
Methods for Accuracy-preserving Acceleration of Large-Scale
Comparisons in CPU-based Iris Recognition Systems

C. Rathgeb*, N. Buchmann*, H. Hofbauer+, H. Baier*, A. Uhl+, C. Busch*

*da/sec - Biometrics and Internet Security Research Group, Hochschule Darmstadt, Germany
christian.rathgeb@h-da.de, nicolas.buchmann@h-da.de
+Multimedia Signal Processing and Security Lab, University of Salzburg, Austria

Abstract: To confirm an individual’s identity accurately and reliably iris recognition systems ana-
lyse the texture that is visible in the iris of the eye. The rich random pattern of the iris constitutes a
powerful biometric characteristic suitable for biometric identification in large-scale deployments.
Identification attempts or deduplication checks require an exhaustive one-to-many comparison.
Hence, for large-scale biometric databases with millions of enrollees the time required for a bio-
metric identification is expected to significantly increase.

In this work we analyse techniques to accelerate Hamming distance-based comparisons of bi-
nary biometric reference data, i.e. iris-codes, in large-scale iris recognition systems, which pre-
serve the biometric performance. Focus is put on software-based optimizations, an efficient two-
step iris-code alignment process referred to as TripleA, and a combination thereof. Benchmarking
the throughput and identifying potential bottlenecks of a portable commodity hardware-based iris
recognition system, is of particular interest. Based on conducted experiments we point out practi-
cal boundaries of large-scale comparisons in CPU-based iris recognition systems, bridging the gap
between the fields of iris recognition and software design.

1. Introduction

The rich random structure of the iris, and hence its resistance to false matches, constitutes one of the
most powerful biometric characteristics [1]. Following Daugman’s approach [1], which represents
the core of most public operational deployments, four processing components form an iris recog-
nition system: (1) acquisition, where most current deployments require subjects to fully cooperate
with the system in order to capture images of sufficient quality; (2) pre-processing, which includes
the detection of the pupil and the outer iris boundary. Subsequently, the iris (approximated in the
form of a ring) is normalized to a rectangular texture. To complete the preprocessing, parts of
the iris texture which are occluded by eye-lids, eye-lashes or reflections are detected and stored in
an according noise-mask; (3) feature extraction, in which an iris-code is generated by convolving
local regions of the pre-processed iris texture with filters and encoding responses into bits. This
binary data representation enables compact storage and rapid (4) comparison, which is based on
the estimation of Hamming distance (HD) scores between pairs of iris-codes and corresponding
masks. In the comparison stage circular bit shifts are applied to iris-codes and HD scores are
estimated at K different shifting positions, i.e. relative tilt angles. The minimal obtained HD ,
which corresponds to an optimal alignment, represents the final score. It is important to note, that
the number of shifting positions employed to determine an appropriate alignment between pairs
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of iris-codes may vary depending on the application scenario. Some public deployments of iris
recognition go as far as K = 21 shifting positions when handheld cameras are used for which it is
more difficult to ensure an upright capture orientation [2]. Hence, score distributions are skewed
towards lower HD scores, which (for a given threshold) increases the probability of a false match
by the factor K [2].

Nowadays iris recognition technologies are already deployed in numerous nation-wide projects.
Simplicity in design and development as well as the usage of commodity hardware are driving
factors behind the deployment of large-scale biometric systems, e.g. the Indian Aadhaar project
[3] in which thousands of CPU cores are processing millions of transactions on a daily basis. In
such systems identification attempts or de-duplication checks might represent a bottleneck, since
these require an exhaustive 1 : N comparison whereN represents the number of subjects registered
with the system. In particular, comparison time represents a crucial factor, which dominates the
overall computational workload in any large-scale biometric identification system, especially if
large values of K are unavoidable.

1.1. Contribution of Work

In this work focus is put on an iris recognition system, which performs a CPU-based exhaustive
search for each authentication attempt. The presented study represents a more common scenario,
in contrast to proposed studies, which analyse hardware-specific acceleration of iris recognition
systems. Our analyses include a comparative study of the most efficient ways to count disagreeing
bits between iris-codes. The potential of manual loop-unrolling as well as different extensions to
the x86 instruction set architecture for microprocessors are analysed. In addition, multi-threading
techniques and statistical optimization of micro-operations are considered. Furthermore, we esti-
mate the inter-relation between throughput and rotation compensation provided by an iris recog-
nition system. In order to further accelerate a single pair-wise comparison of iris-codes, we build
upon the work of [4], where we proposed a novel technique for comparing pairs of iris-codes,
which we refer to as Accelerated Accuracy-preserving Alignment – TripleA. This method focuses
on the alignment process, in which an adjustable two-step search-procedure is employed in order
to efficiently determine alignments between iris-codes. Within this procedure only a fraction of K
shifting positions has to be considered during a single pair-wise comparison, while covering the
same range of possible tilt angles. In this work, we enhance the TripleA scheme by applying it to
an optimized CPU-based iris recognition scheme. We show that, the TripleA method can be seam-
lessly integrated, such that the resulting system takes full advantage of TripleA on top of software-
based optimisations. In summary, this work provides a detailed guidance of how to substantially
accelerate large-scale iris biometric systems on commodity hardware in an accuracy-preserving
manner, by combining software-based optimizations with a technique for efficient iris-code align-
ment. Moreover, summarized key observations might as well provide explanations for anomalies
reported in existing studies.

1.2. Organisation of Article

This article is organized as follows: related works are discussed in Sect. 2. In Sect. 3 the em-
ployed iris recognition system is summarized. A detailed analysis of software-based acceleration
techniques is given in Sect. 4 and the TripleA method is described in Sect. 5. Experimental results
are presented in Sect. 6. Finally, conclusions are drawn in Sect. 7.
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2. Related Work

To circumvent the bottleneck of an exhaustive 1 : N comparison, different concepts have been
proposed in order to reduce the workload in an iris biometric (identification) system. We might
differentiate between four key concepts: (1) coarse classification or “binning”, (2) a serial com-
bination of a computationally efficient and a conventional system, (3) indexing schemes, and (4)
hardware-based acceleration.

By binning an iris biometric database into several classes, the workload can be divided by the
number of classes, given that irises of registered subjects are equally distributed among them.
Natural features to be utilized include eye position (left or right) [5] or eye colour [6, 7]. Recent
advances in the field of soft biometrics suggest further possible classification based on gender [8],
age groups [9], or ethnicity [10, 11] (for further details on soft biometrics the reader is referred
to [12]). Instead of creating tangible, human-understandable classes, it is also possible to rely
on distinct iris texture features [13, 14, 15]. Binning is equivalent to the combination of biometric
systems. Hence, classification errors might significantly increase the false non-match rate (FNMR)
of the overall system. Moreover, the potential benefit of binning is limited by the number of bins
which determines the factor by which the database size can be reduced.

Within serial combinations computationally efficient biometric systems are used to extract a
short-list, i.e. small fraction, of most likely candidates. This procedure might be referred to as
pre-screening. While generic iris recognition systems already provide a rapid comparison, more
efficient biometric comparators can be obtained by employing compressed versions of original
iris-codes during pre-screening [16, 17]. Further, a rotation-invariant iris recognition scheme can
be applied in the pre-screening step [18]. Similar to binning approaches, a serial combination of
a computationally efficient and an accurate (but more complex) scheme might increase the FNMR
of the overall system. However, a serial combination enables a more accurate operation of the
resulting trade-off between computational effort and accuracy by choosing an adequate size for the
short-list.

Indexing schemes aim at constructing hierarchical search structures for iris biometric data,
which tolerate a certain amount of biometric variance. Such schemes substantially reduce the
overall workload of a biometric identification, e.g. logN in case of a binary search tree. Such se-
arch structures might be designed for iris-codes [19, 20] as well as iris images [21, 22, 23]. While
the majority of works report hit/ penetration rates on distinct datasets, required computational ef-
forts are frequently omitted. The application of complex search structures on rather small datasets
may as well cloud the picture about actual gains in terms of speed and leaves the scalability of
some approaches questionable.

Adapting comparison procedures to adequate hardware, e.g. multiple cores within a CPU,
allows for parallelization [24]. By simultaneously executing a number of threads the workload can
be significantly reduced since a 1 : N comparison can be performed in parallel on various subsets
of equal size. Also the estimation of HD scores at various shifting positions during alignment can
be parallelized. Moreover, iris-code comparisons can be efficiently performed on the GPU using
GPGPU or CUDA [25], FPGA [24, 26], or other specialized hardware like CELL processors [27].

Apart from hardware-based acceleration, most of presented schemes either fail to provide a
significant acceleration or they suffer from a significant decrease in recognition accuracy. Hence,
existing approaches often obtain a trade-off between biometric performance (recognition accu-
racy) and speed-up, compared to a traditional iris recognition system. In practice most concepts
do not allow for a seamless integration into a conventional identification system. The majority of
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(a) Image (b) Detection

(c) Enhanced texture

(d) LG iris-code using real filter response

(e) QSW iris-code using a single wavelet subband

Fig. 1: Common iris biometric processing chain for image S1008L02 of the CASIAv4-Interval iris
database.

hardware-specific acceleration techniques of iris recognition systems is custom-built, which ma-
kes it difficult to derive generally applicable methodologies or concepts. Moreover, anomalies in
runtime tests are frequently left uncommented.

3. Iris Recognition System

The following subsections summarize the key components of the employed iris recognition sys-
tems.

3.1. Preprocessing and Feature Extraction

In the employed iris recognition system, which builds upon common processing components, the
iris of a given sample image is detected and transformed to a rectangular texture of 512×64 pixels
applying a contrast-adjusted Hough transform. The enhanced texture is obtained by applying con-
trast limited adaptive histogram equalization (CLAHE). In the feature extraction stage the enhan-
ced texture is divided into stripes resulting in 10 one-dimensional signals, each one averaged from
the pixels of 5 adjacent rows (the upper 512×50 rows are analysed). The first feature extraction
method follows the Daugman-like 1D-LogGabor feature extraction algorithm of Masek [28] (LG)
and the second follows the algorithm proposed by Ma et al. [29] (QSW) based on a quadratic
spline wavelet transform. Both feature extraction techniques generate an iris-code IC , which con-
sists of of B=512×10=5, 120 bits. Fig. 1 illustrates the described processing chain for a sample
iris image. Custom implementations of employed segmentation and feature extractors are freely
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available in the University of Salzburg Iris Toolkit (USIT) [30]. For further details on the em-
ployed feature extraction algorithms the reader is referred to [31]. Note that a compression of
iris-codes, e.g. to 2,048 bits as suggested in [1], might cause a decrease in biometric performance
[16], especially in challenging unconstrained scenarios.

3.2. Iris-Code Comparison

In the comparison stage circular bit shifts are applied to iris-codes and HD scores are estimated at
K different shifting positions, i.e. relative tilt angles. In the used scheme a 1-bit shift equals 0.7◦

of rotation. Let f(IC, i) denote an iris-code shifted by i bits. Assuming that blocks of L bits are
processed at a time, the final comparison score between a query and a reference iris-code, ICQ and
ICR, and their corresponding noise masks, MQ and MR, is estimated as,

min
i∈K

∑B/L
j=1 ‖(ICQ j ⊕ f(ICR, i)j) ∩MQ j ∩ f(MR, i)j‖∑B/L

j=1 ‖MQ j ∩ f(MR, i)j‖
. (1)

Since iris-codes can be shifted prior to comparison and only a single division is required, the
workload for calculating scores between iris-codes is dominated by the following three (per-block)
processing steps:

1. XOR: the exclusive or (⊕) detects disagreeing bits between two L-bit blocks, resulting in bit
block of same size where 1s indicate differing bits.

2. POPCNT: the population count (‖·‖), or Hamming weight, counts the number of 1s in the
vector extracted in the first step, i.e. the amount of detected differences.

3. ADD: the amount of disagreeing bits is added up (
∑

) for all L-bit blocks.

Of these processing steps, POPCNT represents the most complex one and most of presented
software-based optimisations will focus on speeding up its calculation (see Sect. 4). Neverthe-
less, the other two steps are also analysed where appropriate.

4. Software-based Optimizations

From a practical point of view, we identified seven settings as most relevant, S-1 to S-7, which are
described in the following subsections.

4.1. Look-up Tables, Intrinsics and Loop-Unrolling

Look-up table (S-1): the population count of L = 8 bit blocks is stored in a pre-computed look-up
table. An 8-bit look-up table has a small memory footprint (256 byte) and is universally applicable
in contrast to a register-sized look-up table, e.g. 64-bit (∼16.7 million terabyte), which is far too
big even for common memory sizes in the foreseeable future. For the XOR and ADD step common
arithmetics are used.

Hardware POPCNT (S-2): intrinsics are used to calculate the population count with the SSE4
POPCNT CPU instruction. Experiments are performed in 32-bit and 64-bit operation mode.

Assembler POPCNT (S-3): instead of high level intrinsics the POPCNT command is directly
invoked via inline assembler code in a C++ function.
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Fig. 2: Sample HD-scores obtained from three genuine pairs of iris-codes at various shifting posi-
tions.

Manual loop-unrolling (S-4): even though loop-unrolling is activated for the compiler, this
experiment measures the impact on the overall duration regarding the (manually adjusted) number
of bit blocks processed per loop iteration.

SSE2 and AVX (S-5): we also consider calculating XOR for 128-bit blocks with the Streaming
SIMD Extensions 2 (SSE2) instruction PXOR, the Advanced Vector Extensions (AVX) 256-bit
equivalents VXORPD, the AVX2 256-bit version VPXORPD and measure the impact of addition
trees using the AVX2 8-bit and 16-bit vectoring commands VPADDB and VPADDW. The latter
operations can add 32 8-bit packed integers and 16 16-bit packed integers with one operation,
respectively.

4.2. Multithreading and Statistical Micro-Ops Optimisation

Multithreading (S-6): iris-code comparisons are split upon multiple threads. Like in the previous
settings, S-2 to S-5, POPCNT and ADD operations are performed alternatingly (PAPA). First a
given query iris-code is compared to all pre-shifted versions of stored reference iris-codes. Hence,
no shifting operations have to be performed at the time of comparison, while storage requirement,
which is usually not a crucial factor, increases. In an alternative implementation the query iris-code
is shifted prior to comparison against all stored non-shifted reference iris-codes. Both settings,
which are referred to as PAPAR and PAPAQ, describe the same transposed algorithm and result in
the same amount of bit comparisons.

Statistical micro-ops optimisation (S-7): static data dependency, latency and throughput ana-
lysis are utilized to minimise latencies of micro-operations. The resulting strategies, which are
referred to as PPAAR and PPAAQ, perform all POPCNT operations first and add up all intermedi-
ate results afterwards.

5. Accelerated Accuracy-preserving Alignment

The following subsections present an analysis of HD scores estimated from genuine iris-code
comparisons across various shifting positions, which motivates the adjustable two-step search-
procedure, referred to as TripleA [4].
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Fig. 3: Example of the TripleA procedure: In the first step comparisons between a query and
reference iris-code are performed at 2 dk/se + 1 = 7 positions according to the reference’s step
size s = 4. After detecting the near-optimal shifting position p = 4, the final score (marked bold)
is detected in the interval [p− s+ 1 = 1; p+ s− 1 = 7] at a shifting position of 3. HD scores are
estimated at a total number of 13 shifting positions compared to K = 25 in a linear search.

5.1. Iris-Code Analysis

For both feature extractors Fig. 2 shows the HD scores across different shifting positions for three
genuine comparisons of iris-codes. It can be seen that, for each feature extraction algorithm the
HD scores of the three genuine comparisons seem almost identical. Within a certain range HD
scores constantly decrease towards the minimum (best) score. This range is enclosed by local
maxima resulting in HD scores significantly beyond 0.5. For the sample HD scores in Fig. 2
these local maxima can be detected at shifting positions of ±8 bits for LG and ±6 bits for QSW.
A detailed analysis of this phenomenon is provided in [4].

Intuitively, the distance between the shifting position resulting in a minimum HD score and
those of surrounding local HD score maxima might be approximated by the average length of 1-
bit and 0-bit sequences µ, as ±µ bit shifts are expected to cause the most drastic misalignment.
The sequence of HD scores between genuine iris-codes across various shifting positions might
be interpreted as an oscillation which decreases its amplitude with the distance to the minimum
score. For such a signal it can be empirically verified that distances between consecutive vertices
are virtually the same for a constant value of µ even in case of large standard deviations.

5.2. TripleA

The TripleA approach comprises the following two key steps: (1) estimation of near-optimal alig-
nment and (2) estimation of subset-minimum. An example of the approach is illustrated in Fig.
3.

In the first step the range of K = 2k + 1 shifting positions [−k; k] is divided into 2 dk/se
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Fig. 4: Number of shifting positions to be considered C using TripleA and TripleA-SS for different
values of k and s.

intervals, where s denotes the employed step-size. Then HD scores are estimated at interval boun-
daries, i.e. for a subset of 2 dk/se + 1 shifting positions. In other words, the sequence of scores,
interpreted as signal, is sampled every s bits. For a genuine comparison a sampling with at most
the average length of 1-bit and 0-bit sequences, s < µ, is expected to detect a minimum score
which represents a near-optimal alignment. We consider an alignment as near-optimal if the corre-
sponding shifting position is close enough to the optimal alignment revealing a HD score, which
is significantly smaller compared to remaining sampling positions. For the sample comparisons of
Fig. 2 near-optimal alignments would be found in the range of approximately ±2 bit shifts.

After detecting a near-optimal alignment at shifting position p the interval [p− s+1; p+ s− 1]
is considered for the second step. Note that the scores for positions p ± s have already been
estimated in the first step. Based on a linear search the second step detects a minimum HD score
for a subset of 2(s−1) shifting positions. That is, the number of shifting positions to be considered
is reduced to C = 2 dk/se + 1 + 2(s− 1). To further accelerate the TripleA alignment procedure
it is suggested to process only half of the subset detected in the first step during the second step.
This bisected interval is defined by p and minimum of surrounding HD scores at p ± s. Hence,
the number of shifting positions is further reduced to C = 2 dk/se + s. In the example of Fig.
3 the interval [p − s + 1, p − 1] would be chosen for the linear search of the second step, since
the HD score at shifting position p − s is smaller than that at p + s. This derivation is referred
to as TripleA-Single-Sided. In Fig. 4 the number of shifting positions C is plotted for different
values of k and s. To obtain a maximum speed-up C has to be minimized, such that s =

√
2k/
√
2

and s =
√
2k represent the theoretical optimal step-size in terms of speed-up for TripleA and

TripleA-SS, respectively.
In [4] we showed that, µ can be dynamically estimated from a single reference iris-code during

enrolment, however, this dynamic estimation was not found to yield any significant gains in terms
of performance are obtained. Hence, we restrict to applying static values of s for each comparison
performed by the system. In this case µ can be averaged from a training set of extracted iris-codes.

6. Experiments

The following subsections describe the experimental setup and summarize results obtained by the
presented approaches.
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6.1. Experimental Setup and Methodology

Experimental evaluations are carried out on the CASIAv4-Interval iris database [32]. The database
consists of N=2, 639 good-quality 320×280 pixel NIR iris images of 249 subjects. We consider
two types of experiments, where in both experiments an iris-code is compared against K shifted
versions of another one:

Experiment 1 (E-1): the maximum number of N(N−1)/2 = 3, 480, 841 iris-code cross-
comparisons is performed. Based on obtained scores we identify an adequate trade-off between
biometric performance and provided rotation compensation. Subsequently, diverse settings with
the aim of accelerating these iris-code cross-comparisons are compared and the best setting is iden-
tified. For time measurements we execute a total number of 40 iterations and the obtained median
time elapsed is reported. The considered number of iterations minimizes the influence of outliers
with respect to time measurements, which assures significance of relative improvements or degra-
dations in comparison speed. This experiment might reflect a de-duplication check on an iris-code
database with N registered subjects.

Experiment 2 (E-2): the dataset is partitioned into a reference set of 2,500 iris-codes and a
query set of 139 iris-codes. To simulate identification attempts on a large-scale database the refe-
rence set is extended to a large-scale dataset by replicating the subset 20,000 times, resulting in a
set of N=2, 500×20, 000=50, 000, 000 iris-codes. Note that the obtained set is used for runtime
experiments only. For the best setting of E-1, in terms of throughput, all 139 identification at-
tempts (1:N ) are performed and the obtained median time elapsed is reported for various degrees
of rotation compensation. Subsequently, the TripleA method is applied with different parameter
configurations on top of the best setting of E-1 in order to obtain further speed-ups.

The main difference between these experiments is that, while in E-1, the de-duplication experi-
ment, a total number of N query iris-codes are successively compared against the database, in E-2,
the identification experiment, a single query iris-code is compared against a huge database.

Biometric performance is estimated in terms of FNMR at a target false match rate (FMR) and
equal error rate (EER) obtained from E-1. The test system for measuring the duration of E-1 and
E-2 with different settings uses an x86 64 Linux operating system with kernel version 4.4 and
GCC 5.3.0 as C++ compiler. While other CPU-types, e.g. ARM-based, have been analysed with
respect to the required operations [33], focusing on large-scale biometric systems x86 64 hardware
is considered as most relevant. The utilised CPU is an Intel Core i7-6700 with sufficient DDR4-
SDRAM 2133.

In order to identify an appropriate degree of rotation compensation in E-1, we first calculate
EERs and FNMRs at a FMR of 0.01%, denoted as FNMR0.01, considering ±k shifting positions
during alignment. The progress in terms of EER and FNMR0.01 with respect to rotation compen-
sation is shown in Table 1. As can be seen, the majority of misalignments is compensated by ±8
bit shifts (∼6◦) while biometric performance converges at approximately ±16 bit shifts (∼11◦).
Focusing on recognition accuracy versus required bit-shifting we choose k = ±16, resulting in
2k + 1 = 33 shifting positions, is considered as reasonable trade-off for the used iris recognition
systems resulting in an EER of 0.80% and a FNMR0.01 of 1.75% for LG and an EER of 0.74% and
a FNMR0.01 of 1.06% for QSW.

6.2. Software-based Optimizations

Table 2 summarizes time measurements for all settings in experiment E-1. Since time measure-
ments might highly depend on hardware components of a system, emphasis should be placed on
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Rot. comp. LG QSW
±k bits EER FNMR0.01 EER FNMR0.01

0 6.81 11.98 16.14 20.35
1 5.65 10.73 11.51 15.12
2 5.01 10.18 8.22 11.33
4 2.78 9.89 3.03 6.24
8 1.04 2.26 0.94 1.46

12 1.01 2.23 0.79 1.28
16 0.80 1.75 0.74 1.06
20 0.80 1.75 0.73 1.05
24 0.79 1.71 0.70 1.01

Table 1 Progression of EERs and FNMR0.01s in relation to rotation compensation (the selected
setting for the used iris recognition system is marked bold).

Setting Time Setting TimeID Description ID Description

S-1 8-bit Look-up table 157.95

S-6a

3 Threads PAPAR 4.78

S-2 POPCNT 32-bit 14.98 4 Threads PAPAR 4.62
POPCNT 64-bit 9.16 5 Threads PAPAR 4.46

S-3 POPCNT ASM 8.16 6 Threads PAPAR 4.21

S-4

2 Blocks 8.71 7 Threads PAPAR 4.09
4 Blocks 7.98 8 Threads PAPAR 4.45
8 Blocks 7.65 9 Threads PAPAR 4.50
10 Blocks 9.54 10 Threads PAPAR 4.47
16 Blocks 9.05

S-6b

1 Thread PAPAQ 6.24
32 Blocks 9.21 2 Threads PAPAQ 3.33

S-5a

2 Blocks SSE2 12.08 3 Threads PAPAQ 2.21
4 Blocks SSE2 12.43 4 Threads PAPAQ 1.70
8 Blocks SSE2 10.26 5 Threads PAPAQ 2.42
16 Blocks SSE2 9.37 6 Threads PAPAQ 2.06
32 Blocks SSE2 8.33 7 Threads PAPAQ 1.79

S-5b

4 Blocks AVX 10.76 8 Threads PAPAQ 1.58
8 Blocks AVX 12.34 9 Threads PAPAQ 1.68
16 Blocks AVX 8.01 10 Threads PAPAQ 1.65
32 Blocks AVX 8.05

S-7

1 Thread PPAAQ 5.73

S-5c

4 Blocks AVX2 11.90 2 Threads PPAAQ 3.02
8 Blocks AVX2 12.32 3 Threads PPAAQ 2.03
16 Blocks AVX2 8.00 4 Threads PPAAQ 1.57
32 Blocks AVX2 8.06 5 Threads PPAAQ 2.33

S-5d AVX2 8-bit ADD 9.63 6 Threads PPAAQ 1.99
AVX2 16-bit ADD 9.32 7 Threads PPAAQ 1.72

S-5e SSSE3 20.66 8 Threads PPAAQ 1.54

S-6a 1 Thread PAPAR 7.96 9 Threads PPAAQ 1.63
2 Threads PAPAR 5.31 10 Threads PPAAQ 1.58

Table 2 Overview of time measurements (in seconds) obtained for different settings in experiment
E-1 performing all 3,480,841 iris-code cross-comparisons at 33 shifting positions.
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Fig. 5: Time measurements (in seconds) obtained for (a) setting S-4 and (b) settings S-6 and S-7 in
experiment E-1 performing all 3,480,841 iris-code cross-comparisons at 33 shifting positions.

relative improvements obtained by according optimization techniques. Optimal parameters of each
setting are preserved in subsequent settings where appropriate.

With over two minutes runtime the 8-bit look-up table of S-1 turns out to be by far the slowest
implementation. Nevertheless it represents a baseline for a hardware independent implementation.

Without any optimisation the 32-bit population count implementation in S-2, using intrinsics to
invoke the SSE4 POPCNT instruction provides a tenfold speed-up compared to S-1. The 64-bit
version can double the data processing per instruction and is therefore even faster. It is not twice
as fast as the 32-bit implementation due to overhead of the bigger 64-bit address handling for data
access and pointer dereferencing. Based on this observation subsequent settings process blocks of
L = 64 bits.

The inline assembler of S-3 also provides a clear speed-up over high level POPCNT intrinsic
calls used in S-2.

Focusing on S-4, Fig. 5(a) shows that the preferred number of L-bit blocks processed per loop
iteration is 8. We identify two reasons to justify this behaviour: on the one hand 8 64-bit blocks
fit very well in the general purpose registers of the x86 64 processor and no memory access is
needed for the XOR, POPCNT, ADD operation, see Fig. 6(b) lines 20-36; on the other hand 8
× 64 bit are exactly 64 byte which is the same size as one CPU cache line. Since a cache line
copied from memory is exactly 64 byte it is preferable to process the complete cache line resulting
in a favourable cache hit/miss ratio. We therefore recommend the processing of data in 64 byte
blocks and storing it as a continuous array for an optimal exploitation of the CPU caches. Hence,
in settings S-6 and S-7 a total number of 8 64-bit blocks are processed per loop iteration.

Settings S-5a, S-5b and S-5c make use of SSE2, AVX and AVX2 instructions to process bigger
data chunks with the XOR operation. However, no significant speed-up over the common x86 64-
bit XOR instruction is obtained. The reason for this is very straightforward, since SSE works on
specific registers, the so called 128-bit XMM registers and AVX on the 256-bit YMM registers.
Data has to be loaded to and retrieved from these registers before it can be used with SSE/AVX
instructions. In contrast, the SSE4 POPCNT command operates on 64-bit general purpose registers
of a CPU. Therefore, a transfer between these registers is necessary where the overhead for these
transfers is higher than a straightforward processing by the common XOR command which operates
on the same registers as the POPCNT instruction. SSE and AVX are optimised for algorithms
which do a lot of operations on a comparably low amount data. Calculating a great amount of
iris-code comparisons, which requires only very few operations on extreme amounts of data, is
no such problem. Settings S-5d and S-5e, which implement the AVX2 vector addition, are slower
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1 buf[0]=ic[x].dat[k][i]^ic[y].dat[i];

2 buf[1]=ic[x].dat[k][i+1]^ic[y].dat[i+1];

3 buf[2]=ic[x].dat[k][i+2]^ic[y].dat[i+2];

4 buf[3]=ic[x].dat[k][i+3]^ic[y].dat[i+3];

5 buf[4]=ic[x].dat[k][i+4]^ic[y].dat[i+4];

6 buf[5]=ic[x].dat[k][i+5]^ic[y].dat[i+5];

7 buf[6]=ic[x].dat[k][i+6]^ic[y].dat[i+6];

8 buf[7]=ic[x].dat[k][i+7]^ic[y].dat[i+7];

9

10 asm(".intel_syntax noprefix\n");

11

12 __asm__(

13 "popcnt %1, %1 \n\t"

14 "popcnt %2, %2 \n\t"

15 "popcnt %3, %3 \n\t"

16 "popcnt %4, %4 \n\t"

17 "popcnt %5, %5 \n\t"

18 "popcnt %6, %6 \n\t"

19 "popcnt %7, %7 \n\t"

20 "popcnt %8, %8 \n\t"

21

22 "add %0, %1 \n\t"

23 "add %0, %2 \n\t"

24 "add %0, %3 \n\t"

25 "add %0, %4 \n\t"

26 "add %0, %5 \n\t"

27 "add %0, %6 \n\t"

28 "add %0, %7 \n\t"

29 "add %0, %8 \n\t"

30

31 : "+r" (dist)

32 : "r" (buf[0]), "r" (buf[1]),

33 : "r" (buf[2]), "r" (buf[3]),

34 : "r" (buf[4]), "r" (buf[5]),

35 : "r" (buf[6]), "r" (buf[7])

36 );

(a) C++ / Inline ASM

1 prefetcht0 ptr [r13+r11*1]

2 prefetcht0 ptr [r13]

3 xor edi, edi ; XOR

4 mov rax, qword ptr [r12]

5 mov rdx, qword ptr [r12+0x8]

6 xor rax, qword ptr [r13-0x138]

7 xor rdx, qword ptr [r13-0x130]

8 mov rcx, qword ptr [r12+0x10]

9 mov r8, qword ptr [r12+0x18]

10 xor rcx, qword ptr [r13-0x128]

11 xor r8, qword ptr [r13-0x120]

12 mov r9, qword ptr [r12+0x20]

13 mov r10, qword ptr [r12+0x28]

14 xor r9, qword ptr [r13-0x118]

15 xor r10, qword ptr [r13-0x110]

16 mov rbx, qword ptr [r12+0x30]

17 mov rsi, qword ptr [r12+0x38]

18 xor rbx, qword ptr [r13-0x108]

19 xor rsi, qword ptr [r13-0x100]

20 popcnt rax, rax ; POPCNT

21 popcnt rdx, rdx

22 popcnt rcx, rcx

23 popcnt r8, r8

24 popcnt r9, r9

25 popcnt r10, r10

26 popcnt rbx, rbx

27 popcnt rsi, rsi

28 add rdi, rax ; ADD

29 add rdi, rdx

30 add rdi, rcx

31 add rdi, r8

32 add rdi, r9

33 add rdi, r10

34 add rdi, rbx

35 add rdi, rsi

36 mov rcx, rdi ; final result

(b) ASM

Fig. 6: Comparison between (a) C++ code using Inline Assembler and (b) corresponding Assem-
bler code for setting S-7.

for the same reasons. Note that the SSSE3 implementation tested in S-5e is considered the fasted
POPCNT implementation by experts in the field [34]. In contrast, we observe that the hardware
POPCNT instruction used in S-2 to S-4, is clearly superior to the SSSE3 implementation. Still,
for older CPUs where no POPCNT instruction is available, this could still be of interest since it is
faster than an 8-bit look-up table.

The common idea to compare a freshly extracted query iris-code to a large pre-shifted database
of reference iris-codes is represented in S-6a. As shown in Fig. 5(b) for 1 to 3 threads this setting
behaves as expected, but starting from 4 threads the runtime stagnates at roughly 4 seconds, i.e.
dividing the workload in more threads provides no further speed-up. As one iris-code consists of
512×20 bits (1280 byte), we have 3,480,841 comparisons and for each comparison a new iris-code
has to be loaded from memory, resulting in roughly 137 GB of data transferred from memory to
the CPU. Our experiment computer uses DDR4-2133 RAM with a speed of 17.0 GB/s per channel
according to specification [35]. We are using a common dual channel setup and, hence have a
maximum RAM bandwidth of 34 GB/s. Hence, transferring 137 GB from memory to CPU takes
at least 4 seconds. In this setup the execution speed of the implemented algorithm is interfered
by the relatively slow RAM to CPU interface. The RAM as bottleneck is a common problem
for highly multithreaded tasks performing a few operations on a big amount of data [36]. The
bottleneck gets enhanced by the fact that this biometric scenario floods the CPU caches with all
new data and is practically not using them at all, resulting in a very poor cache hit/miss ratio.
In S-6b K shifted versions of the given query iris-code are computed and compared to N non-
shifted reference iris-codes of the database. From a computational perspective, this setup seems
less intuitive because the shifted versions have to be computed before the actual comparison can
start, but the K iris-codes can stay in the CPU caches across all comparisons and only one 1,280
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Fig. 7: Cache hierarchy of the Intel Core i7-6700 CPU in the employed test system [37].

Step TripleA TripleA-SS

size LG QSW LG QSW
EER FNMR0.01 EER FNMR0.01 EER FNMR0.01 EER FNMR0.01

2 0.80 1.75 0.74 1.05 0.80 1.75 0.74 1.05
3 0.79 1.75 0.74 1.06 0.80 1.75 0.74 1.06
4 0.80 1.78 0.77 1.14 0.80 1.78 0.77 1.14
5 0.78 1.76 0.77 1.10 0.81 1.78 0.77 1.13
6 0.88 2.70 0.80 1.31 1.09 4.08 0.91 1.70
7 0.82 1.98 1.58 2.07 0.92 2.80 3.91 7.79
8 0.80 1.75 0.89 1.29 0.82 1.84 1.73 5.43

Table 3 EERs and FNMR0.01 for different settings of TripleA for the LG and QSW fea-
ture extraction (LG baseline: EER=0.80%, FNMR0.01=1.75%; QSW baseline: EER=0.74%,
FNMR0.01=1.06%).

byte block has to be loaded for each comparison, resulting in much less actual memory access
since the CPU caches have a high hit count for the shifted iris-codes [37]. Therefore, S-6b scales
much better with multiple threads as highlighted in Fig. 5(b). Hence, the subsequent setting will be
based on this strategy. Moreover, in S-6b we observe the effect that 5 threads are actually slower
than 4 threads. The used Intel Core i7-6700 processor has 4 physical cores of which each can
process 2 threads at once due to hyper threading [38]. As depicted in Fig. 7, in case 5 threads are
used 2 threads have to share the L1 and L2 cache on one core. Therefore, the iris-code prefetching,
see Fig. 6(b) lines 1-2, is not as effective as if one thread uses the complete cache. This effect
occurs since both threads are working on completely independent parts of the iris-code database.
Due to this aspect 8 threads are only negligibly faster than 4 threads.

Setting S-7 implements the results obtained by the Intel Architecture Code Analyzer [39] which
suggests the PPAA strategy instead of the PAPA strategy of previous settings (see Sect. 4), as shown
in Fig. 6. As can be seen in Table 2 and Fig. 5(b), this results in minor speed-up which would be
more significant for larger databases. That is, optimising the order of the instruction sequence for
the used microarchitecture by static code analyser can still improve the overall performance even in
case modern CPUs support out of order execution, which should (in theory) do this automatically.

The presented results are obtained using a Linux operating system. It is important to note that
identical performance rates are achieved on other types of operating systems (OSs), since basic
memory operations, in particular cache management, is independent of the used OS.
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Fig. 8: Throughput (in millions of iris-code comparisons per second) in E-2 in relation to shift size
and number of threads.

Number of threads
Method 1 2 3 4 5 6 7 8 9 10

Baseline 84.10 42.24 28.21 21.17 25.52 22.24 22.49 20.89 21.13 21.13
TripleA 34.36 18.04 12.15 9.26 10.06 9.64 9.64 9.03 9.26 9.26

TripleA-SS 30.65 16.40 11.03 8.37 9.65 8.82 8.69 8.26 8.37 8.32

Table 4 Overview of time measurements (in seconds) for different settings in experiments E-2
performing an identification with N = 50, 000, 000 at 33 shifting positions using s = 4.

6.3. Accelerated Accuracy-preserving Alignment

For different configurations of TripleA using static step-sizes, Table 3 summarizes obtained EERs
and FNMR0.01s. For the general approach it can be observed that biometric performance is main-
tained across most step-size settings. For both feature extractors the TripleA-SS approach causes
no drastic decrease in accuracy while providing further speed-up as will be shown in the following
subsection.

6.4. Simulation of Large Scale Identification

For E-2 a large scale identification scenario, the best setting PPAAQ resulting from E-1 is selected
as baseline. Fig. 8 presents the absolute number of iris-code comparisons per second. Again,
emphasis should be placed on relative difference in throughput rates of different configurations.
Due to the efficient CPU caches the comparisons per second depend on how well the shifted iris-
codes fit into the caches and the break even point from 4 to 5 threads, can similarly be observed
as in the 1 : N identification scenario, due to 2 threads sharing one cache. Therefore, having 8
threads reveals no significant speed-up over 4 threads. Both setups roughly compare 4.6 million
iris-codes per second using ±8 bit shifts (' 80 million comparisons per second without shifting).

Based on the findings depicted in Table 1 and Table 3 further scenarios in E-2 utilizing TripleA
and TripleA-SS are performed with the parameters k = 16, s = 4 as step-size and PPAAQ as core
HD score comparator. These experiment results are summarized in Table 4 and depicted in Fig. 9.

From a theoretical standpoint the expected speed-up can be approximated by comparing the
number of shifted iris-code comparisons to the baseline algorithm PPAAQ. The baseline algorithm
has to process all K shifting positions, resulting in 33 comparisons. TripleA with the selected pa-
rameters does 9 comparisons in Step 1 and in general 6 more in Step 2. In the special case of Step
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Fig. 9: Illustration of time measurements (in seconds) for different settings in experiments E-2
performing an identification with N = 50, 000, 000 at 33 shifting positions using s = 4.

1 yielding −k or k as result only 3 comparisons are performed in Step 2. This is considered neg-
ligible for an approximation and TripleA is considered performing 15 comparisons per iris-code.
The special case of TripleA is the regular case of TripleA-SS since only a single side is considered
during Step 2. Therefore, the baseline does 33 comparisons, TripleA 15 comparisons and TripleA-
SS 12 comparisons, which results in an approximation of TripleA taking 45% and TripleA-SS only
36% of the time compared to the baseline. These theoretical considerations match the observed
results in Table 4 taking measuring tolerance into account. It means in effect TripleA and TripleA-
SS scale linearly to the number of comparisons relative to the baseline algorithm PPAAQ and all
further k and s combinations can be effectively approximated using the results from E-2. Fig. 9
further depicts that TripleA and TripleA-SS yield no further anomalies that were not present in the
PPAAQ baseline algorithm.

7. Conclusions

In this work we analysed commodity hardware-based iris recognition systems, which perform a
CPU-based exhaustive comparison on a large-scale database. We showed that utilising the POP-
CNT hardware instruction can significantly speed up biometric comparisons based on the Ham-
ming distance. We identified that taking the CPU caches into consideration during the algorithm
design is the most efficient way to circumvent potential RAM bottlenecks. Especially when making
use of multithreading ignoring these caches will lead to bottlenecks and even make the actual com-
parison algorithm secondary since the greatest share of time is claimed by the RAM to CPU data
transfer and not the actual execution of the algorithm. This observation also impacts the reflection
of iris-code comparisons based on GPGPU/CUDA since their speed-up is not only explained due
to the high number of cores (hardware shaders), but also the higher memory bandwidth of Video
RAM (GDDR) compared to common RAM (DDR). Therefore, GPGPU/CUDA implementations
have to deal to a lesser extend with memory bottlenecks. Awareness of cache line sizes on the tar-
get system can also greatly improve the data throughput since it maximises cache hits, particular
in hotspot loops. Taking into account the aforementioned issues, it is shown that, an optimized
conventional CPU-based iris-biometric comparator can achieve a hundredfold speed-up compared
to a naı̈ve baseline comparator. As our 1 : N results with different shifts sizes show, the number
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of comparisons alone is no sufficient statement, since the fitting of all shifted iris-code versions
into the CPU cache is a high performance factor, independent of the actual algorithm or achieved
comparisons per second. Further, our results show that by combining the TripleA algorithm with a
fast multithreaded POPCNT implementation response times of large scale biometric systems can
be further decreased, achieving a more than two-hundredfold overall speed-up. Finally, it is im-
portant to point out that these findings may also be exploited in other software-based acceleration
techniques, e.g. [17].
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