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Christian Rathgeb?, Christoph Busch?

?Hochschule Darmstadt, CRISP, CASED, da/sec Security Research Group
†Universidad Autónoma de Madrid, ATVS Biometric Recognition Group

NIST IBPC’16, Gaithersburg, 03.05.2016

Nautsch, Ramos, et al. Bayesian Biometrics / NIST IBPC’16, Gaithersburg, 03.05.2016 1/32



Outline

1. Decision Frameworks in Biometrics and Forensics

2. Bayesian Method: making good decisions

3. Metrics, operating points and examples

4. Conclusion

Nautsch, Ramos, et al. Bayesian Biometrics / NIST IBPC’16, Gaithersburg, 03.05.2016 2/32



Decision Frameworks

Biometric Systems in ISO/IEC JTC1 SC37 SD11

⇒ Note: separate decision subsystem
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Decision Frameworks

Making Decisions with Biometric Systems

Decisions are involved in most applications of biometric systems

I Access control
Accepted-rejected decision

I Forensic Investigation
Decide the k list to investigate
e.g., AFIS

I Intelligence
Decide where to establish
relevant links in a database

I Forensic Evaluation
Commnunicate for the court
to decide a veredict
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Decision Frameworks

Making Decisions with Biometric Systems

I Decision maker faces multiple sources of information
Biometric system is one of them, but also . . .

I Prior knowledge about users/impostors/suspects
I Other evidence from other biometric systems
I . . .

I Decisions must consider all that information
I Formalizing decision framework helps
I Especially in complex problems
I Example: medical diagnosis support
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Bayesian Method

Bayesian Decisions with Biometric Systems

I A proposal: Bayesian decision theory
I Decisions are made based on posterior probabilities
I Considering all the relevant information available
I Updating strategy: likelihood ratios (LR)

Example biometrics systems in forensic evaluation of the evidence

Prior probability

all information
prior to (forensic) evidence

Posterior probability

all information,
inlcuding (forensic) evidence

Weight of the Evidence

Likelihood Ratio (LR)

[1] I. Evett: Towards a uniform framework for Reporting opinions in forensic science Casework,
Science and Justice, 1998.
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Bayesian Method

Value of Evidence: Likelihood Ratio (LR)

I Two-class (H1, H2) decision framework

I Likelihood Ratio: probabilistic value of the evidence,
also: the ratio of posterior to prior odds

Prior
odds

Posterior
odds

Inference

odds: 1:99
P (H1) = 1%

odds: 1000:99
P (H1 |E) = 91%LR LR = 1000

P (H1)
P (H2)

× P (E |H1)
P (E |H2)

= P (H1 |E)
P (H2 |E)

Prior odds LR Posterior odds

Nautsch, Ramos, et al. Bayesian Biometrics / NIST IBPC’16, Gaithersburg, 03.05.2016 7/32



Bayesian Method

Decisions Using Biometric Systems

I Binary classes (hypotheses): H1 and H2

I Inference
I Prior probability, before knowing the biometric system outcome
I Posterior probability, after the biometric system outcome
I LR is the value of the biometric evidence

⇒ Changes prior odds into posterior odds

Prior
odds

Posterior
odds

Inference

LR
(Biometric System)

P (H1 |E)
P (H2 |E)
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Bayesian Method

Decisions Using Biometric Systems

I Costs: Penalty of making a wrong decision
towards H1 (Cf1) or H2 (Cf2).

I Can be different — example in access control:
I is it better to accept an impostor (cost Cf1)
I or to reject a genuine user (cost Cf2)?

Prior
odds

Posterior
odds

Inference

LR
(Biometric System)

Costs
Cf1, Cf2
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Bayesian Method

Decisions Using Biometric Systems

I Decision: Minimum-risk decision
i.e.: minimum mean cost

I Decision rule considers
I Posterior odds
I Costs

Prior
odds

Posterior
odds

Inference

LR
(Biometric System)

Costs
Cf1, Cf2

Decision
H1 or H2?

P (H1 |E)Cf1 R P (H2 |E)Cf2
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Bayesian Method

Decision Process: Competences

I Total separation between
I The comparator (biometric system outputing a LR)
I The decision maker (depends on the application)

Prior
odds

Posterior
odds

Inference

LR

Costs
Cf1, Cf2

Decision
H1 or H2?

Competence of the
Comparator

(Biometric System)

Competence of the
Decision Maker
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Bayesian Method

Decision Process: Consequences

I Duty of the biometric systems:
yielding LR values that lead to the correct decisions

I The LR should support H1 when H1 is actually true
I The LR should support H2 when H2 is actually true

I LR values must be calibrated, which leads to better decisions

Prior
odds

Posterior
odds

Inference

LR

Costs
Cf1, Cf2

Decision
H1 or H2?

Should lead to the correct decision!
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Bayesian Method

Biometric Systems

I Score-based architecture
I Widely extended
I Especially in black-box implementations (COTS)

Criminal

Suspect

Biometric
System Score

I Score: in general the only output of the system
I It may not be directly interpretable as a likelihood ratio
I Depends on its calibration performance
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Bayesian Method

LR-Based Computation with Biometric Systems

I A further stage is necessary: score-to-LR transformation

Biometric
System

Score-to-LR LR

Score

I Objective:
output discriminating scores

I Score-based architecture
I Improve ROC/DET curves

I Objective:
transforming the score
into a meaningful LR

⇒ Calibration of LRs [2,3]

[2] N. Brümmer and J. du Preez: Application Independent Evaluation of Speaker Detection,
Computer Speech and Language, 2006.

[3] D. Ramos and J. González Rodŕıguez: Reliable support: Measuring calibration of likelihood ratios,
Forensic Science International, 2013.
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[3] D. Ramos and J. González Rodŕıguez: Reliable support: Measuring calibration of likelihood ratios,
Forensic Science International, 2013.

Nautsch, Ramos, et al. Bayesian Biometrics / NIST IBPC’16, Gaithersburg, 03.05.2016 14/32



Bayesian Method

LR-Based Computation with Biometric Systems

I A further stage is necessary: score-to-LR transformation

Biometric
System

Score-to-LR LR

I Objective:
output discriminating scores

I Score-based architecture
I Improve ROC/DET curves

I Objective:
transforming the score
into a meaningful LR

⇒ Calibration of LRs [2,3]
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Bayesian Method

Bayesian Decisions: Advantages

I Competences of the biometric system are delimited:
I Biometric system: comparator
I Decision maker: final decision considering all the information
I Separation of roles: important in some fields (e.g. forensics)!

I Information is integrated formally

⇒ LR into a probabilistic framework

I LR computation: great experience in other fields

⇒ Example: forensic biometrics

Prior
odds

Posterior
odds

Inference

LR
(Biometric System)

Costs
Cf1, Cf2

Decision
H1 or H2?
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Metrics and Examples

Revisiting ISO/IEC JTC1 SC37 SD11

FNMR, FMR 7→ DET
P (H1)
P (H2)

= π
1−π

⇒ π

Cf1, Cf2

DCF 7→ APE & NBER

ECE

Cllr
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Metrics and Examples

Detection Error Trade-off (DET) diagrams
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[4] N. Brümmer and E. de Villers: The BOSARIS Toolkit User Guide: Theory, Algorithms and Code for
Binary Classifier Score Processing, Tech.Rep. AGNITIO Research, 2011.
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Metrics and Examples

From Bayesian Decisions to Cost Functions

I Bayes theorem

P (H1)
P (H2)

× P (E |H1)
P (E |H2)

= P (H1 |E)
P (H2 |E)

Prior odds LR Posterior odds

I Decision rule

P (H1 |E)Cf1 R P (H2 |E)Cf2

⇔ P (H1 |E)
P (H2 |E) R

Cf2
Cf1

I Bayesian threshold η for Log-LRs (LLRs) by posterior odds

η = log Cf2
Cf1
− log P (H1)

P (H2)
R LLR
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Metrics and Examples

From Bayesian Decisions to Cost Functions

I Bayesian error rate: Decision Cost Function (DCF)

DCF(P (H1), P (H2), Cf1, Cf2) = P (H1) FNMR(η)Cf1 + P (H2) FMR(η)Cf2

η = log Cf2
Cf1
− log

P (H1)
P (H2)

I Simplifying the operating point (P (H1), P (H2), Cf1, Cf2) 7→ π̃

1. Mutually exclusive priors: log
P (H1)
P (H2)

= log π
1−π = logitπ

DCF(π,Cf1, Cf2) = π FNMR(η)Cf1 + (1− π) FMR(η)Cf2

2. Introducing an effective prior: π̃ = π Cf1
π Cf1 + (1−π)Cf2

DCF(π̃) = π̃ FNMR(η) + (1− π̃) FMR(η) = DCF(π, 1, 1)

η = − logit π̃

⇒ meaningful LLR operating points: π̃ or η

[4] N. Brümmer and E. de Villiers: The BOSARIS Toolkit User Guide: Theory, Algorithms and Code for
Binary Classifier Score, Tech.Rep., AGNITIO Research, December 2011.
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Metrics and Examples

Example on Decision Cost Functions (DCFs)

I Speaker recognition ivec/PLDA scores (I4U list/NIST SRE’12)
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I Example: DCF(1:1, η = 0) vs. DCF(1:100, η ≈ 4.6)
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⇒ actual vs. minimum DCF: calibration loss
⇒ LLR meaning: aligning scores for Bayesian support
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Metrics and Examples

Visualizing DCFs

I Applied Probability of Error (APE) curve
I Simulating DCFs on multiple operating points
I default: all LLRs = 0, i.e.: DCF = π̃ + (1− π̃)
I Area-under-APE: cost of LLR scores
⇒ Goodness of LLRs: Cllr

−10 −5 0 5 10
0

0.025

0.050

logit π̃ = −η

P
(e

rr
or

)

actual DCF

minimum DCF

default

[5] N. Brümmer: FoCal: Tools for Fusion and Calibration of automatic speaker detection systems, Tech.Rep., 2005.

[6] D.A. van Leeuwen and N. Brümmer: An Introduction to Application-Independent Evaluation of Speaker
Recognition Systems, Speaker Classification I: Fundamentals, Features,
and Methods, Springer LNCS, 2007.
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I Area-under-APE: cost of LLR scores
⇒ Goodness of LLRs: Cllr
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[5] N. Brümmer: FoCal: Tools for Fusion and Calibration of automatic speaker detection systems, Tech.Rep., 2005.

[6] D.A. van Leeuwen and N. Brümmer: An Introduction to Application-Independent Evaluation of Speaker
Recognition Systems, Speaker Classification I: Fundamentals, Features,
and Methods, Springer LNCS, 2007.
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Metrics and Examples

Normalized Bayesian Error Rate (NBER)

I APE-plot visually misleading on error impact
I EER operating point: lots of scores to mismatch
I FMR1000 operating point: few scores to mismatch

I Normalizing by default performance
⇒ wider range of operating points can be compared
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[4] N. Brümmer and E. de Villiers: The BOSARIS Toolkit User Guide: Theory, Algorithms and Code for Binary
Classifier Score, Tech.Rep., AGNITIO Research, December 2011.

Note: in the BOSARIS toolkit, the x-axis is swapped, i.e.: depicting purely the effective prior.
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Metrics and Examples

Revisiting ISO/IEC JTC1 SC37 SD11

FNMR, FMR 7→ DET
P (H1)
P (H2)

= π
1−π

⇒ π

Cf1, Cf2

DCF 7→ APE & NBER

X

ECE

Cllr
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Metrics and Examples

Empirical Cross-Entropy (ECE)

I Objective measure of performance

I Motivation by Information Theory

I Prior entropy
Evidence−−−−−−−−−−→

Information gain
Posterior entropy

I Divergence of system to Grund-of-Truth (GoT)
I ECE: approximating Kullback-Leibler divergence DGoT||system

Hsystem(H1, H2)
DGoT||system(H1, H2 | LLRs)

HGoT(H1, H2 | LLRs)
information (LLRs)
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Metrics and Examples

Empirical Cross-Entropy (ECE)

I We expect the reference, but obtain the system’s LLRs

I Measuring performance of LR in terms of uncertainty
I The lower the better

Calibration loss: overall performance ⇔ discriminating power
I Cllr at log(odds) = 0 ⇒ no information on H1/H2 prior
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default (LLRs=0)

[7] D. Ramos Castro and J. González Rodŕıguez: Cross-entropy Analysis of the Information in
Forensic Speaker Recognition, Odyssey, 2008.

Nautsch, Ramos, et al. Bayesian Biometrics / NIST IBPC’16, Gaithersburg, 03.05.2016 25/32



Metrics and Examples

Empirical Cross-Entropy (ECE)

I We expect the reference, but obtain the system’s LLRs

I Measuring performance of LR in terms of uncertainty
I The lower the better

Calibration loss: overall performance ⇔ discriminating power
I Cllr at log(odds) = 0 ⇒ no information on H1/H2 prior

−6 −4 −2 0 2 4 6
0

0.1

0.2
Cllr

Cmin
llr

Prior log10(odds)

E
C

E

System

Optimal calibration

default (LLRs=0)
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Metrics and Examples

Examples

I Signature recognition [8]
I Performance of feature space normalization
I Simulation of application-independent decision performances
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[8] A. Nautsch, C. Rathgeb, C. Busch: Bridging Gaps: An Application of Feature Warping to
Online Signature Verification, ICCST, 2014.
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Metrics and Examples

Examples

I Speaker recognition [9]
I Overview of application-dependent decision costs in 10 dB/10 s
I Conventional score normalization vs. quality-based
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[9] A. Nautsch, R. Saeidi, C. Rathgeb, C. Busch: Analysis of mutual duration and noise effects in speaker
recognition: benefits of condition-matched cohort selection
in score normalization, Interspeech, 2015.
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Metrics and Examples

Examples

I Speaker recognition [10]
I Examining calibration schemes in 55 quality conditions
I Discrimination vs. calibration loss on 55-pooled
I Goal: approx. binning performance, avoiding binning

conventional QMF FQE binning
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[10] A. Nautsch, R. Saeidi, C. Rathgeb, C. Busch: Robustness of Quality-based Score Calibration of
Speaker Recognition Systems with respect to low-SNR and
short-duration conditions, Odyssey, 2016. (to appear)
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Metrics and Examples

Examples

I Recurring challenges in biometrics
I NIST Speaker Recognition Evaluation (SRE)
⇒ DCFs (since 1996) & Cllr (since 2006)

I ICDAR Competition on Signature Verification and Writer
Identification (SigWIcomp)
⇒ Cllr & Cmin

llr (both since 2011)

I Non-biometric forensics [11]
I Glass objects
I Car paints
I Inks

[11] G. Zadora, A. Martyna, D. Ramos, C. Aitken: Statistical Analysis in Forensic Science: Evidential Values of
Multivariate Physicochemical Data, John Wiley and Sons, 2014.
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Conclusion

Summary

I Bayesian decision framework
I Bayes theorem & decision rule enploying costs
I Biometric systems: generator of Bayesian support (LLRs)
I Decisions by posterior knowledge of priors and LLR score

I Score-to-LLR calibration: meaningful LLRs
I Necessary step, requiring a calibration data set
I Essential for validation/accredetation

I Performance reporting
I Decoupled decision policy
I APE curves
I NBER diagrams
I ECE plots
I Scalars: actDCF, minDCF, Cllr & Cmin

llr
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Conclusion

Perspectives

I From forensics to biometrics in general

I Forensics: distinct separation of role provinces

Suspect reference Feature extraction

Recovered probe Feature extraction

Evidence analysis
(comparison) Score

Guilty
(Accept)

Not-Guilty
(Reject)

Province of the forensic scientist Province of the court

⇒ Non-forensic biometric companion/equivalent

...

vendor system

...

customer decision policy

Note: neither forensic scientists nor courts shall be automated, its an analogue.
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Conclusion

Application fields

I Operating point independent performance reporting
I Discrimination loss 7→ Goodness of scores w/o calibration
I System calibration (meaningful)
I Forensic state-of-the-art

⇒ European Network of Forensic Science Institutre (ENFSI):
adopted Bayesian methodology (strong recommendation)

I Fix-operational testing: no need

⇒ But: fundamental in technology testing

This work has been funded by the Center for Advanced Security Research Darmstadt
(CASED), and the Hesse government (project no. 467/15-09, BioMobile).
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Evaluation of evidence strength

I Metrics in the Bayesian Framework
I Application-independent generalization [2]:

Goodness of (Log-Likelihood Ratio) scores Cllr

Cllr =
0.5
|H1|

∑
S∈H1

ld
(
1 + e−S

)
+ 0.5
|H2|

∑
S∈H2

ld
(
1 + eS

)
I Information-theoretic generalization [7]:

Empirical Cross-Entropy (ECE)

ECE = π
|H1|

∑
S∈H1

ld
(
1 + e

−(S π
1−π

)
)
+ 1−π
|H2|

∑
S∈H2

ld
(
1 + e

S π
1−π

)

I Metrics represent (cross-) entropy in bits

I Performance reporting with decoupled decision layer
[2] N. Brümmer and J. du Preez: Application Independent Evaluation of Speaker Detection,

Computer Speech and Language, 2006.

[7] D. Ramos Castro and J. González Rodŕıguez: Cross-entropy Analysis of the Information in
Forensic Speaker Recognition, Odyssey, 2008.
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Brief introduction to calibration

I Linear: logistic regression (robust model)
I Transform: Scal. = w0 + w1 S

I Non-linear: Pool-Adjacent-Violator (PAV) algorithm (optimal)
I Transform: monotonic, non-parametric mapping function
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