

# Making decisions with biometric systems: the usefulness of a Bayesian perspective

A. Nautsch\*, D. Ramos Castro<sup>†</sup>, J. González Rodríguez<sup>†</sup>, Christian Rathgeb\*, Christoph Busch\*

\*Hochschule Darmstadt, CRISP, CASED, da/sec Security Research Group <sup>†</sup>Universidad Autónoma de Madrid, ATVS Biometric Recognition Group

NIST IBPC'16, Gaithersburg, 03.05.2016

Nautsch, Ramos, et al.



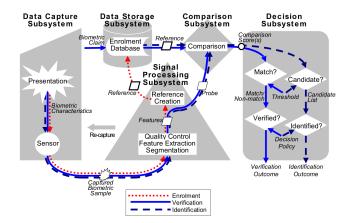
# Outline

- 1. Decision Frameworks in Biometrics and Forensics
- 2. Bayesian Method: making good decisions
- 3. Metrics, operating points and examples
- 4. Conclusion





# Biometric Systems in ISO/IEC JTC1 SC37 SD11



#### ⇒ Note: separate decision subsystem

Nautsch, Ramos, et al.





- <u>Access control</u> Accepted-rejected decision
- Forensic Investigation Decide the k list to investigate e.g., AFIS
- Intelligence Decide where to establish relevant links in a database
- Forensic Evaluation Commnunicate for the court to decide a veredict







- <u>Access control</u> Accepted-rejected decision
- Forensic Investigation
  Decide the k list to investigate e.g., AFIS
- Intelligence Decide where to establish relevant links in a database
- Forensic Evaluation Commnunicate for the court to decide a veredict







- <u>Access control</u> Accepted-rejected decision
- Forensic Investigation
  Decide the k list to investigate e.g., AFIS
- Intelligence
  Decide where to establish relevant links in a database
- Forensic Evaluation Commnunicate for the court to decide a veredict







- <u>Access control</u> Accepted-rejected decision
- Forensic Investigation
  Decide the k list to investigate e.g., AFIS
- Intelligence
  Decide where to establish relevant links in a database
- Forensic Evaluation Commnunicate for the court to decide a veredict

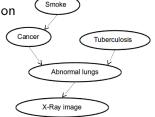








- Decision maker faces multiple sources of information Biometric system is one of them, but also ...
  - Prior knowledge about users/impostors/suspects
  - Other evidence from other biometric systems
  - ...
- Decisions must consider all that information
  - Formalizing decision framework helps
  - Especially in complex problems
  - Example: medical diagnosis support



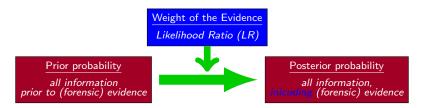




## Bayesian Decisions with Biometric Systems

- A proposal: Bayesian decision theory
  - Decisions are made based on posterior probabilities
  - Considering all the relevant information available
  - Updating strategy: likelihood ratios (LR)

Example biometrics systems in forensic evaluation of the evidence



 I. Evett: Towards a uniform framework for Reporting opinions in forensic science Casework, Science and Justice, 1998.

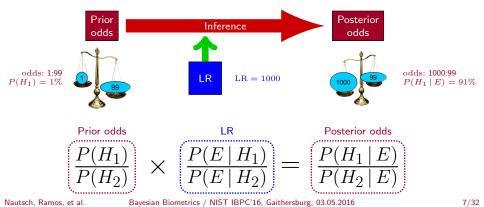
Nautsch, Ramos, et al. Bayesian Biometrics / NIST IBPC'16, Gaithersburg, 03.05.2016





# Value of Evidence: Likelihood Ratio (LR)

- Two-class  $(H_1, H_2)$  decision framework
- Likelihood Ratio: probabilistic value of the evidence, also: the ratio of posterior to prior odds

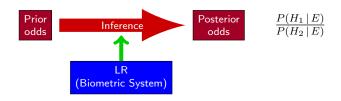






## Decisions Using Biometric Systems

- Binary classes (hypotheses): H<sub>1</sub> and H<sub>2</sub>
- Inference
  - Prior probability, before knowing the biometric system outcome
  - Posterior probability, after the biometric system outcome
  - LR is the value of the biometric evidence
  - $\Rightarrow$  Changes prior odds into posterior odds

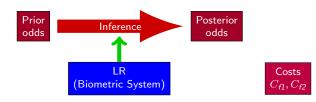






## Decisions Using Biometric Systems

- ► Costs: Penalty of making a wrong decision towards H<sub>1</sub> (C<sub>f1</sub>) or H<sub>2</sub> (C<sub>f2</sub>).
- Can be different example in access control:
  - ▶ is it better to accept an impostor (cost C<sub>f1</sub>)
  - ▶ or to reject a genuine user (cost C<sub>f2</sub>)?



Nautsch, Ramos, et al.





# Decisions Using Biometric Systems

- Decision: Minimum-risk decision i.e.: minimum mean cost
- Decision rule considers
  - Posterior odds
  - Costs

$$P(H_1 \mid E) C_{f1} \stackrel{\geq}{=} P(H_2 \mid E) C_{f2}$$



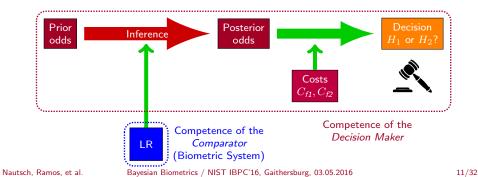
Nautsch, Ramos, et al.





## Decision Process: Competences

- Total separation between
  - The comparator (biometric system outputing a LR)
  - The decision maker (depends on the application)

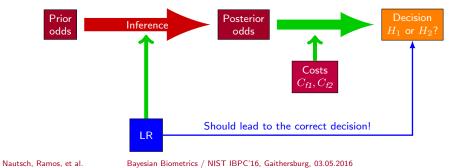






## Decision Process: Consequences

- Duty of the biometric systems: yielding LR values that lead to the correct decisions
  - The LR should support  $H_1$  when  $H_1$  is actually true
  - The LR should support  $H_2$  when  $H_2$  is actually true
- LR values must be calibrated, which leads to better decisions



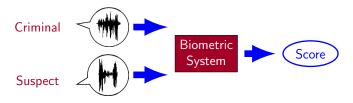


Bayesian Method



# **Biometric Systems**

- Score-based architecture
  - Widely extended
  - Especially in black-box implementations (COTS)



Score: in general the only output of the system

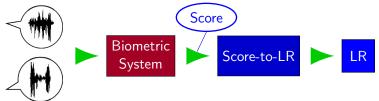
- It may not be directly interpretable as a likelihood ratio
- Depends on its calibration performance





## LR-Based Computation with Biometric Systems

► A further stage is necessary: score-to-LR transformation



- Objective: output discriminating scores
  - Score-based architecture
  - Improve ROC/DET curves

Objective: transforming the score into a meaningful LR

 $\Rightarrow$  Calibration of LRs [2,3]

[2] N. Brümmer and J. du Preez: Application Independent Evaluation of Speaker Detection, Computer Speech and Language, 2006.

 [3] D. Ramos and J. González Rodríguez: Reliable support: Measuring calibration of likelihood ratios, Forensic Science International, 2013.

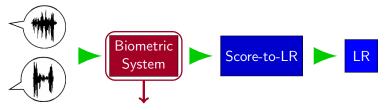
Nautsch, Ramos, et al.





## LR-Based Computation with Biometric Systems

► A further stage is necessary: score-to-LR transformation



- Objective: output discriminating scores
  - Score-based architecture
  - Improve ROC/DET curves

transforming the score into a meaningful LR

 $\Rightarrow$  Calibration of LRs [2,3]

[2] N. Brümmer and J. du Preez: Application Independent Evaluation of Speaker Detection, Computer Speech and Language, 2006.

 [3] D. Ramos and J. González Rodríguez: Reliable support: Measuring calibration of likelihood ratios, Forensic Science International, 2013.

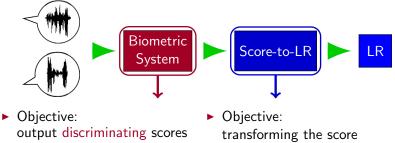
Nautsch, Ramos, et al.





## LR-Based Computation with Biometric Systems

► A further stage is necessary: score-to-LR transformation



- Score-based architecture
- Improve ROC/DET curves
- transforming the score into a meaningful LR
  - $\Rightarrow$  Calibration of LRs [2,3]

[2] N. Brümmer and J. du Preez: Application Independent Evaluation of Speaker Detection, Computer Speech and Language, 2006.

 [3] D. Ramos and J. González Rodríguez: Reliable support: Measuring calibration of likelihood ratios, Forensic Science International, 2013.

Nautsch, Ramos, et al.





## Bayesian Decisions: Advantages

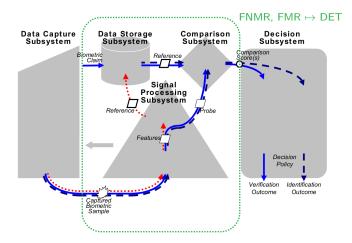
- Competences of the biometric system are delimited:
  - Biometric system: comparator
  - Decision maker: final decision considering all the information
  - Separation of roles: important in some fields (e.g. forensics)!
- Information is integrated formally
  - $\Rightarrow$  LR into a probabilistic framework
- LR computation: great experience in other fields
  - ⇒ Example: forensic biometrics



Nautsch, Ramos, et al.

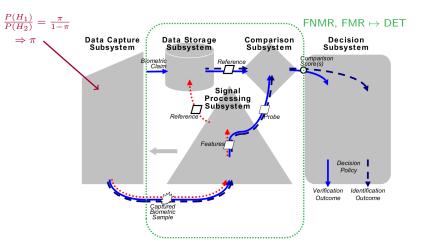






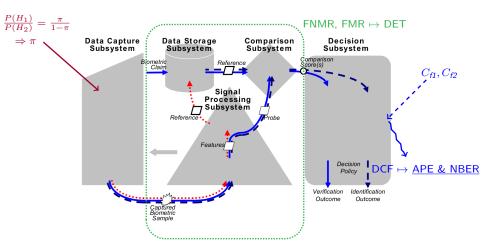






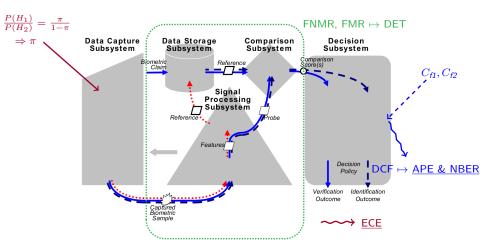






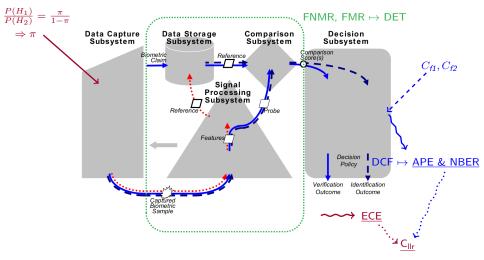










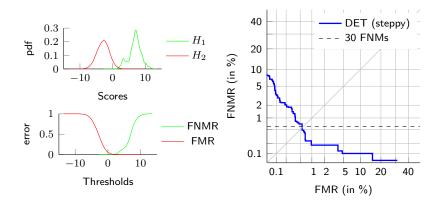


Nautsch, Ramos, et al.





## Detection Error Trade-off (DET) diagrams

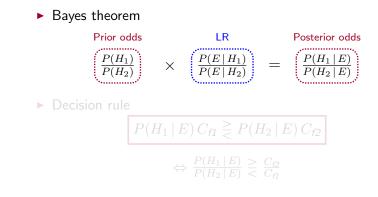


[4] N. Brümmer and E. de Villers: The BOSARIS Toolkit User Guide: Theory, Algorithms and Code for Binary Classifier Score Processing, Tech.Rep. AGNITIO Research, 2011.

Nautsch, Ramos, et al.





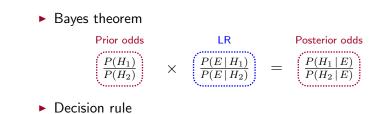


► Bayesian threshold  $\eta$  for Log-LRs (LLRs) by posterior odds  $\eta = \log \frac{C_{I2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)} \gtrsim LLR$ 

Nautsch, Ramos, et al.







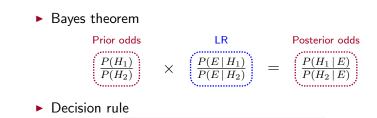
$$P(H_1 \mid E) C_{\mathit{f1}} \underset{<}{\stackrel{>}{\scriptscriptstyle{<}}} P(H_2 \mid E) C_{\mathit{f2}}$$

► Bayesian threshold  $\eta$  for Log-LRs (LLRs) by posterior odds  $\eta = \log \frac{C_{I2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)} \gtrsim LLR$ 

Nautsch, Ramos, et al.







$$P(H_1 \mid E) C_{f1} \stackrel{\geq}{\leq} P(H_2 \mid E) C_{f2}$$

 $\blacktriangleright$  Bayesian threshold  $\eta$  for Log-LRs (LLRs) by posterior odds

$$\eta = \log \frac{C_{f2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)} \gtrless \text{LLR}$$

Nautsch, Ramos, et al.





- ► Bayesian error rate: Decision Cost Function (DCF) DCF( $P(H_1)$ ,  $P(H_2)$ ,  $C_{f1}$ ,  $C_{f2}$ ) =  $P(H_1)$  FNMR( $\eta$ )  $C_{f1}$  +  $P(H_2)$  FMR( $\eta$ )  $C_{f2}$  $\eta = \log \frac{C_{f2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)}$
- ▶ Simplifying the operating point (P(H<sub>1</sub>), P(H<sub>2</sub>), C<sub>f1</sub>, C<sub>f2</sub>) → π

   Mutually exclusive priors: log P(H<sub>2</sub>) = log π = logi π

   DCF(π, C<sub>0</sub>, C<sub>0</sub>) = π FNMR(η) C<sub>0</sub> + (1 − π) FMR(η) C<sub>0</sub>
  - 2. Introducing an effective prior.  $\bar{\pi} = \frac{\pi C_B}{\pi C_B + (1 \pi) C_B}$   $DCF(\bar{\pi}) = \bar{\pi} FNMR(\eta) + (1 - \bar{\pi}) FMR(\eta) = DCF(\pi, 1, 1)$  $\eta = -\log i \bar{\pi}$

#### $\Rightarrow$ meaningful LLR operating points: $\tilde{\pi}$ or $\eta$

[4] N. Brümmer and E. de Villiers: The BOSARIS Toolkit User Guide: Theory, Algorithms and Code for Binary Classifier Score, Tech.Rep., AGNITIO Research, December 2011.

Nautsch, Ramos, et al.





- ► Bayesian error rate: Decision Cost Function (DCF) DCF( $P(H_1)$ ,  $P(H_2)$ ,  $C_{f1}$ ,  $C_{f2}$ ) =  $P(H_1)$  FNMR( $\eta$ )  $C_{f1} + P(H_2)$  FMR( $\eta$ )  $C_{f2}$  $\eta = \log \frac{C_{f2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)}$
- Simplifying the operating point (P(H<sub>1</sub>), P(H<sub>2</sub>), C<sub>f1</sub>, C<sub>f2</sub>) → π
  1. Mutually exclusive priors: log P(H<sub>1</sub>)/P(H<sub>2</sub>) = log π/(1-π) = logit π
  DCF(π, C<sub>f2</sub>, C<sub>f2</sub>) = π FNMR(η) C<sub>f2</sub> + (1 π) FMR(η) C<sub>f2</sub>
  - 2. Introducing an effective prior.  $\tilde{\pi} = \frac{\pi C_{ll}}{\pi C_{ll} + (1-\pi) C_{l2}}$   $DCF(\tilde{\pi}) = \tilde{\pi} FNMR(\eta) + (1-\tilde{\pi}) FMR(\eta) = DCF(\pi, 1, 1)$  $\eta = -\log it \tilde{\pi}$

#### $\Rightarrow$ meaningful LLR operating points: $\tilde{\pi}$ or $\eta$

[4] N. Brümmer and E. de Villiers: The BOSARIS Toolkit User Guide: Theory, Algorithms and Code for Binary Classifier Score, Tech.Rep., AGNITIO Research, December 2011.

Nautsch, Ramos, et al.





- ► Bayesian error rate: Decision Cost Function (DCF) DCF( $P(H_1)$ ,  $P(H_2)$ ,  $C_{f1}$ ,  $C_{f2}$ ) =  $P(H_1)$  FNMR( $\eta$ )  $C_{f1} + P(H_2)$  FMR( $\eta$ )  $C_{f2}$  $\eta = \log \frac{C_{f2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)}$
- Simplifying the operating point (P(H<sub>1</sub>), P(H<sub>2</sub>), C<sub>f1</sub>, C<sub>f2</sub>) → π
  1. Mutually exclusive priors: log P(H<sub>1</sub>)/P(H<sub>2</sub>) = log π/(1-π) = logit π
  DCF(π, C<sub>f1</sub>, C<sub>f2</sub>) = π FNMR(η) C<sub>f1</sub> + (1 − π) FMR(η) C<sub>f2</sub>
  - 2. Introducing an effective prior.  $\tilde{\pi} = \frac{\pi C_{ll}}{\pi C_{ll} + (1-\pi) C_{l2}}$   $DCF(\tilde{\pi}) = \tilde{\pi} FNMR(\eta) + (1-\tilde{\pi}) FMR(\eta) = DCF(\pi, 1, 1)$  $\eta = -\log it \tilde{\pi}$

#### $\Rightarrow$ meaningful LLR operating points: $\tilde{\pi}$ or $\eta$

[4] N. Brümmer and E. de Villiers: The BOSARIS Toolkit User Guide: Theory, Algorithms and Code for Binary Classifier Score, Tech.Rep., AGNITIO Research, December 2011.

Nautsch, Ramos, et al.





- ► Bayesian error rate: Decision Cost Function (DCF) DCF( $P(H_1)$ ,  $P(H_2)$ ,  $C_{f1}$ ,  $C_{f2}$ ) =  $P(H_1)$  FNMR( $\eta$ )  $C_{f1} + P(H_2)$  FMR( $\eta$ )  $C_{f2}$  $\eta = \log \frac{C_{f2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)}$
- Simplifying the operating point (P(H<sub>1</sub>), P(H<sub>2</sub>), C<sub>f1</sub>, C<sub>f2</sub>) → π
  1. Mutually exclusive priors: log P(H<sub>1</sub>)/P(H<sub>2</sub>) = log π/(1-π) = logit π
  DCF(π, C<sub>f1</sub>, C<sub>f2</sub>) = π FNMR(η) C<sub>f1</sub> + (1 − π) FMR(η) C<sub>f2</sub>
  - 2. Introducing an effective prior.  $\tilde{\pi} = \frac{\pi C_{fl}}{\pi C_{fl} + (1-\pi) C_{f2}}$

$$DCF(\tilde{\pi}) = \tilde{\pi} FNMR(\eta) + (1 - \tilde{\pi}) FMR(\eta) = DCF(\pi, 1, 1)$$

 $\eta = -\log it \,\tilde{\pi}$ 

#### $\Rightarrow$ meaningful LLR operating points: $\tilde{\pi}$ or $\eta$

[4] N. Brümmer and E. de Villiers: The BOSARIS Toolkit User Guide: Theory, Algorithms and Code for Binary Classifier Score, Tech.Rep., AGNITIO Research, December 2011.

Nautsch, Ramos, et al.





- ► Bayesian error rate: Decision Cost Function (DCF) DCF( $P(H_1)$ ,  $P(H_2)$ ,  $C_{f1}$ ,  $C_{f2}$ ) =  $P(H_1)$  FNMR( $\eta$ )  $C_{f1} + P(H_2)$  FMR( $\eta$ )  $C_{f2}$  $\eta = \log \frac{C_{f2}}{C_{f1}} - \log \frac{P(H_1)}{P(H_2)}$
- Simplifying the operating point (P(H<sub>1</sub>), P(H<sub>2</sub>), C<sub>f1</sub>, C<sub>f2</sub>) → π
  1. Mutually exclusive priors: log P(H<sub>1</sub>)/P(H<sub>2</sub>) = log π/(1-π) = logit π
  DCF(π, C<sub>f1</sub>, C<sub>f2</sub>) = π FNMR(η) C<sub>f1</sub> + (1 π) FMR(η) C<sub>f2</sub>
  - 2. Introducing an *effective prior*:  $\tilde{\pi} = \frac{\pi C_{fl}}{\pi C_{fl} + (1-\pi) C_{f2}}$

 $DCF(\tilde{\pi}) = \tilde{\pi} FNMR(\eta) + (1 - \tilde{\pi}) FMR(\eta) = DCF(\pi, 1, 1)$ 

 $\eta = -\log it \,\tilde{\pi}$ 

### $\Rightarrow$ meaningful LLR operating points: $\tilde{\pi}$ or $\eta$

[4] N. Brümmer and E. de Villiers: The BOSARIS Toolkit User Guide: Theory, Algorithms and Code for Binary Classifier Score, Tech.Rep., AGNITIO Research, December 2011.

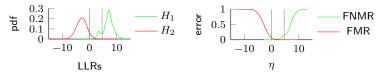
Nautsch, Ramos, et al.



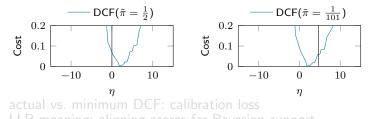


## Example on Decision Cost Functions (DCFs)

Speaker recognition ivec/PLDA scores (I4U list/NIST SRE'12)



• Example: DCF(1:1,  $\eta = 0$ ) vs. DCF(1:100,  $\eta \approx 4.6$ )

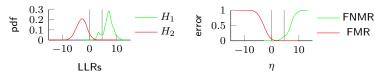


Nautsch, Ramos, et al.

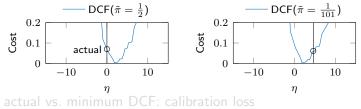


## Example on Decision Cost Functions (DCFs)

Speaker recognition ivec/PLDA scores (I4U list/NIST SRE'12)



• Example: DCF(1:1,  $\eta = 0$ ) vs. DCF(1:100,  $\eta \approx 4.6$ )



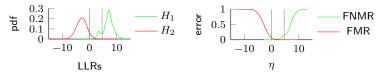
> LLR meaning: aligning scores for Bayesian support

Nautsch, Ramos, et al.

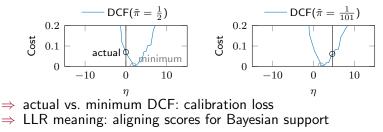


## Example on Decision Cost Functions (DCFs)

Speaker recognition ivec/PLDA scores (I4U list/NIST SRE'12)



• Example: DCF(1:1,  $\eta = 0$ ) vs. DCF(1:100,  $\eta \approx 4.6$ )



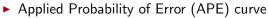
Nautsch, Ramos, et al.

da/sec

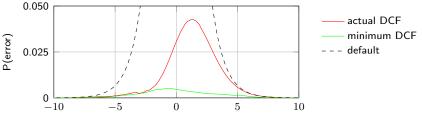
H GROUP







- Simulating DCFs on multiple operating points
- default: all LLRs = 0, i.e.:  $DCF = \tilde{\pi} + (1 \tilde{\pi})$
- ► Area-under-APE: cost of LLR scores ⇒ Goodness of LLRs: C<sub>IIr</sub>



logit  $\tilde{\pi} = -\eta$ 

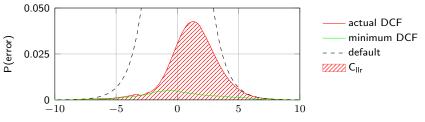
 [5] N. Brümmer: FoCal: Tools for Fusion and Calibration of automatic speaker detection systems, Tech.Rep., 2005.
 [6] D.A. van Leeuwen and N. Brümmer: An Introduction to Application-Independent Evaluation of Speaker Recognition Systems, Speaker Classification 1: Fundamentals, Features, and Methods, Springer LNCS, 2007.

Nautsch, Ramos, et al.





- Applied Probability of Error (APE) curve
  - Simulating DCFs on multiple operating points
  - default: all LLRs = 0, i.e.: DCF =  $\tilde{\pi} + (1 \tilde{\pi})$
  - ► Area-under-APE: cost of LLR scores ⇒ Goodness of LLRs: C<sub>IIr</sub>



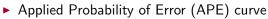
logit  $\tilde{\pi} = -\eta$ 

 [5] N. Brümmer: FoCal: Tools for Fusion and Calibration of automatic speaker detection systems, Tech.Rep., 2005.
 [6] D.A. van Leeuwen and N. Brümmer: An Introduction to Application-Independent Evaluation of Speaker Recognition Systems, Speaker Classification I: Fundamentals, Features, and Methods, Springer LNCS, 2007.

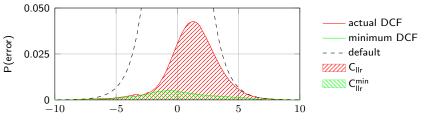
Nautsch, Ramos, et al.







- Simulating DCFs on multiple operating points
- default: all LLRs = 0, i.e.: DCF =  $\tilde{\pi} + (1 \tilde{\pi})$
- ► Area-under-APE: cost of LLR scores ⇒ Goodness of LLRs: C<sub>IIr</sub>



logit  $\tilde{\pi} = -\eta$ 

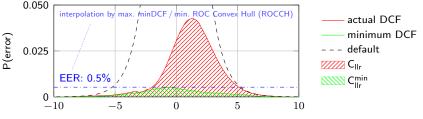
 [5] N. Brümmer: FoCal: Tools for Fusion and Calibration of automatic speaker detection systems, Tech.Rep., 2005.
 [6] D.A. van Leeuwen and N. Brümmer: An Introduction to Application-Independent Evaluation of Speaker Recognition Systems, Speaker Classification I: Fundamentals, Features, and Methods, Springer LNCS, 2007.

Nautsch, Ramos, et al.





- Applied Probability of Error (APE) curve
  - Simulating DCFs on multiple operating points
  - default: all LLRs = 0, i.e.: DCF =  $\tilde{\pi} + (1 \tilde{\pi})$
  - ► Area-under-APE: cost of LLR scores ⇒ Goodness of LLRs: C<sub>IIr</sub>



logit  $\tilde{\pi} = -\eta$ 

 [5] N. Brümmer: FoCal: Tools for Fusion and Calibration of automatic speaker detection systems, Tech.Rep., 2005.
 [6] D.A. van Leeuwen and N. Brümmer: An Introduction to Application-Independent Evaluation of Speaker Recognition Systems, Speaker Classification I: Fundamentals, Features, and Methods, Springer LNCS, 2007.

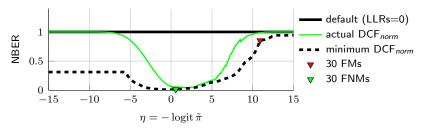
Nautsch, Ramos, et al.





## Normalized Bayesian Error Rate (NBER)

- APE-plot visually misleading on error impact
  - EER operating point: lots of scores to mismatch
  - FMR1000 operating point: few scores to mismatch
- Normalizing by default performance
  wider range of operating points can be compared



[4] N. Brümmer and E. de Villiers: The BOSARIS Toolkit User Guide: Theory, Algorithms and Code for Binary Classifier Score, Tech.Rep., AGNITIO Research, December 2011.

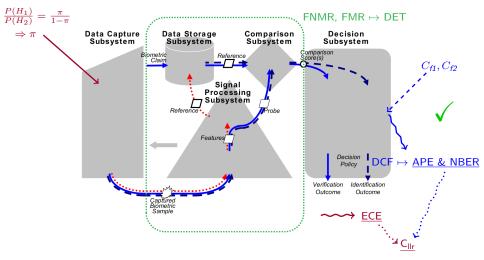
Note: in the BOSARIS toolkit, the x-axis is swapped, i.e.: depicting purely the effective prior.

Nautsch, Ramos, et al.





# Revisiting ISO/IEC JTC1 SC37 SD11



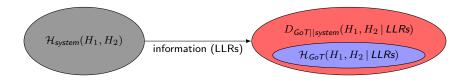
Nautsch, Ramos, et al.





## Empirical Cross-Entropy (ECE)

- Objective measure of performance
- Motivation by Information Theory
  - ► Prior entropy  $\xrightarrow{\text{Evidence}}$  Posterior entropy
  - Divergence of system to Grund-of-Truth (GoT)
  - ► ECE: approximating Kullback-Leibler divergence D<sub>GoT||system</sub>

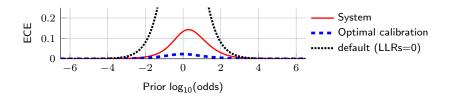






## Empirical Cross-Entropy (ECE)

- We expect the reference, but obtain the system's LLRs
- Measuring performance of LR in terms of uncertainty
  - ► The lower the better Calibration loss: overall performance ⇔ discriminating power
  - $C_{IIr}$  at log(odds) = 0  $\Rightarrow$  no information on  $H_1/H_2$  prior



[7] D. Ramos Castro and J. González Rodríguez: Cross-entropy Analysis of the Information in Forensic Speaker Recognition, Odyssey, 2008.

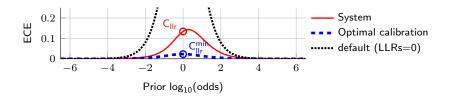
Nautsch, Ramos, et al.





## Empirical Cross-Entropy (ECE)

- We expect the reference, but obtain the system's LLRs
- Measuring performance of LR in terms of uncertainty
  - ► The lower the better Calibration loss: overall performance ⇔ discriminating power
  - $C_{IIr}$  at log(odds) = 0  $\Rightarrow$  no information on  $H_1/H_2$  prior



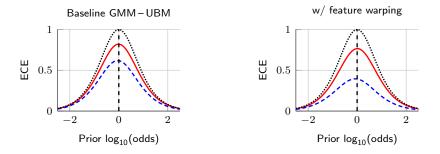
[7] D. Ramos Castro and J. González Rodríguez: Cross-entropy Analysis of the Information in Forensic Speaker Recognition, Odyssey, 2008.

Nautsch, Ramos, et al.





- Signature recognition [8]
  - Performance of feature space normalization
  - Simulation of application-independent decision performances



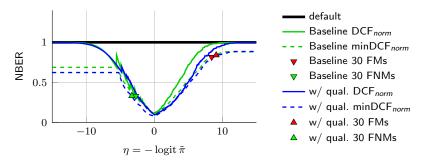
[8] A. Nautsch, C. Rathgeb, C. Busch: Bridging Gaps: An Application of Feature Warping to Online Signature Verification, ICCST, 2014.

Nautsch, Ramos, et al.





- Speaker recognition [9]
  - ▶ Overview of application-dependent decision costs in 10 dB/10 s
  - Conventional score normalization vs. quality-based



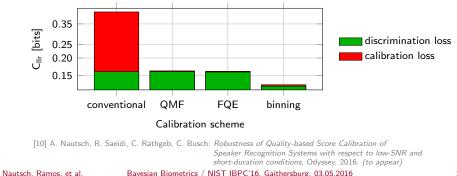
[9] A. Nautsch, R. Saeidi, C. Rathgeb, C. Busch: Analysis of mutual duration and noise effects in speaker recognition: benefits of condition-matched cohort selection in score normalization, Interspeech, 2015.

Nautsch, Ramos, et al.





- Speaker recognition [10]
  - Examining calibration schemes in 55 quality conditions
  - Discrimination vs. calibration loss on 55-pooled
  - Goal: approx. binning performance, avoiding binning







- Recurring challenges in biometrics
  - ► NIST Speaker Recognition Evaluation (SRE) ⇒ DCFs (since 1996) & C<sub>IIr</sub> (since 2006)
  - ► ICDAR Competition on Signature Verification and Writer Identification (SigWIcomp)
     ⇒ C<sub>IIr</sub> & C<sup>min</sup><sub>IIr</sub> (both since 2011)
- ▶ Non-biometric forensics [11]
  - Glass objects
  - Car paints
  - Inks

[11] G. Zadora, A. Martyna, D. Ramos, C. Aitken: Statistical Analysis in Forensic Science: Evidential Values of Multivariate Physicochemical Data, John Wiley and Sons, 2014.

Nautsch, Ramos, et al.



Conclusion



## Summary

- Bayesian decision framework
  - Bayes theorem & decision rule enploying costs
  - Biometric systems: generator of Bayesian support (LLRs)
  - Decisions by posterior knowledge of priors and LLR score
- Score-to-LLR calibration: meaningful LLRs
  - Necessary step, requiring a calibration data set
  - Essential for validation/accredetation
- Performance reporting
  - Decoupled decision policy
  - APE curves
  - NBER diagrams
  - ECE plots
  - ► Scalars: actDCF, minDCF, C<sub>llr</sub> & C<sup>min</sup><sub>llr</sub>

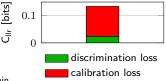


Conclusion



## Summary

- Bayesian decision framework
  - Bayes theorem & decision rule enploying costs
  - Biometric systems: generator of Bayesian support (LLRs)
  - Decisions by posterior knowledge of priors and LLR score
- Score-to-LLR calibration: meaningful LLRs
  - Necessary step, requiring a calibration data set
  - Essential for validation/accredetation
- Performance reporting
  - Decoupled decision policy
  - APE curves
  - NBER diagrams
  - ECE plots
  - Scalars: actDCF, minDCF, C<sub>IIr</sub> & C<sup>min</sup><sub>IIr</sub>

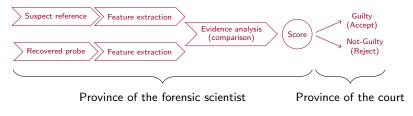






#### Perspectives

- From forensics to biometrics in general
- Forensics: distinct separation of role provinces



 $\Rightarrow$  Non-forensic biometric companion/equivalent





#### Conclusion



## Application fields

- Operating point independent performance reporting
  - $\blacktriangleright$  Discrimination loss  $\mapsto$  Goodness of scores w/o calibration
  - System calibration (meaningful)
  - Forensic state-of-the-art
- ⇒ European Network of Forensic Science Institutre (ENFSI): adopted Bayesian methodology (strong recommendation)
  - Fix-operational testing: no need
- ⇒ But: <u>fundamental</u> in technology testing

This work has been funded by the Center for Advanced Security Research Darmstadt (CASED), and the Hesse government (project no. 467/15-09, BioMobile).



Bayesian Biometrics / NIST IBPC'16, Gaithersburg, 03.05.2016



Exzellente Forschung für Hessens Zukunft





#### Evaluation of evidence strength

- Metrics in the Bayesian Framework
  - ► Application-independent generalization [2]: Goodness of (Log-Likelihood Ratio) scores C<sub>IIr</sub>  $C_{IIr} = \frac{0.5}{|H_1|} \sum_{S \in H_1} \operatorname{ld} \left(1 + e^{-S}\right) + \frac{0.5}{|H_2|} \sum_{S \in H_2} \operatorname{ld} \left(1 + e^{S}\right)$
  - ► Information-theoretic generalization [7]: Empirical Cross-Entropy (ECE) ECE =  $\frac{\pi}{|H_1|} \sum_{S \in H_1} \operatorname{ld} \left( 1 + e^{-(S \frac{\pi}{1-\pi})} \right) + \frac{1-\pi}{|H_2|} \sum_{S \in H_2} \operatorname{ld} \left( 1 + e^{S \frac{\pi}{1-\pi}} \right)$
- Metrics represent (cross-) entropy in bits

#### Performance reporting with decoupled decision layer

[2] N. Brümmer and J. du Preez: Application Independent Evaluation of Speaker Detection, Computer Speech and Language, 2006.

[7] D. Ramos Castro and J. González Rodríguez: Cross-entropy Analysis of the Information in Forensic Speaker Recognition, Odyssey, 2008.

Nautsch, Ramos, et al.





#### Brief introduction to calibration

- Linear: logistic regression (robust model)
  - Transform:  $S_{cal.} = w_0 + w_1 S$
- ► Non-linear: Pool-Adjacent-Violator (PAV) algorithm (optimal)
  - Transform: monotonic, non-parametric mapping function

