗ 106 0.4044% 82.81% 3.75% 90.6% 89.1% 88.1% 0.0%
22 0.43 0.61 0.80 1.11 ∗ 106 0.4120% 84.38% 3.83% 90.7% 89.2% 88.2% +0.1%
23 0.43 0.61 0.80 1.13 ∗ 106 0.4196% 85.94% 3.91% 90.7% 89.2% 88.2% +0.1%
24 0.43 0.61 0.85 1.15 ∗ 106 0.4272% 87.50% 4.38% 89.5% 88.4% 88.1% 0.0%
25 0.43 0.61 0.85 1.17 ∗ 106 0.4349% 89.06% 4.38% 89.5% 88.4% 88.1% 0.0%
26 0.43 0.61 0.85 1.19 ∗ 106 0.4425% 90.62% 4.30% 89.5% 88.4% 88.1% 0.0%
27 0.43 0.61 0.85 1.21 ∗ 106 0.4501% 92.19% 4.14% 89.5% 88.4% 88.2% +0.1%
28 0.43 0.61 0.85 1.23 ∗ 106 0.4578% 93.75% 4.14% 89.5% 88.4% 88.2% +0.1%
29 0.43 0.61 0.85 1.25 ∗ 106 0.4654% 95.31% 3.91% 89.5% 88.4% 88.2% +0.1%
30 0.43 0.61 0.85 1.27 ∗ 106 0.4730% 96.88% 3.83% 89.5% 88.4% 88.2% +0.1%
31 0.43 0.61 0.85 1.29 ∗ 106 0.4807% 98.44% 3.98% 89.5% 88.4% 88.2% +0.1%
32 0.43 0.61 0.85 1.31 ∗ 106 0.4883% 100.00% 3.83% 89.6% 88.5% 88.3% +0.2%
33 0.43 0.61 0.85 1.33 ∗ 106 0.4959% 101.56% 3.83% 89.6% 88.5% 88.3% +0.2%
34 0.43 0.61 0.85 1.35 ∗ 106 0.5035% 103.12% 3.98% 89.6% 88.5% 88.3% +0.2%
35 0.43 0.61 0.85 1.37 ∗ 106 0.5112% 104.69% 3.83% 89.6% 88.5% 88.3% +0.2%
36 0.43 0.61 0.90 1.39 ∗ 106 0.5188% 106.25% 3.75% 89.6% 88.5% 88.3% +0.2%
37 0.43 0.61 0.90 1.41 ∗ 106 0.5264% 107.81% 3.75% 89.6% 88.5% 88.3% +0.2%
38 0.43 0.61 0.90 1.43 ∗ 106 0.5341% 109.38% 3.75% 89.6% 88.5% 88.3% +0.2%
39 0.43 0.61 0.85 1.45 ∗ 106 0.5417% 110.94% 3.91% 89.6% 88.5% 88.3% +0.2%
40 0.43 0.61 0.85 1.47 ∗ 106 0.5493% 112.50% 3.91% 89.6% 88.5% 88.3% +0.2%
41 0.43 0.61 0.90 1.50 ∗ 106 0.5569% 114.06% 3.75% 89.6% 88.5% 88.3% +0.2%
42 0.43 0.61 0.90 1.52 ∗ 106 0.5646% 115.62% 3.75% 89.6% 88.5% 88.3% +0.2%
43 0.43 0.61 0.85 1.54 ∗ 106 0.5722% 117.19% 3.91% 89.6% 88.5% 88.3% +0.2%
44 0.43 0.61 0.85 1.56 ∗ 106 0.5798% 118.75% 3.91% 89.6% 88.5% 88.3% +0.2%
45 0.43 0.61 0.85 1.58 ∗ 106 0.5875% 120.31% 3.91% 89.6% 88.5% 88.3% +0.2%
46 0.43 0.61 0.85 1.60 ∗ 106 0.5951% 121.88% 3.91% 89.6% 88.5% 88.3% +0.2%
47 0.43 0.61 0.85 1.62 ∗ 106 0.6027% 123.44% 3.91% 89.6% 88.5% 88.3% +0.2%
48 0.43 0.61 0.85 1.64 ∗ 106 0.6104% 125.00% 3.91% 89.6% 88.5% 88.3% +0.2%
* 𝟋 compared to the SML ω256.
† 𝟋 compared to the naïve binary SML-CPCA ω256.

Table A.31: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using SMR-CPCA-M templates at T = 64 with an additional real
PSML-CPCA comparison for session 2 of the PolyU dataset.

164



SMR Workload Recognition Performance

t λmax λCP CA
max MT Bit Threshold ω256 𝟋B

* 𝟋R
† PER TP0.5 TP0.1 TP0

TP0 loss to
PSML-Baseline

1 0.53 0.61 0.75 0.7 3.48 ∗ 105 0.1297% 26.56% 24.06% 74.1% 73.9% 73.6% 16.8%
2 0.53 0.60 0.75 0.7 3.69 ∗ 105 0.1373% 28.12% 15.00% 82.7% 81.7% 81.6% 8.8%
3 0.48 0.60 0.75 0.5 3.89 ∗ 105 0.1450% 29.69% 12.27% 84.9% 84.5% 84.0% 6.4%
4 0.48 0.60 0.75 0.5 4.10 ∗ 105 0.1526% 31.25% 10.23% 86.1% 85.5% 85.1% 5.3%
5 0.43 0.60 0.75 0.5 4.30 ∗ 105 0.1602% 32.81% 9.30% 87.4% 86.3% 86.2% 4.2%
6 0.43 0.60 0.80 0.6 4.51 ∗ 105 0.1678% 34.38% 7.58% 88.0% 87.3% 87.0% 3.4%
7 0.43 0.60 0.75 0.7 4.71 ∗ 105 0.1755% 35.94% 6.72% 89.2% 87.9% 87.8% 2.6%
8 0.43 0.60 0.75 0.6 4.92 ∗ 105 0.1831% 37.50% 6.02% 89.5% 88.2% 88.0% 2.4%
9 0.43 0.60 0.75 0.7 5.12 ∗ 105 0.1907% 39.06% 5.55% 89.9% 88.4% 88.4% 2.0%
10 0.43 0.60 0.75 0.7 5.32 ∗ 105 0.1984% 40.62% 5.39% 89.4% 88.5% 88.4% 2.0%
11 0.43 0.60 0.75 0.7 5.53 ∗ 105 0.2060% 42.19% 4.92% 89.8% 88.9% 88.8% 1.6%
12 0.43 0.60 0.75 0.7 5.73 ∗ 105 0.2136% 43.75% 4.69% 89.8% 89.0% 88.9% 1.5%
13 0.43 0.60 0.75 0.6 5.94 ∗ 105 0.2213% 45.31% 4.61% 89.6% 89.0% 89.0% 1.4%
14 0.43 0.60 0.75 0.6 6.14 ∗ 105 0.2289% 46.88% 4.53% 89.6% 89.0% 89.0% 1.4%
15 0.43 0.60 0.75 0.6 6.35 ∗ 105 0.2365% 48.44% 4.22% 89.8% 89.2% 89.2% 1.2%
16 0.43 0.60 0.75 0.6 6.55 ∗ 105 0.2441% 50.00% 4.30% 89.8% 89.2% 89.2% 1.2%
17 0.43 0.60 0.75 0.6 6.76 ∗ 105 0.2518% 51.56% 4.14% 89.8% 89.2% 89.2% 1.2%
18 0.43 0.60 0.75 0.6 6.96 ∗ 105 0.2594% 53.12% 4.06% 89.8% 89.2% 89.2% 1.2%
19 0.43 0.60 0.75 0.6 7.17 ∗ 105 0.2670% 54.69% 3.83% 89.9% 89.3% 89.3% 1.1%
20 0.43 0.60 0.75 0.6 7.37 ∗ 105 0.2747% 56.25% 3.59% 90.1% 89.4% 89.4% 1.0%
21 0.43 0.60 0.75 0.6 7.58 ∗ 105 0.2823% 57.81% 3.36% 90.3% 89.5% 89.5% 0.9%
22 0.43 0.60 0.75 0.6 7.78 ∗ 105 0.2899% 59.38% 3.36% 90.3% 89.5% 89.5% 0.9%
23 0.43 0.60 0.75 0.6 7.99 ∗ 105 0.2975% 60.94% 3.36% 90.3% 89.5% 89.5% 0.9%
24 0.43 0.60 0.75 0.6 8.19 ∗ 105 0.3052% 62.50% 3.36% 90.3% 89.5% 89.5% 0.9%
25 0.43 0.60 0.75 0.6 8.40 ∗ 105 0.3128% 64.06% 3.36% 90.3% 89.5% 89.5% 0.9%
26 0.43 0.60 0.75 0.6 8.60 ∗ 105 0.3204% 65.62% 3.28% 90.4% 89.6% 89.6% 0.8%
27 0.43 0.60 0.75 0.6 8.81 ∗ 105 0.3281% 67.19% 3.36% 90.4% 89.6% 89.6% 0.8%
28 0.43 0.60 0.75 0.6 9.01 ∗ 105 0.3357% 68.75% 3.36% 90.4% 89.6% 89.6% 0.8%
29 0.43 0.60 0.75 0.6 9.22 ∗ 105 0.3433% 70.31% 3.36% 90.4% 89.6% 89.6% 0.8%
30 0.43 0.60 0.75 0.6 9.42 ∗ 105 0.3510% 71.88% 3.36% 90.4% 89.6% 89.6% 0.8%
31 0.43 0.60 0.75 0.6 9.63 ∗ 105 0.3586% 73.44% 3.28% 90.5% 89.6% 89.6% 0.8%
32 0.43 0.60 0.75 0.6 9.83 ∗ 105 0.3662% 75.00% 3.28% 90.5% 89.6% 89.6% 0.8%
33 0.43 0.60 0.75 0.6 1.00 ∗ 106 0.3738% 76.56% 3.28% 90.5% 89.6% 89.6% 0.8%
34 0.43 0.60 0.75 0.6 1.02 ∗ 106 0.3815% 78.12% 3.28% 90.5% 89.6% 89.6% 0.8%
35 0.43 0.60 0.75 0.6 1.04 ∗ 106 0.3891% 79.69% 3.28% 90.5% 89.6% 89.6% 0.8%
36 0.43 0.60 0.75 0.6 1.06 ∗ 106 0.3967% 81.25% 3.28% 90.2% 89.6% 89.6% 0.8%
37 0.43 0.60 0.75 0.6 1.09 ∗ 106 0.4044% 82.81% 3.28% 90.2% 89.6% 89.6% 0.8%
38 0.43 0.60 0.75 0.6 1.11 ∗ 106 0.4120% 84.38% 3.28% 90.2% 89.6% 89.6% 0.8%
39 0.43 0.60 0.75 0.6 1.13 ∗ 106 0.4196% 85.94% 3.28% 90.2% 89.6% 89.6% 0.8%
40 0.43 0.60 0.75 0.6 1.15 ∗ 106 0.4272% 87.50% 3.28% 90.2% 89.6% 89.6% 0.8%
41 0.43 0.60 0.75 0.6 1.17 ∗ 106 0.4349% 89.06% 3.20% 90.2% 89.6% 89.6% 0.8%
42 0.43 0.60 0.75 0.6 1.19 ∗ 106 0.4425% 90.62% 3.20% 90.2% 89.6% 89.6% 0.8%
43 0.43 0.60 0.75 0.6 1.21 ∗ 106 0.4501% 92.19% 3.20% 90.2% 89.6% 89.6% 0.8%
44 0.43 0.60 0.75 0.6 1.23 ∗ 106 0.4578% 93.75% 3.20% 90.2% 89.6% 89.6% 0.8%
45 0.43 0.60 0.75 0.6 1.25 ∗ 106 0.4654% 95.31% 3.20% 90.2% 89.6% 89.6% 0.8%
46 0.43 0.60 0.75 0.6 1.27 ∗ 106 0.4730% 96.88% 3.20% 90.2% 89.6% 89.6% 0.8%
47 0.43 0.60 0.75 0.6 1.29 ∗ 106 0.4807% 98.44% 3.12% 90.2% 89.6% 89.6% 0.8%
48 0.43 0.60 0.75 0.6 1.31 ∗ 106 0.4883% 100.00% 3.12% 90.2% 89.6% 89.6% 0.8%
* 𝟋 compared to the SML ω256.
† 𝟋 compared to the naïve binary SML-CPCA ω256.

Table A.32: Best achieved CPCA-Tree TP0 with corresponding TP0.1 and TP0.5 for every tree pre-
selection of t = 1, . . . , 48 trees using SMR-CPCA-M templates at T = 64 with an additional binary
SML-CPCA comparison and masking out most common set bits for session 2 of the PolyU dataset.
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Name δ(TP0,𝟋B) 𝟋B
* TP0

Bf CPCA ARC 0.10 0.1952 89.0%
C-T SCM Masking 0.14 0.2384 89.0%
C-T SCM 0.14 0.2441 89.0%
C-T SCM ARC 0.29 0.3128 88.8%
Binary PSML-CPCA† 0.39 0.4880 89.0
Bf CPCA ABC 1.03 0.3437 88.0%

Name δ(TP0.1,𝟋B) 𝟋B
* TP0.1

Bf CPCA ARC 0.10 0.1952 89.1%
C-T SCM Masking 0.12 0.2155 89.1%
C-T SCM 0.14 0.2365 89.1%
C-T SCM ARC 0.29 0.3052 88.9%
Binary PSML-CPCA† 0.39 0.4880 89.1%
Bf CPCA ABC 0.32 0.3437 88.9%
* 𝟋 compared to the PSML ω256.
† Naïve approach.

Table A.33: Ranking for each relevant experiment, respectively workload reduction method, ordered
by the euclidean distance rating method with optimal operation point at naïve binary PSML-CPCA
biometric performance (TP0 = 89.0) and 𝟋 = 0.1%.
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List of Symbols

BC - Bloom filter set size Amount of Bloom filter Bin a set B. 46, 48

MCP CA - SMR height Height of an SMR-CPCA template. 58–60, 65, 90, 91, 94

M - SMR height Height of an SMR template. 46, 60, 65

N - SMR width Width of an SMR template. 46, 65, 94

PER - Pre-selection Error Rate Pre-selection error: error that occurs when the corres-
ponding enrolment template is not in the pre-selected subset of candidates when a sample
from the same biometric characteristic on the same user is given; PER: rate of falsely se-
lected rank N (here 1) candidates. 94, 105–111, 127, 147–155, 158–160, 163–165

𝟋 - Workload Fraction Workload reduction expressed as fraction of the baseline workload
(see section 8.5). 75, 76, 90–93, 95–105, 107, 108, 110, 111, 113–118, 136–166

B - Bloom filter A single Bloom filter. 45, 46, 48, 53, 54, 167, 168

C - Bloom filter-Trees Amount of template comparisons of a single lookup in an identifica-
tion scenario. 51–53

H - Bloom filter height Block-size height used for the Bloom filter template transformation.
46, 49, 50, 53, 54, 93–105, 136–146, 157, 162

S - Subjects Enrolled subjects in database. Note: one subject is able to present two instances.
Since there is no possibility to link two instances to one subject, one instance is treated
as one subject in this thesis. 10, 47, 48, 50–53, 62, 75, 76, 88, 119, 126, 128

T - Bloom filter-Trees Amount of constructed trees in a Bloom filter identification scenario.
50, 51, 60, 61, 93–102, 105–111, 124, 136–141, 143–155, 157–160, 162–165

W - Bloom filter width Block-size width used for the Bloom filter template transformation.
46, 49, 53, 54, 93–105, 136–146, 157, 162

X - SMR Spectrum Spectrum symbol for the SMR. 32–35, 65

L - CPCA training set size Amount of used SMR templates for the training of the CPCA
(see section 5.4.1). 89, 134
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MT - Mask Threshold Threshold value used during binarisation of the SMR spectrum. 34,
35, 90–93, 95–105, 107, 108, 110, 111, 114, 136–165

t - Selected Bloom filter-Trees Amount of selected trees during a tree pre-selection step.
51, 52, 96–98, 100–102, 106–108, 110, 111, 114, 116, 117, 119, 138–140, 144–160, 162–165

B - Bloom filter set A set of Bloom filter B. 47, 48, 167
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List of Abbreviations

CPCA - Column Principal Component Analsysis See section 5.4.1. 31–34, 56–67, 72,
74, 75, 89–91, 134

CPCA-Tree - SMR-CPCA binary search tree Binary search tree build with SMR-CPCA
templates. See chapter 7. 59–61, 67, 74, 105–111, 113–116, 119, 126–128, 147–155, 158–
160, 163–165

FHD - fractional Hamming Distance Algorithm used to compare two masked binary feature-
vectors (see 5.6.2). 60

LDFT - Line Discrete Fourier Transformation See section 5.4.2. 33

MHD - modified Hausdorf Distance Algorithm used to compare feature-vectors (set of
points, see 9.1). 77–84, 86, 87, 120

NIR - Near-Infrared Radiation with wavelength from about 700 nm to 2500 nm, thus invis-
ible to the human eye. 4–6, 8, 12, 19, 20, 23, 68, 70

NL-diffusion - Non-Linear Diffusion Image enhancement algorithm from [Wei01]. Used to
reduce high-frequency noise and enhancing contrast. 23, 24, 77

NL-means - Non-Local Means Image enhancement algorithm from [ŠP09]. Used to create
an illumination invariant texture by non-local smoothing. 22–24, 77

PSMC - Spectral Minutia Complex Representation with minutiae pre-selection See
section 5.8. 85

PSML - Spectral Minutia Location Representation with minutiae pre-selection See
section 5.8. 75, 86, 88–93, 95–105, 107, 108, 110–115, 119, 136–155, 166

PSML-CPCA - PSML reduced with the CPCA feature-reduction See section 5.4.1.
88–111, 113–116, 136–142, 147–155, 164, 166

PSML-CPCA-A - PSML-CPCA-Applied PSML-CPCA representation with applied mask-
bit on the sign-bit. See section 7.1.4. 106, 108, 109
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PSML-CPCA-C - PSML-CPCA-Components The sign-bit and mask-bit of the PSML-
CPCA. see section 7.1.4. 106–108

PSML-CPCA-M - PSML-CPCA-Mixed Same as PSML-CPCA-Applied but keeping the
mask-bit. See section 7.1.4. 106–111, 114, 117

PSMR - Spectral Minutia Representation with minutiae pre-selection See section 5.8.
42, 82, 85, 87

QSMC - quality data enhanced Spectral Minutia Complex Representation See sec-
tion 5.7. 42, 82, 83, 86, 122

QSML - quality data enhanced Spectral Minutia Location Representation See sec-
tion 5.7. 38, 42, 81–83, 86, 88, 121, 134

ROC - Receiver Operating Characteristic Curve Plot of the rate of false positives (i.e.
impostor attempts accepted) against the corresponding rate of true positives as a function
of the decision threshold. 80–91, 112, 116, 118, 121, 122, 133–135

ROI - Region of Interest Part of an image which contains the desired informations. 8, 18–
24, 68–72, 76, 77, 83, 85, 121

SMC - Spectral Minutia Complex Representation See section 5.1.3. 29, 30, 32, 42, 65,
81–86, 122

SML - Spectral Minutia Location Representation See section 5.1.1. 28–30, 32, 34, 36,
37, 42, 54, 57, 65, 66, 81–83, 86, 89, 112, 113, 121, 122, 134, 156–165

SML-CPCA - SML reduced with the CPCA feature-reduction See section 5.4.1. 57,
58, 155–165

SMO - Spectral Minutia Orientation Representation See section 5.1.2. 29, 32, 81

SMR - Spectral Minutia Representation See section 5.1. 27–38, 40, 42, 45, 46, 49, 53–
57, 59, 61, 63–67, 73, 74, 76, 80–93, 95–105, 107, 108, 110–113, 116, 119, 121, 123–129,
134–165

SMR-CPCA - SMR reduced with the CPCA feature-reduction See section 5.4.1. 36,
56–61, 64, 65, 74, 90, 106, 116, 119, 125–128

SMR-CPCA-A - SMR-CPCA-Applied SMR-CPCA representation with applied mask-
bit on the sign-bit. See section 7.1.4. 59, 60, 106

SMR-CPCA-C - SMR-CPCA-Components The sign-bit and mask-bit of the SMR-CPCA.
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