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A B S T R A C T

In the modern society, biometrics is gaining more and more in impor-
tance, particularly facilitated by the increasing usage of multi-factor
authentication. Due to the advancing distribution of mobile phones,
speaker recognition plays a special role.

Despite all the advantages of biometrics, the vulnerability of the sys-
tems against attacks is still an existing weakness. In particular, speaker
recognition systems are threatened. Due to the sophisticated research
in the field of speech synthesis, a wide rage of effective methodolo-
gies for attacking speaker recognition systems is easy to utilize: i.e.
replay, speech synthesis and unit-selection.

State-of-the-art countermeasures are successful in detecting synthe-
sis and voice conversion attacks, but fail on detecting unit-selection
attacks. The impact of these attacks to state-of-the-art speaker recog-
nition systems is analysed. Thus, the focus of this thesis motivates:
the creation and detection of unit-selection attacks, proposing a new
countermeasure based on the principle of frequency analysis. For the
evaluation of the experiments the metrics introduced in ISO/IEC CD2
30107-3 are utilized. Detection techniques of current research are dis-
cussed and new detection algorithms proposed. In contrast to con-
ventional attack detection algorithms, which utilize feature extraction
methods, known in the field of speech recognition for modelling the
perception of sound by the human ear, the proposed algorithms dis-
claim the use of these filters and analyses the unfiltered frequency
band.

By calculating a presentation attack score with the sum of the deriva-
tive in the frequency spectrum, an EER of 29.7% is yielded. An ap-
proach utilizing frequency-based features and machine learning tech-
niques, i.e. SVMs and GMMs, improves the detection performance to
7.1% EER and 11.7% respectively on the unit-selection attacks of the
Interspeech special session ASVspoof 2015.

IV



Z U S A M M E N FA S S U N G

Biometrie gewinnt in der modernen Gesellschaft, insbesondere durch
die zunehmende Verwendung der Mehr-Faktor-Authentifizierung, ei-
ne immer größere Bedeutung. Dabei wird die Sprechererkennung,
gefördert durch die Verbreitung des Mobiltelefons, weiterhin eine
Sonderrolle einnehmen.

Trotz aller Vorteile biometrischer Systeme ist die Verwundbarkeit der
Systeme durch Angriffe ein bestehender Schwachpunkt. Die Sprecher-
erkennung ist davon besonders betroffen, da hier aufgrund der fort-
geschrittenen Forschung im Bereich der Sprachsynthese bereits effek-
tive Angriffsmöglichkeiten existieren.

Aktuelle Methoden zur Angriffserkennung sind effektiv bei der Erken-
nung von synthetischen und stimmumformenden Angriffen, versagen
jedoch bei der Erkennung von Unit-Selection Angriffen. Untersucht
wird die Auswirkung dieser Angriffe auf Erkennungssysteme, welche
dem aktuellen Stand der Technik entsprechen. Daher befasst sich
diese Arbeit mit der Erstellung und Erkennung von Unit-Selection
Angriffen. Die Auswertung der Experimente wird entsprechend der
in ISO/IEC CD2 30107-3 vorgestellten Metriken durchgeführt. Erken-
nungsalgorithmen aus der aktuellen Forschung werden diskutiert und
neue Methoden vorgeschlagen. Im Gegensatz zu herkömmlichen Al-
gorithmen, welche zur Angriffserkennung Merkmalsextraktionsver-
fahren der Sprach- und Sprechererkennung verwenden, um die men-
schliche Wahrnehmung nachzubilden, analysiert der vorgestellte Al-
gorithmus keine Filter, sondern berücksichtigt das gesamte Frequen-
zspektrum gleichermaßen.

Die Bestimmung eines Angriffswertes mittels Summe über die Ab-
leitung des Frequenzspektrums zeigt eine Gleichfehlerrate von 29,7%.
Werden Merkmalsvektoren der Frequenzanalyse mit Techniken des
maschinellen Lernens kombiniert, so wird auf den Evaluationsdaten
eine Gleichfehlerrate von 7,1% und auf den Unit-Selection Angriffen
der Interspeech Special Session ASVspoof 2015 von 11,7% erreicht.
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Part I

B I O M E T R I C S A N D S P E A K E R R E C O G N I T I O N



1
I N T R O D U C T I O N

1.1 motivation

Biometrics describes the biological and behavioural characteristic of
an individual from which distinguishing, repeatable biometric fea-
tures can be extracted for the purpose of biometric recognition [1].
The advantage of biometric recognition over common authentication
methods, based on passwords of physical tokens, is the impossibil-
ity of losing, forgetting, or passing the biometric characteristic [2].
If someone acquires possession of the biometric feature of someone
else, the characteristic and its features cannot be changed or replaced.

Important properties for the comprehensive use of a biometric sys-
tem are the acceptability of the biometric capture process and the
universality of the biometric characteristic that is used [2, 3, p. 15]. If,
for example, the fingerprint utilised for identification, subjects with
dermatological diseases may not be enrolled in systems which cap-
ture the structure of the upper dermal layer. If the biometric capture
process is complicated, awkward or painful (inconvenient), it is less
likely for the user to accept the biometric system.

The voice, as a biometric characteristic, is of particular interest as
it is captured contactless and by low-cost sensors. In order to be ro-
bust against manipulation, further research is necessary. Especially
the detection of replay and unit-selection attacks, which are based
on the concatenation of speech units, is still crucial to state-of-the-art
speaker recognition systems. Current research provides promising ap-
proaches for detecting synthesis and voice conversion attacks which
can be followed up [4, 5, 6].

1.1.1 Speaker Recognition

Speaker recognition refers to determining subjects by their voice [7].
It can be used for identification and verification in security applica-
tions or for forensic scenarios. Unlike most biometric methods, which
are based on analysis of images, speaker recognition utilises voice or
speech recordings and features derived thereof. Such features can be
extracted by several methods.

The voice as a biometric characteristic is gaining importance. Espe-
cially the flexibility and universality of the capturing process makes
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1.2 research questions 3

speaker recognition interesting. Voice is a naturally produced sig-
nal [8]. It can easily be recorded with low-cost standard microphones
under most conditions. In the case of mobile phones, most people, in
particular the target group of business people, carry along a smart-
phone embedded microphone, which is designed for speech record-
ing.

1.1.2 Presentation Attack Detection

Any biometric system is potentially vulnerable to attacks [9], thus a
detection of attacks is required. As a common method for detecting
replay attacks, liveness detection is used. Exemplary, for face recogni-
tion, analysis of the blinking can be applied to detect replays [10].

As any other biometric system, Speaker Identification Verification
(SIV) systems are also vulnerable to attacks. As the field of speech
synthesis is well studied, a broad range of effective attacks is avail-
able [11]. The synthesized voices of the subjects to incorporate are
on such a high degree of quality and detail that conventional SIV al-
gorithms are prone to falsely recognize attacks samples as genuine
human, referred to as bona fide, samples. Especially with the objec-
tive of security-critical applications, further research is necessary for
the purpose of ensuring a certain level of security. The vulnerability
of speaker recognition systems for different attacks, such as replay
[12] or speech synthesis [13] has been shown multiple times. There
are approaches for detection and countermeasures, but they assume
previous knowledge of the attack [14].

1.2 research questions

As the required performance of a biometric system has to be assessed
by the operator, the research questions do not aim for a binary deci-
sion, but for an error rate for biometric systems in terms of Presenta-
tion Attack Detection (PAD) scores and moreover, the aim for imple-
mentation of reliable PAD subsystems. For the purpose of generating
reproducible and harmonized error reporting, the metrics defined in
ISO/IEC CD2 30107-3 [15] will be used. Following research questions
will be more closely considered in thesis:

1. To which extent are state-of-the-art SIV systems capable of rejecting
unit-selection attacks in the absence of a PAD-system?
The performance of state-of-the-art SIV systems can be mea-
sured evaluating the Equal Error Rate (EER) of the Attack Pre-
sentation Match Rate (APMR) and False Non-Match Rate (FNMR).

2. To which extend is an analysis of the frequency spectrum of speech
samples capable of detecting unit-selection attacks?
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The accuracy of detection algorithms can be evaluated utilising
Bona fide Presentation Classification Error Rate (BPCER) and
Attack Presentation Classification Error Rate (APCER) for de-
termining the EER and calculating a Detection Error Tradeoff
(DET) function.

3. What are the differences in using wavelet-transformation or spectro-
gram for unit-selection PAD?
In order to answer this question, the function of the wavelet-
transformation and Short Time Fourier Transformation (STFT)
will be examined.

1.3 organisation of work

This thesis can be divided into three parts. The first part describes
biometric systems in general and SIV systems more detailed. The sec-
ond part provides a deeper understanding of attacks and PAD for SIV
systems. In the last part, new detection algorithms are introduced,
evaluated, and improved. The content is organized as follows:

Chapter 2: This chapter provides a technical overview. At
the beginning, a global understanding of biometric sys-
tems is given. In the following the focus is set to a more
detailed description of speaker recognition, including the
mandatory signal processing theory and performance met-
rics. An introduction to speech synthesis and machine
learning is given.

Chapter 3: An overview over attacks on biometric systems
is given. Attacks on SIV systems are described in particu-
lar. Performance metrics for PAD are introduced.

Chapter 4: The developed PAD algorithms for unit-selec-
tion attacks are presented. After a description of the ex-
perimental set-up, the basic algorithms are evaluated. In a
second step the basic algorithms are improved and evalu-
ated again.



2
F U N D A M E N TA L S

2.1 biometric systems

In a general context, biometric systems can be understood as an iden-
tity management system. Every identity management system needs a
method of establishing a person’s identity. For this task, traditional
systems employ knowledge-based (e.g. passwords) or token-based
(e.g. keys or ID cards) methods. In contrast, biometric systems ac-
quire biometric data from an subject and extract features from the
acquired data in order to compare it with a database of enrolled bio-
metric samples [2].

2.1.1 Topology

Independent of the modality used by the biometric system, the sys-
tem can be divided into five subsystems. Each subsystem is manda-
tory and has a specific role, which is specified in [16] and depicted in
figure 1.

Figure 1: Topology of a biometric system, according to [16]

5



2.1 biometric systems 6

Data Capture Subsystem: This step converts the biometric character-
istic into a captured biometric sample. A sensor e.g., microphone, con-
verts the represented characteristic e.g., voice, into an electric signal.
Also the concomitance of multiple sensors is possible. The captured
biometric sample is passed to the signal processing subsystem.

Signal Processing Subsystem: The further processing of the captured
biometric sample takes place in the signal processing subsystem. The
features are extracted from the biometric sample. Depending on the
algorithm, a preceding segmentation is needed; some systems incor-
porate a quality control mechanism. Either the created features are
enrolled in the database as reference or they are used as probe for the
comparison.

Data Storage Subsystem: The references of enrolled subjects are man-
aged in the enrolment database of the data storage subsystem. Gen-
erally, the tasks of the data storage subsystem are inserting new ref-
erences into the enrolment database (enrolment), returning all refer-
ences (identification), or returning a specific reference belonging to a
biometric claim (verification).

Comparison Subsystem: The reference, given by the data storage sub-
system, and the probe, generated by the signal processing subsystem,
are compared in the comparison subsystem. This system produces a
comparison score for each compared reference. The comparison score
can be available as similarity score or dissimilarity score.

Decision Subsystem: The last stage in identification and verifica-
tion is the decision subsystem. In order to receive a binary decision,
the scores of the comparison subsystem are assessed by means of a
threshold or other decision policies. The result is a binary decision if
a subject is possibly verified or identified.

2.1.2 Operation Modes

According to ISO/IEC 19795-1 [16], there are three distinct operation
modes for biometric systems: enrolment, verification, and identifica-
tion.

Biometric enrolment: This process refers to the registration a new
reference to the enrolment database. This step is mandatory, as both,
verification and identification, are comparing a probe against refer-
ences stored in a enrolment database. The biometric characteristics
are captured as a biometric sample via the data capture subsystem.
In order to obtain a reference, the features are extracted in the signal
processing subsystem. For enrolling a new reference, comparison and
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decision subsystems are not required. Subjects are enrolled utilizing
one or multiple reference samples for the purpose of creating ref-
erence templates or reference models, respectively. Where templates
represent a reference biometric feature set, and models represent func-
tion generated from biometric data [16].

Biometric verification: The process of confirming a biometric claim
through biometric comparison is called biometric verification [17]. By
means of the data capture subsystem and the signal processing sub-
system, features are derived from the biometric characteristics and
passed to the comparison subsystem as a probe. According to the
biometric claim, the database storage subsystem passes the reference,
matching to the claim, to the comparison subsystem. The compari-
son subsystem processes probe and reference, receiving a comparison
score. The score is assessed according the defined threshold and the
binary decision, whether the subject is verified or not, can be made.
Typical usage for biometric verification are access control systems,
like border control systems or other mechanisms to ensure no unau-
thorized usage of protected resources.

Biometric identification: Biometric identification refers to the pro-
cess of determining the biometric reference identifier associated to
an individual. In this case, a biometric reference identifier describes
a pointer to a certain reference in the enrolment database [17]. As
in the verification process, the probe is provided by the data capture
system and signal processing subsystem. Unlike the verification pro-
cess, the identification process calculates the comparison scores for
all references available in the enrolment database to the probe. Based
on the comparison scores, the decision subsystem can make the de-
cision, whether the individual is identified or not. A typical use case
for biometric identification is represented by forensics, for example
identifying flood victims, but also the usage for blacklists, like casino-
blacklists for gambling addicted, is possible as well.

Further system advantages: Furthermore, biometric systems offer ad-
vantages over common identity management systems. Due to the dif-
ficulty in replacing, exchanging, or losing biometric characteristics, a
biometric system is able to determine negative recognition and non-
repudiation [18]. The capability of asserting if a subject is already
enrolled in the system is referred to as de-duplication. Biometrics can
be used as a proof of identity for receiving social welfare or retire-
ment pension. In 2014, India started a large biometric database called
AADHAAR1. This database gives every citizen of India a proof of
identity which enables them to receive state aid. De-duplication en-
sures that no citizen obtains a second identity.

1 http://uidai.gov.in

http://uidai.gov.in
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As it is almost impossible to replace or alter biometric characteris-
tics, the biometric system assures that a identified or verified person
can not disclaim the recognition afterwards [19, p. 2]. This feature, re-
ferred to as non-repudiation, is important for forensic scenarios, for
example a criminal convicted by means of his fingerprint.

2.1.3 Performance Estimation

In general, the outcome of a conventional identity management sys-
tem depending on passwords or tokens is linear dependent on the
input. If a password is entered or a token presented in order to access
a resource, it is either accepted or not. For biometric systems however,
the outcome depends on lots of factors, which can lead to errors. The
following different types of errors which may arise during the bio-
metric processing are standardized in [16] and [17].

Failure-To-Capture (FTC): The proportion of failures of the biomet-
ric capture process to produce a captured biometric sample [17]. This
describes failures that occur in the data capture subsystem. The FTC
can be calculated as:

FTC =
Ntca +Nnsq

Ntot
, (1)

where Ntca is the number of terminated capture attempts, Nnsq the
number of images with insufficient sample quality and Ntot the total
number of capture attempts.

Failure-To-eXtract (FTX): The proportion of failures of the feature ex-
traction process to generate a template from the captured biometric
sample, Nngt, to the number of successful captured samples, Nsub.
This describes failures that occur in the signal processing subsystem.
The FTX can be calculated as:

FTX =
Nngt

Nsub
. (2)

Failure-To-Enrol (FTE): The proportion of a specified set of biometric
enrolment transactions that resulted in a failure to create and store
a biometric enrolment data record, Nnec, to the total number of sub-
jects, intended to be enrolled in the biometric application,N [17]. This
describes failures that occur in the data storage subsystem. The FTE
can be calculated as:

FTE =
Nnec

N
. (3)
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Failure-To-Acquire (FTA): The proportion of a specified set of bio-
metric acquisition processes that were failure to accept for subsequent
comparison of the output of a data capture process [17]. This metric
summarizes the failures of the data capture subsystem and the signal
processing subsystem. The FTA can be calculated as:

FTA = FTC+ FTX · (1− FTC). (4)

FNMR: Proportion of genuine attempt samples falsely declared not
to match the template of the same characteristic from the same sub-
ject supplying the sample [16]. This failure occurs in the algorithm of
the comparison subsystem. The FNMR for a specific threshold t can
be calculated as:

FNMR(t) =

t∫
0

Φg(s)ds, (5)

where Φg(s) represents the Probability Density Function (PDF) of the
genuine comparisons with s as similarity score.

False Match Rate (FMR): Proportion of zero-effort impostor attempt
samples falsely declared to match the compared non-self template
[16]. This failures occur in the algorithm of the comparison subsys-
tem. The FMR for a specific threshold t can be calculated as:

FMR(t) =

1∫
t

Φi(s)ds, (6)

where Φi(s) represents the PDF for the imposter comparisons, with
s as similarity score.

The two metrics, FNMR and FMR, describe comparison algorithm
errors. In order to determine the overall performance of a biometric
system further metrics are needed:

False Rejection Rate (FRR): The proportion of verification transac-
tions with truthful claims of identity that are incorrectly denied [16].
The FRR can be calculated as [1]:

FRR = FTA+ FNMR · (1− FTA). (7)

False Acceptance Rate (FAR): The proportion of verification transac-
tions with wrongful claims of identity that are incorrectly confirmed
[16]. The FAR can be calculated as [1]:

FAR = FMR · (1− FTA). (8)
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The following metrics are not defined in International Organization
for Standardization (ISO) documents, but common in the field of the
evaluation of biometric systems [3, 20].

EER: The point where error rates are equal. Commonly FMR and
FNMR are compared. In the field of PAD, BPCER and APCER are
utilised instead.

FMR100: The FNMR when FMR is 1%.

FMR1000: The FNMR when FMR is 0, 1%.

2.2 speaker recognition

Most SIV systems rely on a two-staged system. First, the features are
extracted from the digital speech signal, conventionally referred to as
front-end. In the second stage, the extracted features are processed to
rather biometric features and used for decision making. This stage is
conventionally referred to as back-end.

2.2.1 Front-End

In SIV systems, there are several methods for extracting the features.
They can be divided into at least three categories [7]:

High-level features: Features extracted from the used vocabulary
and phrases of the speaker are referred to as high-level features. This
method of extracting features requires a complex preprocessing, as
the spoken text has to be understood and interpreted. For the train-
ing process a large set of training data is needed [21, 22].

Prosodic features: The second approach is the recognition and com-
parison of voice timbre and rhythm of the speaker. According to [23],
Hidden Markov Models (HMMs) or Support Vector Machines (SVMs)
are used for classifications.
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Low-level features: The most common way of feature extraction is the
analysis of the frequency spectrum. In order to transform the speech
signal into the frequency domain by utilization of discrete Fourier
transformation, the speech signal usually is segmented into parts
with a duration of 20ms to 30ms with a step size of 15ms. Apply-
ing a window function to these parts reduces the error caused by the
Fourier transformation. In the frequency domain, the signal can be
influenced by filter banks, e.g. the Mel-scale [7]. Mel-scale based fea-
tures representing spectral properties are called Mel-Frequency Cep-
stral Coefficients (MFCCs).

2.2.2 Back-End

Further processing and decision making is commonly done by meth-
ods of machine learning. In speaker recognition, SVMs or Gaussian
Mixture Models (GMMs) are well established [24]. Different micro-
phones or changing background noises cause channel effects which
lower the performance of the system. Factor analysis is a commonly
used method, i.e. in the Joint Factor Analysis (JFA) approach, the
GMM-supervector is decomposed into speaker factors, channel fac-
tors, and residuals [25].

State-of-the-art algorithms extract Baum-Welch sufficiency statistics
from the Universal Background Model (UBM), which is a GMM. The
statistics are represented in intermediate-sized vectors (i-vectors) [26],
a JFA special case which describes a voice sample’s offset factor from
the UBM. i-vector features are projected into a biometric-discriminant,
unit-sphere space by Linear Discriminant Analysis (LDA), Within
Class Covariance Normalization (WCCN) and radial gaussianization,
i.e. length normalization [27]. State-of-the-art comparisons are con-
ducted by Probabilistic Linear Discriminant Analysis (PLDA).

2.2.3 Metrics for Speaker Recognition

Likelihood Ratio (LR): Likelihood is defined as Pr(x|y), where x rep-
resents the hypotheses and y the observation. In order to assess a
sample, the likelihood of the sample (observation) belonging to gen-
uine or impostor (hypotheses) is determined. The ratio of both hy-
potheses is given as the probabilities of genuine hypothesis H0 given
the observation E over the probability of impostor hypothesis HA
given the same observation. The required posteriori probability of a
hypotheses given E is unknown. Using the Bayes-Theorem, the likeli-
hood ratio can be calculated [28]:

P(H0|E)

P(HA|E)
=
P(E|H0)

P(E|HA)
× P(H0)

P(HA)
. (9)
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The left part of the equation also is referred to as a-posteriori odds. The
ratio of the probabilities of the hypotheses depicts, whether a hostile
of friendly scenario is more likely. A common definition of the prior is
the population prior, which can be constrained to how many attacks
will the system face on average. The ratio is referred to as a-priori odds,
represented by π and has to be defined for the system. The ratio of the
probability of the evidence in genuine or impostor is called likelihood
ratio. A likelihood ratio score S is calculated as:

S =
P(E|H0)

P(E|HA)
, (10)

such that the posteriori probability of the genuine hypothesis can be
reformatted as:

P(H0|E) =
Sπ

1+ Sπ
. (11)

Log Likelihood Ratio (LLR): Logarithmic presentation of the LR. Sim-
plifies the calculation and definition of a Bayesian threshold.

Cost of LLR (Cllr): Measure for the goodness of LLR scores. The Cllr
is calculated by integrating over the prior-weighted FNMR and FMR,
where the priors represent operating points/thresholds η.

minimum Cost of LLR (Cmin
llr ): Since systems may not be perfectly

calibrated, the Cmin
llr estimates the goodness of the perfectly calibrated

system. The difference between Cmin
llr and Cllr is called calibration loss;

it is a measure for the possible improvement in making better deci-
sions on average by calibration. Cllr defines the discrimination loss,
which is caused by the algorithm.

minimum Decision Cost Function (minDCF): The minDCF is a met-
ric representing the minimum of the Bayesian as a Decision Cost
Function (DCF) error-rate for an application specific prior π.

2.3 speech synthesis

In general, speech synthesis describes the backend of Text-To-Speech
(TTS) systems, whereas the frontend is the part of text and linguistic
processing [29]. The backend receives the phoneme-based informa-
tion and transforms it context-sensitively into audible speech [20, p.
1382]. There are several methods for this transformation. This section
describes the most common according to [29] and [20].

2.3.1 Articulatory Synthesis

Articulatory synthesis tries to emulate the production process of hu-
man voice with mathematical models. The basic oscillation of human
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voice, the root chord, is an interaction of the mechanical vibrations of
the vocal chord and the airflow of the lungs. The root chord passes
the vocal tract with tongue, jaw, lips, and nose which can be rep-
resented as linear or non-linear acoustic filters, whereby the human
voice develops. As the mathematical models have to be highly accu-
rate, the speech synthesized by articulatory synthesis is of low subjec-
tive quality. Therefore this method is most likely suitable for research
[20, p. 1384].

2.3.2 Formant Synthesis

During the production of human speech, certain frequencies of the
root chord are filtered, other frequencies gain by resonances. For-
mants are the frequency-ranges with the highest gain. The formant
with the lowest frequency is referred to as f0 or pitch. The formant
synthesis utilizes the formants to represent the human vocal tract
with simple filters. For each voice to be synthesized, a convenient
waveform generator is needed which emulates the vocal chord. Sub-
sequently the signal is filtered by simple filters.

Computational and storage requirements are low, this method is com-
mon for speech synthesis with embedded applications, like mobile
phones or navigation systems. The system delivers synthetic speech
with high quality replication of the consonants [20, p. 1384].

2.3.3 Concatenative Synthesis

In general, concatenative synthesis describes methods where recor-
ded snippets of human speech are reassembled to new utterances.

There are many different possibilities for selecting the size of the
speech units. A straightforward approach would be to use words.
As the English language contains at least 170 000 words [30], the
database for an universal word based concatenative synthesis would
be enormous. For high-quality synthesis, a single representation of
each word would not be enough, as the several versions of the word
have to be recorded for different contexts [20].

In order to reduce the needed storage space, commonly smaller units
are utilized, e.g. syllables or even phonemes. The English alphabet
contains 26 letters. As some of the letters can be used with variations
and combinations, British English comprises a total of 44 phonemes.
The syllables are concatenations of phonemes, so the number of com-
binations is accordingly higher. Short units offer the advantage of
a smaller need of storage space, but speech synthesized with short
elements sounds artificial and choppy [31]. In order to obtain less
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choppy transitions between units, state-of-the-art systems employ di-
phones. A diphone is a short speech segment, reaching from the mid-
dle of one phone to the middle of the next phone. The cut points
are located in the acoustic most stable region. The English language
consists of at least 1000 diphones, which can vary depending on the
prosody [32].

The main issue for a human sounding and smooth concatenation syn-
thesis is the appropriate selection of the units and smooth transitions
between the units. In conventional approaches, possible concatena-
tions of units are calculated in advance [29]. An advanced method
is the online synthesis, where the optimal unit is selected during the
synthesis process. Unlike the offline calculation, where only general
static informations are available, the online calculation has access to
the full context information [29]. Pre-processing the vast amount of
contextual information is rather expensive, where latest synthesis ap-
proaches benefit from technological advances in terms of computa-
tional power, such that optimal fitting units can be found under effort-
able costs. Moreover, different unit types, like phonemes, diphones,
and syllables can be utilised for the synthesis of one sentence. This is
called unit-selection.

2.3.4 Unit-Selection Synthesis

A fast model for an online selection of units is essential for the man-
ifold opportunities of selecting the appropriate unit. This section de-
picts the unit-selection, introduced in [33]. In order to enable fast
searching on the data, a vector of features is assigned to each unit.
The features used can vary between different systems. Typical utilised
features are phoneme label, duration, signal power, and the first for-
mant, but also acoustic features. In order to estimate convenient units,
a distance measurement is required for each feature. For continuous
features, as signal power or duration, common distance metrics can
be utilised, the distance for discrete features needs to be defined. The
feature vectors are computed offline.

In order to select the most convenient unit with minimal distortion,
two distance metrics are used:

Target Cost: Also referred to as unit segmental distortion, this met-
ric defines the difference Du(ui, ti) between the selected unit vector
ui = {uf1,uf2, ...,ufn} and the target unit ti = {tf1, tf2, ..., tfn}. The
vectors need to be of the same type. In order to mitigate or boost spe-
cific features, the resulting cost vector can be weighted by a weight
vector Wu = {w1,w2, ...,wn}. In a realistic scenario, the target unit is
unknown. In order to be able to calculate the target cost, a hypothet-
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ical target has to be used which is derived from the sentence to be
synthesized [29].

Join Cost: Also referred to as unit concatenative distortion, this metric
defines the difference Dc(ui,ui−1) between unit ui and its previous
adjoining unit ui−1. The resulting vector Dc represents the cost for
joining these two units. The cost can be weighted by the weight vec-
tor for join cost Wc. In contrast to the target cost, the join cost can be
directly computed with the candidate units. Figure 2 visualizes the
origin of target cost and join cost.

ti−1 ti ti+1 Targets

ui−1 ui ui+1 Units

Du(ui, ti)

Dc(ui,ui−1)

Join cost

Target cost

Figure 2: Costs for the selection of a unit [33]

The overall cost of a completed unit sequence is defined over the
weighted sum of the costs of each unit [33]:

n∑
i=1

(Dc(ui,ui−1) ·Wc +Du(ui, ti) ·Wu) . (12)

n is the number of segments in the target utterance. Wc and Wu are
weights for influencing the relevance of target cost and join cost. In
order to find the best unit sequence, equation 12 has to be minimized.

2.4 signal processing

For most biometric modalities, a preprocessing of the biometric sam-
ples improves the performance of the biometric system. In order to
generate comparable features, most image processing feature extrac-
tors require a proper segmentation and alignment of the image. For
example, for iris recognition, the iris has to be detected and cropped
in order to encode the structure of the iris [34].

Even though speaker recognition is not based on image processing,
a preprocessing of the signal is useful. In general, audio data can be
represented as a waveform signal. In order to digitise the signal, the
information has to be discretised. The accuracy of the sampling de-
pends on the used coding. For example, a 16 kHz codec is capable of
storing twice the information of a 8 kHz codec.



2.4 signal processing 16

2.4.1 Amplitude Normalization

For signals represented as waveform, the amplitude describes the
peaks of the oscillation. For digital audio signals the maximum am-
plitude is limited by the highest representable value of the encoding,
also referred to as clipping point or 0deciBel (dB) Full Scale Digital
(FSD).

One audio signal recorded by different devices can be represented
with different amplitudes. Figure 3 displays the waveform of a speech
signal recorded by a Samsung Galaxy Note 4 (figure 3a) and an LG
G2 (3b). The mobile phones were placed close to each other, so the
energy of the signal, reaching the microphone, was approximately
identical. The difference between the signals is caused by the micro-
phone and the software processing the signal.
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(a) Signal recorded with a Samsung Galaxy Note 4
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(b) Signal recorded by an LG G2

Figure 3: Waveform representation of captured speech signal

In order to achieve comparable signals, the recordings can be normal-
ized. Normalization can be understood as a level adjustment of the
signal. Two common ways for normalization are maximum normal-
ization and Root Mean Square (RMS) normalization.
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Maximum normalization: The factor for adjusting the highest value
of the signal to the clipping point is determined. Then, the complete
signal is multiplied with this factor. For some circumstances it is use-
ful to avoid the clipping point. This can be done by multiplying the
factor with a constant < 1 [35].

As the highest value of the signal is set to the clipping point or lower,
the maximum normalization assures the avoidance of clipping. Due
to the usage of a single point, a signal error or peak can strongly in-
fluence the normalization.

RMS normalization: The RMS normalization utilizes the RMS value
of the signal instead of the maximum. This approach is more robust
against outliers, but harbours the risk of exceeding the clipping point.

Figure 4 shows the speech signals of figure 3 after an RMS normaliza-
tion. Differences in the signal are caused by the different microphone
characteristics used in the smartphones.
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(a) Signal recorded with a Samsung Galaxy Note 4, normalized
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(b) Signal recorded with an LG G2, normalized

Figure 4: Waveforms of the normalised samples displayed in figure 3
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2.4.2 Voice Activity Detection

The success rate of most signal processing algorithms is highly depen-
dant on the quality of the signal processed. Voice Activity Detection
(VAD) is the task of locating the speech signal inside an audio signal.
For robust speaker recognition systems, VAD is an essential opera-
tion [36]. There are different approaches of detecting speech. A few
algorithms are described below.

Zero Crossing Measure: A possibility is to count the number of
changes in the signum of the signal. By counting, the crossing of zero
values can be computed. In general, the zero crossing rate of speech
is lower than the zero crossing rate of unvoiced frames [37]. In order
to distinguish the frames, a threshold for the zero crossing value has
to be chosen. Zero Crossing Measure is easy to implement and fast in
computing, but only suitable if the background noise does not cause
zero crossings.

Energy-based VAD: Energy-based VAD is the most common VAD in
speaker recognition [36]. It is a simple solution that performs best in
noise-free conditions. First, the signal is normalized and segmented
into frames. The signal energy P(i) of every frame i is calculated. Af-
terwards, the maximum energy of the frames is determined as [38]:

Pmax = max
(
P(j)j=1,2,...,N

)
. (13)

In order to distinguish between speech and non-speech frames, the
energy of every frame is assessed as follows:

i =

 speech, for P(i) > Tmin,

non-speech, for P(i) < Tmin.
(14)

Tmin is a threshold which has to be selected in dependence from
Pmax. Common values for Tmin are between 30 and 48dB [7, 39].
This method works well for signals with a high Signal to Noise Ra-
tio (SNR), but for noisy environments a lot of non-speech frames are
selected as speech. To improve the results of the energy based VAD,
speech enhancement methods can be applied, in order to increase the
SNR [36].
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2.4.3 Frequency Analysis

In the field of signal processing and analysis, the examination of the
frequency spectrum of the signal is one of the most important pro-
cesses. There are different approaches to obtain the frequencies incor-
porated in a signal.

Fourier transformation: Every integrable continuous-time signal can
be interpreted as a superposition of harmonic oscillations. Periodic
signals are composed of a basic oscillation, overlain by harmonic
components. In general, the signal can be represented as a sum of
oscillations [40, p. 923]:

f(t) =
a0
2

+

∞∑
n=1

[an · cos(nω0t) + bn · sin(nω0t)], (15)

whereas ω0 represents the frequency of the basic oscillation and nω0
are the equivalent frequencies of the harmonic components. The coef-
ficients an and bn can be interpreted as the amplitudes of the associ-
ated harmonic frequencies.

The Euler equation enables a representation of trigonometric func-
tions as a linear combination of imaginary exponential functions by
utilizing the unit-circle. sin(x) and cos(x) can be converted as:

sin(x) =
ejx − e−jx

2j
, cos(x) =

ejx + e−jx

2
. (16)

Using the Euler equation, the decomposed signal can be represented
in the shorter complex form:

f(t) =

∞∑
n=−∞ cn · e

jnω0t. (17)

As in equation 15, ω0 describes the frequency of the basic oscillation,
nω0 the frequencies of the harmonic components. Contrary to the
trigonometric representation the complex representation is defined by
cn, which is the amplitude of the oscillations. As discrete frequencies
are used for decomposing the signal, the resulting frequency spec-
trum is also discrete.

The presented representation can only be used for periodic oscilla-
tions [41]. In general, a periodic function has a periodic time T in
which the oscillation repeats. For example, sin(x) repeats every 2π.
The periodic time T is defined with T = 2π

ω0
; for the sinus function this

leads to T = 1. In a realistic scenario most signals are non-periodic.
For periodic oscillations with a larger periodic time, T has to be in-
creased accordingly. In order to analyse non-periodic signals, the pe-
riodic time of the frequency can be interpreted as infinite [41]. The
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gap between two frequencies in the frequency spectrum ∆ω can be
calculated as:

∆ω = ωn+1 −ωn = (n+ 1)ω0 −nω0 = ω0 =
2π

T
, (18)

with T → ∞ equation 18 converges to zero. The frequency spectrum
is no longer discrete, but continuous. Then, the sum in equation 17
transforms into an integral:

f(t) =
1

2π
·

∞∫
−∞

F(ω) · ejωtdω. (19)

Equation 15 and 17 accumulate the basic frequency ω0 and the multi-
ples of it, whereas the associated frequency is defined by a coefficient.
For the continuous representation, the amplitude for each frequency
can be calculated by 1

2πF(ω). F(ω) is referred to as Fourier transform
of f(t) [41]. In order to obtain the Fourier transform, equation 19 can
be rearranged to:

F(ω) =

∞∫
−∞

f(t) · e−jωtdt. (20)

Discrete Fourier Transformation (DFT): As the calculation of the
infinite integral is time consuming or impossible, the conventional
Fourier transformation is non-satisfying for application in computa-
tional analysis of signals. Additionally, a signal (e.g. video or audio)
captured by a computer has to be sampled in order to obtain com-
putable data. This leads to discrete data, whereby the infinite integral
becomes impractical. For computation of discrete non-periodic sig-
nals, the DFT can be used. It is assumed that a restricted period from
0 to N − 1 of the signal is of interest [41]. Furthermore, a discrete
sampling of the signal is presumed. The sampling interval is defined
by Ta, the moment of the samples are n · Ta, with n between 0 and
N−1. The overall sample time of the signal can be calculated asN ·Ta.
With these requirements, equation 17 can be adapted with t→ n · Ta,
resulting in [40, p. 925]:

Fd(k) =

N−1∑
n=0

f(nTa) · e
−j2πkn
N . (21)

The continuous angular frequency ω is substituted by the discrete
term 2πk

N , with k = 0, 1, ...,N− 1.

Fast Fourier Transformation (FFT): In order to decrease the computa-
tion time, the FFT can be used. The basic idea of the FFT is to split the
signal f(t) into N equal sized elements, calculating the DFT of each
element and merging the results by superposition. The best perfor-
mance can be achieved by splitting the signal into 2k elements. First,
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the signal is divided into two elements. These two are divided again,
and so on. After the calculation of the DFT, the elements are merged
level by level [40, p. 925].

STFT: The Fourier transformation transforms the representation of
the signal from time domain to frequency domain. Due to this trans-
formation, the assignment of frequencies to a certain time slot is not
possible. For the analysis of audio signals, a transformation with re-
spect to the time-domain is needed. The STFT is a common tool for
the time-frequency analysis [42, p. 285ff].

The Fourier transformation serves as a basis. The signal f(t) is multi-
plied by a window function defined by γ(t− τ). τ enables a sliding
of the window in time. γ can be represent different window func-
tions. In order to generalise, γ∗ will be used as substitution for all
window functions. The time-dependent STFT, introduced in [43], can
be derived from equation 20:

F(τ,ω) =

∞∫
−∞

f(t)γ∗(t− τ)e−jωtdt. (22)

The new variable τ adds the time-dependency to the transformation.
As γ∗(t− τ) represents a window function, the signal outside of the
window is suppressed.

The introduced STFT is designed for a continuous signal. For ap-
plications in digital signal analysis, an adoption of the equation is
necessary, as the signals are sampled and therefore discrete. Similar
to the DFT, the STFT can be rearranged, substituting the integral with
a sum:

Fγ(m,k) =
∑
n

f(n)γ∗(n−mN)e
−j2πkn
N . (23)

γ∗ can be interpreted as transformation core, which is modulated
by e

−j2πkn
N . For a fast calculation of the sum, FFT can be employed

[42, p. 293f].

Spectrogram: The consideration of time during the transformation
adds a new dimension to the result. Whereas the Fourier transfor-
mation results in a representation of frequency and amplitude, STFT
transforms the signal to a representation in frequency, amplitude and
time. In order to illustrate the transformation, the so called spectro-
gram is used. In most cases the results of STFT are complex. In order
to simplify the representation, the square of the absolute value is cal-
culated as [42, p. 290]:

Sx(τ,ω) = |Fγx(τ,ω)|2. (24)
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Sx(τ,ω) is plotted as spectrogram, where time (τ) is displayed at the
x-axis, frequency (ω) at the y-axis, and the amplitude (Sx) is pictured
as grey scale.

Wavelet Transformation: An alternative to STFT is the wavelet trans-
formation. It is known to be faster than the FFT [44]. The main differ-
ence between STFT and the wavelet transformation is that the trans-
formation cores of the wavelet transformation (the mother wavelet
function) is scaled and not modulated. The wavelet in the wavelet
transformation is defined as ψ∗

(
t−b
a

)
, where b translates and a di-

lates the wavelet. The wavelet transformation is comparable to the
continuous STFT, equation 22, but the modulated transformation core
is replaced by the scaled transformation core:

W(b,a) = |a|−
1
2

∞∫
−∞

f(t)ψ∗
(
t− b

a

)
dt. (25)

The prefix |a|−
1
2 effects that all equations |a|−

1
2ψ( ta) obtain the same

energy. It can be interpreted as prefix of the transformation core.

In general, the wavelet function can assume every form, as long as
it enables an error-free back transformation [42, p. 302]. This require-
ment is assured as long as

Cψ =

∞∫
−∞

|Ψ(ω)|2

|ω|
dω <∞. (26)

is fulfilled. Ψ(ω) is the Fourier transformed of ψ(t). In order to let
equation 26 become true,

Ψ(0) =

∞∫
−∞

ψ(t)dt = 0 (27)

has to be true as well and |Ψ(ω)| for |ω| → 0 and |ω| → ∞ has to be
fading [42, p. 302].

Discrete Wavelet Transformation (DWT): For discrete values, the
wavelet transformation can be accelerated. Due to equation 26, the
wavelet can be interpreted as a bandpass filter. If the wavelet is di-
lated, the bandpass is translated in the frequency domain.

According to the Mallat theorem [45], a successive decomposition of
a signal into bandpass-signals is possible without losing information.
Figure 5 visualizes the idea of the DWT.
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Figure 5: Filterbank for DWT calculation [42]

u c0(n) represents the signal. H1(z) displays a high pass filter, H0(z)
has to be the inverse of H1(z), a low pass filter. Only every second
sample of the outgo of the filters is kept, indicated by 2 ↓. This result
of the high pass filter is the first detail level d1(m), the result of the
low pass filter is the first approximation c1(m). In the next step, the
approximation c1(m) can be decomposed by the same filter, as the
sample rate is reduced in the previous step.

An example of a DWT is given in figure 6. A sine half wave is decom-
posed using a Haar wavelet [46]. The right side displays the details,
the left side the approximation.

Difference between STFT and DWT: The difference between both
tools is the resolution of time and frequency. The STFT has a uni-
form time resolution over all frequencies. The signal is divided into
uniform slots, in which each frequency is determined. A larger time
slot provides a more precise determination of the frequency domain,
but the time-domain resolution is poorer. Smaller timeslots however
provide a better resolution in time, but a poorer resolution of the
frequencies. Figure 7a shows the uniform resolution of time and fre-
quency for all frequencies.

As the wavelet in the wavelet transformation is translated, the size of
the analysis window changes between the frequencies. The wavelet
used for analysing high frequencies is smaller than the transformed
window used for low frequencies. The time accuracy for higher fre-
quencies is more precise and the frequency accuracy is less precise
[47].
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(a) Approximation of 1. iteration (b) Details of 1. iteration

(c) Approximation of 2. iteration (d) Details of 2. iteration

(e) Approximation of 3. iteration (f) Details of 3. iteration

(g) Approximation of 4. iteration (h) Details of 4. iteration

Figure 6: DWT transformation of a sine half wave with a Haar-wavelet [42]
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Figure 7: The relation of time and frequency resolution for STFT 7a and
wavelet transformation 7b [42]
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2.5 machine learning

In a global context, machine learning describes a type of algorithm
that learns from past experience to make decisions [20]. It can be clas-
sified in the field of computational intelligence. There are different
fields of machine learning, all utilize the theory of statistics for gen-
erating mathematical models [48]. Machine learning can be divided
into at least two main classes: descriptive and predictive algorithms.
Descriptive algorithms, e.g. clustering algorithms, aim to extract new
information from data. Predictive algorithms aim to learn dependen-
cies between populations, in order to predict the population of new
data. Since in the field of biometrics mainly predictive algorithms are
used, descriptive algorithms are not considered any further.

There are lots of machine learning theories and algorithms. Due to
timing constraints this thesis will focus on only two: SVM and GMM.
SVMs are well-examined for binary classification and pattern recog-
nition [20, p. 1510]. GMMs are often used in speaker recognition, as
they are capable of modelling a large variability of sample distribu-
tions.

2.5.1 Support Vector Machines

The SVM is a binary, linear classifier that separates the space into
two regions by a hyperplane. The basic idea is, that the SVM selects
a hyperplane, that provides the best generalization capacity [20, p.
1505]. Figure 8 illustrates a simple example of a two dimensional
SVM. Population 1 and Population 2 are divided by the linear hy-
perplane. The nearest data points to the hyperplane are referred to
as support vectors, the distance from the support vectors to the hy-
perplane is referred to as margin. There are multiple possibilities of
placing the hyperplane in the space [20, p. 1506]. In order to obtain
the best generalization capacity, the SVM places the hyperplane in a
position, that maximizes the margins.

The example in figure 8 is for demonstrating the basic idea of SVMs.
Real-world scenarios are often more complex. The populations can
be partly overlapping and not linear segregable. Figure 9 exemplifies
a population distribution that cannot be divided by a hyperplane.

In order to be able to separate data points by a hyperplane, non-
linear problems are conventionally transferred into a higher dimen-
sion. Figure 9 shows a hyperplane of a higher dimension reduced to
the original dimension of the problem. Hyperplanes in higher dimen-
sions can be approximated by a kernel-function. There are multiple
common kernel functions [49], as Gaussian (used in figure 9), Poly-
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Figure 8: Example of a 2-D SVM

nomial, Laplacian and others. For specific problems, custom kernel
functions can be defined. Further informations on the selection of
kernel functions can be found in [50] and [49]. The shown examples
are two dimensional. SVMs in general, are capable of handling high-
dimensional data points as well.

If a new data point is presented to the SVM, the distance of this data
point to the hyperplane is rated. Depending on the side of the hyper-
plane, the new data point is placed in, the SVM assigns the data point
to a population. The distance of the data point to the hyperplane can
be understood as measure of certainty of the decision made by the
SVM.

2.5.2 Gaussian Mixture Models

A GMM is a parametric probability density function. It is compound
of a weighted sum of Gaussian component densities [20, p. 827].

An univariate Gaussian distribution, also referred to as univariate
normal distribution, is defined by:

Pr(x|µ,σ2) =
1√
2πσ2

exp

[
−0.5(x− µ)2

σ2

]
, (28)
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Figure 9: Example of a SVM with non-linear separable 2-D data

with a mean, µ, determining the position of the distribution, and a
variance σ2 determining the shape of the Gaussian bell [51, p. 40].
Figure 10a shows a univariate Gaussian distribution with µ = 0 and
σ = 1.

In order to represent multivariate Gaussian distributions, equation
28 has to be extended. The Gaussian distribution for D-dimensional
variables is defined as

Pr(x|µ,Σ) =
1

(2π)
D
2 |Σ|

1
2

exp

[
−
1

2
(x− µ)TΣ−1(x− µ)

]
. (29)

As for the univariate distribution, the mean-vector, µ, determines the
position of the Gaussian distribution. The shape of the Gaussian dis-
tribution is defined by the covariance-matrix Σ. The univariate distri-
bution can be seen as a special case of the multivariate distribution
with D = 1 [51, p. 41]. Figure 10b presents a multivariate Distribution
for D = 3.

In a real-world scenario, most densities of observations can not be rep-
resented by a normal distribution. In order to model a more flexible
distribution, the GMM is a weighted sum of M component Gaussian
densities. The density of a GMM is given by:

Pr(x|λ) =

M∑
i=1

wi · Pr(x|µ,Σ). (30)
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Pr(x|µ,Σ) is defined in equation 29. Vector w represents a weight for
each component i of the GMM. λ contains a representation of the
GMM parameters, which are denoted as:

λ = {wi,µi,Σi} , i = 1, ...,M. (31)

Figure 10c shows an example of a 2D-GMM with three components,
the three weighted components are displayed as well. The parameters
of the given example are set to:

λ =


1, 0, 1

0.7, 2, 0.5

0.3, −1, 1.3

 . (32)

In order to represent a population, the parameters of the GMM have
to be adapted with training vectors. There are multiple methods for
estimating λ, common methods are Maximum Likelihood (ML), Ex-
pectation Maximization (EM) or Maximum A-Posteriori (MAP). As
EM is utilized in this thesis, it will be focused in this chapter. Due to
timing constraints, other estimation algorithms are excluded.
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Figure 10: Examples for Gaussian distributions and GMMs
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The EM algorithm is an iterative process, that aims to increase the
probability for a sample in the GMM in each iteration step. The pro-
cess stops after a defined number of iterations or if the model reaches
a convergence threshold.

The training process of the GMM is a probabilistic clustering pro-
cess. The shape of the components is adapted to the distribution of
the training samples. Figure 10d shows a result of a finished training
process on a set of data samples. The different colours do not char-
acterize different populations, but different components of the GMM
and its affecting samples. The depicted example is trained on one
population and can be used to determine the probability of a new
data point belonging to the known population. Each component con-
tributes to the overall probability depending on its weight, where the
overall probability is normalized to 1.

For classification tasks, one GMM has to be trained for each hypoth-
esis. If a new sample is presented to the trained GMMs, the LR of
this sample fitting in the given distribution can be calculated utilising
equation 30.



3
S P O O F I N G A N D P R E S E N TAT I O N AT TA C K
D E T E C T I O N

3.1 subversive usage of biometric systems

Biometric systems are used for identification and verification pur-
poses. In every verification or identification scenario, a subversive
biometric capture subject is imaginable which aims to get verified as
a different subject or does not want to be identified. Also, subversive
users are possible, for instance, an administrator who manipulates the
system, in order to allow access to not enrolled subjects to the system.

The aim of subversion attemps can be distinguished in: Attempts to
get someone verified as an other subject, referred to as attacks on
biometric systems in this thesis, and attempts not to be identified,
referred to as concealment, which is in accordance to ISO/IEC 30107-
3-CD2 [15]. As this thesis aims on PAD methods trying to gain access
to the system, concealment will not be considered any further.

3.2 attacks on biometric systems

There are several possibilities to attack biometric systems. As dis-
played in figure 11, the attacks can be separated into attack points.
Point 1 and 2 are direct attacks which are performed in front of or
directly behind the sensor. The focus of this thesis is set on the first
two points. As they are easy to perform and have a high success rate,
they are considered to be more risky than attacks at the other points
[14]. Point 3 to 9 are indirect attacks, as the attack is not on the input
signal. But the system itself is influenced to change the output.

Figure 11: Possible attack points of a biometric system, according to
ISO/IEC 30107-1 [52]

30
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3.3 attacks on speaker recognition systems

In the field of speaker recognition, direct attacks are referred to as
spoofing or Presentation Attacks (PAs). The recognition of such at-
tacks is called PAD [52]. Direct attacks on speaker recognition sys-
tems can be divided at least into 6 attack types:

Presentation Attacks

Machine

Synthetic

Speech Signals

Speech Synthesis Voice Conversion

Arbitrary Signals

Mockup

Replayed

Replay Unit-Selection

Human

Imitation

Figure 12: Structure of presentation Attacks on SIV systems

3.3.1 Imitation

Definition: Imitation or Mimicry is the attempt of an impostor to
mimic a subject that is enrolled in the system, to get access to the
system via the foreign account. There is a difference between skilled
and unskilled imitators.

Attack: For this attack, no further technical equipment or algorithms
are needed. The success of this attack strongly depends on the at-
tacker and the attacked subject. The population of speakers can be
divided into at least four subsets, referred to as sheep, goats, lambs
and wolves. Sheep is the default speaker type, goats are difficult to
recognize, lambs can easily be imitated, and wolves are successful
in imitating other subjects. [53]. The voice of blood-relatives is more
similar, therefore the imitation of a blood-relative should be treated
separately.

Countermeasures: As imitation attacks can be fend with SIV systems
with good baseline performance [14], they will not be discussed any
further in this thesis. The performance of state-of-the-art SIVs is only
slightly affected by imitation attacks [54].
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3.3.2 Mock-up Signal

Definition: This is a rudimentary synthetic attack. The Impostor tries
to generate a synthetic signal which aims to circumvent the classifica-
tor of the SIV.

Attack: A synthetic signal is generated by the attacker. As the sig-
nal does not need to sound like voice or conceptually provide quality
standards, it can be generated with random noises or simple algo-
rithms. The only requirement is that the system assesses the signal to
match a mock-up probe to an enrolled reference. For text-dependant
SIV systems, a combination of a mockup signal with other attack
methods can be successful [55].

Countermeasures: The reviewed literature regarding mock-up sig-
nals [55], targets solely GMM-UBM systems, and provides no further
countermeasures. However, by considering i-vector/PLDA systems
as target, mock-up signals would need to bypass JFA, LDA, WCCN,
and radial gaussianization in order to be capable of achieving a good
enough score within the hidden PLDA subspace, which is assumed
to be rather challenging and left for future research.

3.3.3 Speech Synthesis

Definition: The attacker creates a synthetic voice of the attacked iden-
tity. There are multiple methods for speech synthesis, some are de-
scribed in section 2.3.

Attack: Speech synthesis attacks are usually two staged. The first
stage generates the linguistic and phonetic elements which will be
synthesised, e.g. parsing a text and partitioning the words into pho-
nemes. The second stage is generating the acoustic signal that can
match with the linguistic and phonetic elements of the victim [14].

Countermeasures: The attack potential of synthesis attacks against
SIV systems is quite high [12, 56]. As most synthesis algorithms pro-
duce artefacts in the synthesised sample, many PAD systems for syn-
thesis attacks aim on detecting these artefacts [14]. HMM based syn-
thetic speech can be discriminated from human speech by estimat-
ing the intra-frame difference of the samples [57]. Another approach
is the usage of MFCCs. Most synthetic voices are smoothed after-
wards, so the higher order cepstral coefficients differ from those of
human speech [58]. These methods are algorithm dependant. A more
algorithm independent approach is the evaluation of the differences
of samples generated by vocoders and natural speech. For example
the spoof detection with phase-based features is highly successful
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against synthesis [4, 59, 60]. As the smoothing of the signal affects
the prosodic characteristic, the f0 patterns in synthetic speech are
smoother than in human speech [14].

3.3.4 Voice Conversion

Definition: For voice conversion attacks, the speech signal of the im-
postor is changed in a way that it becomes more similar to the voice
signal of the target subject [14].

Attack: The proceeding is comparable to speech synthesis. The in-
put is not a text but natural speech. Typically the timber or prosodic
characteristics are adapted, like fundamental frequency or duration
[14].

Countermeasures: Attacks with voice conversion are in general very
efficient. For detection the same countermeasures as for speech syn-
thesis attacks can be used [14].

3.3.5 Replay Attacks

Definition: Replay attacks are the most basic kind of attacks on SIV
systems. The voice of a subject is recorded and later played to the SIV
system [14].

Attack: No further knowledge of speaker recognition or signal pro-
cessing is needed for this attack. As technical equipment a micro-
phone is required for the recording of a replay sample and a speaker
replaying the recorded speech signal in order to attack a SIV system
[14].

Countermeasures: Because of its simplicity, independence of further
knowledge of speech processing and efficiency against modern SIVs
systems, replay attacks are a present threat [12]. Due to the spreading
of mobile phones, the risk is increasing [14]. Despite the simplicity
of replay attacks, in current research published there are only a few
studies [14]. A simple way of avoiding this kind of attack is using
challenge response, where the SIV asks for a specific e.g., random-
ized sentence. For a successfull attack the attacker has to know the
right phrase.

A more attack specific detection is based on analysing the SNR. If
the voice signal of a person is captured, the noise of the environ-
ment and the microphone is added. In the case of a replay attack the
noise of environment and microphone during the capture process are
added as well. This difference in background noise can be detected.
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The second approach focuses on spectrum and modulation. Record-
ing and replaying flattens the spectrum and reduces the modulation.
This difference can be detected, for instance, by a SVM [14, 61].

3.3.6 Unit Selection

Definition: A more sophisticated kind of replay attacks is unit-se-
lection. Speech samples of the attacked subject are recorded and di-
vided into parts, called units. These units are later replayed in dif-
ferent sequence to the SIV system. In some definitions, unit-selection
is classified as concatenative speech synthesis, as unit-selection is ca-
pable of TTS synthesis [29]. However, in this work, unit-selection is
rather classified as a kind of replay attack. The replayed units are only
altered in its order, where the classic replay attack can be seen as a
special type of unit-selection with one unit.

Attack: The recorded speech is divided into units. Units can be words,
diphones, phones, or even smaller parts. In order to attack the system,
units are concatinated and replayed. With this technique it is possible
to overcome SIVs-Systems using challenge response. A more detailed
description of the process of unit-selection can be found under sec-
tion 2.3.4.

Countermeasures: Unit-selection is an effective attack against mod-
ern SIVs-Systems and PAD-Algorithms [11]. As unit-selection can be
considered as short-time replay attacks, the attack specific counter-
measures introduced for replay attacks can be used. The modelling
of prosody is still a difficult task for unit-selection algorithms. At
the concatenation point of two units, the formant f0 tends to jump.
The statistical behaviour of the formants can be used to detect unit-
selection attacks [62, 63]. An additional method for unit-selection de-
tection, based on analysis of the frequencies, will be processed in this
thesis.

3.4 presentation attack detection for sivs

As shown in section 3.3, there is a large range of possible attacks for
speaker recognition systems. The effectiveness of countermeasures
depends on the attack they are designed to encounter for. Challenge
response for example, is useful against replay attacks, but cannot be
used against attacks synthesizing sentences. In addition, it is not ap-
plicable for forensic scenarios. To a certain extend, the introduced
countermeasures are useful to detect multiple attacks. Prosodic fea-
tures, for example, can be utilized for detecting synthesis attacks as
well as unit-selection attacks [14].



3.5 creation of replay attacks 35

Independent from the structure introduced in figure 12, the attacks
can be divided into two groups: text-dependent and text-independent
attacks. Replay attacks for example are strongly text-dependent, as
only the recorded sentence can be played to the SIV system. If the
system requires a sentence not available, text-independent attacks are
more likely to succeed. Most studies about PAD examine the effect of
a countermeasure to a specific attack. This assumes that the attacked
system knows the attacker and can prepare for this specific attack.
It would be of interest, which countermeasures are able to detect
a larger set of attacks. PAD algorithms for speech synthesis attacks
should be able to detect voice conversion attacks as well, as both
attacks produce similar artefacts while producing the signal. The im-
pact of the combination of multiple countermeasures needs further
research.

Imitation and Mock-up attacks are not considered as threat, as they
are reliable detected by state-of-the-art PLDA SIV systems [54]. Cur-
rent research provides PAD algorithms which are able to detect voice
conversion and synthesis attacks at EERs of almost 0% [4, 60]. Thus,
this section focuses on the creation of replay, also unit-selection at-
tacks, and the state-of-the-art for detecting unit-selection attacks, as
current research lacks of PAD subsystems for these specific attacks.

3.5 creation of replay attacks

In the context of this thesis, a database of replay attacks is gener-
ated. For this task, a speaker and a laptop are utilized. The speaker is
used for a clean replay, so a high quality Near Field Monitor (NFM)
is employed. It provides a linear frequency response, so the corrup-
tion of the replayed signal is minimized. As NFMs are expensive and
less mobile, a MacBook Pro is used to generate a more realistic attack.

The database should reflect attacks on mobile authentication devices,
as mobile phones. For the purpose of covering a great variety of
current smartphone microphone technology, four smartphones from
low-end to high-end solutions were examined, in particular: Samsung
Galaxy Note 4, HTC One, Motorola Moto G, and LG G2.

The NFM has separated membranes for high and low frequencies. As
result the position of the microphone in front of the NFM affects the
transmission of speech signal. Figure 13 shows the waveform repre-
sentations of a sweep signal from 20 Hz to 20 kHz.
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(a) Clean sinus sweep with constant amplitude over all frequencies
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(b) Sweep replayed by the NFM and recorded by the Samsung Galaxy Note 4. Heigth
0 cm, distance 10 cm

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

0

time in s

am
pl

it
ud

e
in

dB
FS

D

(c) Sweep replayed by the NFM and recorded by the Samsung Galaxy Note 4. Heigth
16 cm, distance 10 cm

Figure 13: Waveform representation of a sweep signal from 20 Hz to 20 kHz
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The original, artificial generated signal, figure 13a, has a constant am-
plitude. The non-linear microphone of the mobile phone causes a
distortion of the signal. High and low frequencies are recorded less
accurate than the midrange. The indentations in the signal are caused
by interferences due to reflections.

If the mobile phone is put on the table, it is in front of the woofer
(figure 13b). The amplitude for low frequencies ascends faster. If the
mobile phone is placed higher, it is closer to the tweeter (figure 13c).
In consequence, high frequencies have higher amplitudes compared
to figure 13b. The interferences are affected by multiple factors, for
example the surrounding, the distance, and the height of the micro-
phone. In order to find the optimum set-up for NFM and microphone,
different distances were tested and compared.

For the comparison of the captured signals Dynamic Time Warping
(DTW) is employed. DTW is a common algorithm for estimating the
nonlinear time synchronization between two signals [20, p. 786]. Even
signals with different length can be compared. The DTW algorithm is
two-staged. First, the spectrograms of the probe audio signals are cal-
culated. For each window, the costs for morphing the signal to each
window of the reference signal are calculated.

Experimental set-up: The mobile phones are placed with the micro-
phone towards the NFM. In order to determine the height and dis-
tance between the NFM and the microphone causing the lowest costs
when matching reference and probe, different scenarios are exam-
ined. The height is varied from 0 to 20 cm in 4 cm steps. The distance
is varying between 10 and 50 cm in 10 cm steps.

Speaker
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Phone

Figure 14: Different positions for the placement of the microphone

For testing, a sweep from 20 Hz to 20 kHz, displayed in figure 13a,
and a sample of human speech are replayed by the NFM and the
MacBook. The signal is recorded by all four mobile phones for ev-
ery position shown in figure 14. In contrast to the speech signal, the
sweep signal covers all frequencies with the same amplitude. As the
speaker of the MacBook is not designed for linear frequency response,
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it is likely the comparison score of the MacBook-replays differs a lot
from the NFM-replay.

Experiments: It can be assumed, that replaying and recording leads
to a distortion of the audio signal. In order to determine a quantitative
value for distortion, each recorded signal is compared to its reference
signal via DTW. Figure 16 depicts the heat-map for the comparison
of a recorded speech signal and its origin. Light fields display high
costs, dark fields have lower costs.
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Figure 15: Similarity matrix of a probe speech signal and the reference

The second step of the DTW algorithm is finding the path with the
lowest costs. The shortest path in the given example is represented as
a red line. Figure 17 shows the similarity matrix for a recorded sweep
signal.

In contrast to the similarity matrix of the speech signal, the compari-
son of the sweep signal shows a clearly visible path amongst the low
costs. This is caused by the steadily increasing frequency of the sig-
nal, which enables a more precise assignment as the windows of the
spectrogram are more distinct.
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Figure 16: Similarity matrix of a recorded sweep and the original signal

In order to provide a scalar measurement, a metric for conveying the
path into a single value is needed. A simple, yet common, method is
the sum over all costs on the path. The resulting DTW-score displays
a measurement for the difference between the original signal and the
compared one.

Each recorded signal is compared with the origin, resulting in a score
for each possible combination of NFM, microphone, height, and dis-
tance for human speech and sweep signal.

Evaluation: Figure 17 visualizes the influence of distance and height
in combination with the different speakers and microphones. The dif-
ference between samples, replayed by the laptop and the NFM are
enormous. The highest similarity score of recorded laptop-replays is
lower than the lowest score of the recorded NFM-replays. This be-
haviour is expected, as the NFM provides a linear frequency response
for the replayed frequencies. The laptop in contrast is not designed
for high quality audio replays. In particular, the lower frequencies
cannot be replayed properly.

The next factor, influencing the similarity score, is the microphone.
The microphones of the high quality mobile phones are not as good
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as the microphones of the cheaper products. Another factor to carry
weight is the height of the microphone. In general, positions above
16 cm cause better comparison scores, than lower positions. A dis-
tance of to 10 cm to 20 cm shows the best results. The best overall
score for sweep signals is achieved with the motorola placed at a
height of 16 cm and a distance of 10 cm, recording a sweep replayed
by the NFM.

In a real-world scenario, a replay attack does not record a sweep, but
human speech. Figure 18 shows the similarity scores achieved, when
recording a human sample. As this chapter aims for high-quality re-
play attacks, the results for the NFM are examined.

The influence of height, distance and microphones is vanishing. In
contrast to the sweep signal, the expensive mobile phones are good
for recording samples replayed by the NFM. This behaviour can be
caused by the frequency response and filters of the higher class mo-
bile phones. As a mobile phone is designed for human speech, fre-
quencies below or above may distort the communication. The effect
of distance and height is not as conspicuous as for the recording of
the sweep signal. Still, nearer distances and a height between 8 and
16 cm produce best results. Again, the overall best result is achieved
by the motorola, placed in 12 cm height and a distance of 10 cm.

Conclusion: The recording of sweeps or human speech seriously in-
fluences the similarity of the recording to the original sample. Mi-
crophones of upper class mobile phones are far better in recording
human speech samples than sweeps.

The purpose of this section is to indicate a reasonable positioning
of the microphone for the generation of replay attacks. The highest
similarity score is achieved for a height of 12 cm and a distance of
10 cm.



3.5 creation of replay attacks 41

laptop speaker

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

H
T

C
LG

m
otorola

Sam
sung

10 20 30 40 50 10 20 30 40 50
Distance in cm

Si
m

ila
ri

ty
Sc

or
e

Height in cm 0
4

8
12

16
20

Figure 17: Relation between distance and similarity score for a sweep signal



3.5 creation of replay attacks 42

speaker

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

H
T

C
LG

m
otorola

Sam
sung

10 20 30 40 50
Distance in cm

Si
m

ila
ri

ty
Sc

or
e

Height in cm 0
4

8
12

16
20

Figure 18: Relation between distance and similary score for human speech
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3.6 creation of unit-selection attacks

In this thesis, focus is placed on PAD for unit-selection attacks, the ex-
ecution of unit-selection attacks is described in detail in this section.
In general, the production of unit-selection attacks requires at least
three steps. The acquisition of transcribed speech data of the attacked
person, the creation of a unit-selection voice, and finally the genera-
tion of unit-selection samples. The emphasis of this section is put on
the technical part of unit-selection attack creation, thus a transcribed
database with clean speech data of the attacked subject is assumed.

3.6.1 Creation of Unit-Selection Voices

The creation process of a unit-selection voice is introduced in accor-
dance to the unit-selection tutorial of MaryTTS [64]. The creation of
a unit-selection voice consist of at least eight steps. A unit-selection
voice consists of a set of units and Classification And Regression Tree
(CART) trees for selecting the convenient unit, the eight steps are the
following:

Acoustic Data: This is the first analysis of the raw, unprocessed au-
dio data. The MFCCs of the samples are calculated and the pitch, the
f0-parameter, is determined.

Automatic Labeling: The transcription files for the speech signal have
to be processed. Phonemes can be pronounced different, the possible
pronunciations are called allophones. The different allophones are
pre-calculated from the transcription files. In a second step, phonetic
labels are extracted from the transcription files.

Label-transcription Alignment: The previously estimated phonetic
labels are aligned with the transcription files. Also the allophones are
aligned with the transcription. Each allophone is now assigned to a
phonetic label.

Feature Extraction: Features are extracted from the allophones. Fea-
tures can be the previous phoneme, the next phoneme or the phone
the allophone belongs to. There are numerous more features that can
be extracted from the allophone.

Verify Alignment: The features generated in the previous step are
aligned with the labels generated by the automatic labelling process.
After the alignment process, each phonetic label is assigned to a fea-
ture vector.
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Basic Data Files: The raw audio data is divided into unit files using
the pre-calculated f0-parameter.

Acoustic Model: The features of the units are mapped to the accord-
ing audio unit created in the previous step. The costs for the mapping
of each unit to the next is calculated. In order to be able to find a
proper unit to a phoneme, two trees are trained. One for the duration
of each unit, a second for the f0-parameter.

Unit-Selection Files: In the last step, the target costs for each unit
are determined. A tree for the target costs is trained. The creation of
the unit-selection voice is finished.

The finished unit-selection voice contains a list of units and four
CART trees. The trees for f0-parameters and duration can be used
to estimate the characteristics for a unit, the trees with target and join
costs can be used for finding a suitable unit.

3.6.2 Creation of Unit-Selection Attack samples

The generated unit-selection voice can be used for TTS synthesis with
the voice of the attacked subject. If a new text is provided to the
unit-selection voice, it is divided into phonemes. The duration and
f0-parameter tree of the voice are used to estimate a suitable unit for
each phoneme. Utilizing the trees for join and target costs, the best
fitting unit is selected.

3.6.3 Quality of Unit-Selection Voices

The success of the creation of a unit-selection voices highly depends
on the samples used for training. It is obvious, that a correct labelling
of the samples is vital for the creation of an accurate unit-selection
voice. In order to improve the labelling process, a preceding normal-
ization and VAD on the samples is recommended [65].

One possibility to determine the quality of a unit-selectionn voice is
the phonetic coverage [66]. A good voice should cover every diphone,
a perfect voice should contain multiple prosodic realisations for one
diphone. The coverage of diphones depends on the overall length of
the used samples [65]. In this thesis, the quality of a unit-selection
voice is evaluated by the efficiency of the attack against a SIV system.

3.6.4 State-of-the-art Algorithms

In the context of ASVspoof 2015, new PAD algorithms against syn-
thesis are introduced [4, 5, 6, 11, 59, 60, 67, 68, 69, 70, 71, 72, 73]. The
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focus of the challenge is set to synthesis attacks. Most detection algo-
rithms utilized machine learning algorithms evaluating phase-based
features combined with well established features like MFCCs. As the
main focus of the ASVspoof is set on synthesis and voice conversion,
most submitted algorithms did not perform well in detecting unit-
selection attacks. The algorithm proposed in [6] achieved an EER of
8.5% when detecting unit-selection attacks.

The approach, introduced in [6], utilizes new defined Cochlear Fil-
ter Cepstral Coefficient Instantaneous Frequency (CFCCIF) features.
The CFCCIF is a combination of Cochlear Filter Cepstral Coefficients
(CFCCs) and Instantaneous Frequency (IF).

CFCC: First introduced in [74], the CFCC is calculated by utilizing an
Audiotory Transform (AT), followed by a filter bank and a Discrete
Cosine Transformation (DCT). The AT itself is a function emulating
the filter function of the cochlear [75]. In the proposed implementa-
tion, the filter utilizes the wavelet transformation, equation 25, with a
specialized wavelet, defined as [74]:

Ψa,b(t) =
1√
a
(
t− b

a
)αexp

[
−2πflβ(

t− b

a
)

]
·cos

[
2πfL(

t− b

a
+ θ)

]
u(t− b),

(33)

whereas α and β define the shape and width of the filter, θ is selected
to satisfy equation 26.

In a next step, the filtered signal is mapped by a filter bank, as the
basilar membrane of the human ear processes acoustic signals. The
resulting signal is decorrelated applying a DCT [6].

IF: The IF is defined as the derivation of the unwrapped phase [6].
The analytic signal, sa(t) of s(t) is defined as:

sa(t) = s(t) + jsh(t), (34)

whereas sh(t) is the Hilbert transform of s(t) [6]. The unwrapped
instantaneous phase φ(t), is defined as the argument of the analytic
representation sa(t):

φ(t) = tan−1

(
sh(t)

s(t)

)
. (35)

As the IF is defined as the derivation of the unwrapped phase φ(t) it
can be calculated as:

IF =
dφ(t)

dt
. (36)
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The CFCC itself does not consider phase informations. In order to
create a feature that includes phase information, the calculated IF is
inserted after the filter bank operation.

For the ASVspoof 2015 the CFCCIF feature is combined with MFCC
features. For classifying, a GMM with 128 components is trained.
With an EER of 1.2% the proposed algorithm performs well on the
ASVspoof data set. The EER on the unit-selection attacks of the data
set was 8.5% [6].

The ASVspoof-corpus is a first attempt in speaker recognition to
reach a standard PAD evaluation protocol.

3.7 standards and protocols

In the current research for attacks and countermeasures, a universal
standard for test protocols and databases is missing. The outcomes of
different studies are hard or impossible to compare. Furthermore in
most cases the datasets are to small to gain reliable and reproducible
results [14].First steps for standardizing databases and protocols are
the ASVspoof-corpus [68], the SAS-corpus [76] and ISO standards
like ISO/IEC 30107-1, [52], and ISO/IEC 30107-3-CD2, [15]. An open
source implementation for a baseline PLDA comparator is provided
by the Voice Biometry Standardization Initiative1.

3.7.1 ASVspoof

The ASVspoof database consists of 16 651 speech samples of 106 hu-
man speakers. 246 500 attacks have been generated by voice conver-
sion, speech synthesis and replay attacks. The partitioning of the
database is according to table 1. The database is a subset of the SAS-
Corpus [76]. Ten different algorithms have been used for generating
the attacks.

Table 1: Partitioning of the ASVspoof database

Subset Bona Fide Attack Male Female

Training 3 750 12 625 10 15

Development 3 497 49 875 15 20

Evaluation 9 404 184 000 20 26

1 http://voicebiometry.org

http://voicebiometry.org
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The ASVspoofing-challenge2 was held in context of the Interspeech
20153. Aim of the challenge is the possibility for researchers to sub-
mit and benchmark PAD algorithms. In order to allow participation
for researchers, which have no previous knowledge in speech pro-
cessing, only the accuracy of the PAD algorithm is assessed [68]. The
interaction between PAD algorithm and SIV algorithm is excluded.

PAD algorithms, which estimate the phase and its shift, attract at-
tention as they outperformed well on the given database [4, 5, 60, 71].
As the used vocoder does not reconstruct the phase shift, when syn-
thesizing the signal, a coherence between the success and the vocoder
used for generating the attacks is possible.

Thus, further investigations are needed in order to evaluate the re-
liability of the algorithms presented, if during creation of the attacks
phase shift is considered.

3.7.2 Voice Biometry Standardization Initiative

The success of attacks depends on the implementation of the SIV sys-
tem. In order to achieve comparable results, a standardized baseline-
system is necessary. One attempt for the standardization of SIV sys-
tems is the voice biometry standard [77] of the Voice Biometry Stan-
dardization Initiative.

A software package with a standard conform implementation is free
available4. The package is written in python and contains a script for
extracting i-vectors from audio files, and a second for the PLDA score
calculation.

3.7.3 Metrics for PAD

In order to obtain comparable and reproducible results from algo-
rithm tests the use of standardized metrics is essential. The metrics
common for speaker recognition, like minDCF, require the definition
of an application specific prior. As the evaluation of PAD algorithms
should be application independent, more universal metrics are re-
quired. A standard, ISO/IEC-30107-3 (Biometric presentation attack
detection – Part 3: Testing and reporting), for PAD is in progress [15].
The two relevant metrics for the thesis are those for a subsystem per-
formance evaluation:

2 http://www.spoofingchallenge.org/

3 http://interspeech2015.org/

4 http://voicebiometry.org/download/vbs_demo.tgz

http://www.spoofingchallenge.org/
http://interspeech2015.org/
http://voicebiometry.org/download/vbs_demo.tgz
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APCER: Proportion of presentation attacks incorrectly classified as
bona fide presentation at the PAD subsystem in a specific scenario.
The APCER shall be calculated as:

APCER =
1

N

N∑
i=1

(1− Resi), (37)

where N represents the number of attack presentations. Resi takes
value 1 if the ith presentation is classified as an attack presentation,
and value 0 if classified as a bona fide presentation. The APCER has
to be calculated seperately for each Presentation Attack Instrument
(PAI).

BPCER: Proportion of bona fide presentation incorrectly classified
as presentation attacks at the PAD subsystem in a specific scenario.
The BPCER shall be calculated as follows:

BPCER =

NBF∑
i=1

Resi

NBF
, (38)

whereas NBF represents the number of bona fide presentation. Resi
is defined as for the APCER.

APMR: In a full-system evaluation of a verification system, the pro-
portion of presentation attacks in which the target reference is matched.

Attack Presentation Identification Rate (APIR): In a full-system eval-
uation of an identification system, proportion of presentation attacks
in which the targeted enrolment is among the identifiers returned or,
depending on intended use case, at least one identifier is returned by
the system.

Further metrics are defined in the standard but not employed in this
thesis:

Attack Presentation Non-Response Rate (APNRR): Proportion of
presentation attacks that cause no response at the PAD subsystem
or data capture subsystem responding.

Bona fide Presentation Non-Response Rate (BPNRR): Proportion of
bona fide presentation that cause no response at the PAD subsystem
or data capture subsystem.

PAD Subsystem Processing Duration (PS-PD): Milliseconds required
for the PAD subsystem to classify PAD data.
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4
U N I T- S E L E C T I O N AT TA C K S A N D
C O U N T E R M E A S U R E S

As mentioned in section 3.3.6, unit-selection attacks pose a major
threat to SIV systems. Figure 19 illustrates the baseline performance
of the voice biometry standard algorithm, introduced in section 3.7.2,
against a subset of the Open Speech Data Corpus for German [78].
The set-up achieves an EER of 10.3%. The measurement assumes a
bona fide scenario, so no subject is intentionally attacked.
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Figure 19: Baseline performance of voicebiometry.org algorithm

In addition to the baseline performance, the PAD performance of the
voice biometric standard algorithm against unit-selection attacks is
tested. The impostor comparisons for each subject are replaced with
unit-selection attacks for the specific subject. A PAD resistant SIV sys-
tem would not be influenced by the attacks, the EER would be equal
or better compared to the bona fide use case. Figure 20 visualizes the
PAD performance of the voice biometry standard algorithm.

The need for unit-selection detection algorithms is obvious. The value
of the APMR never drops below 20%, the EER of the system against
unit-selection attacks is 40.7%. As depicted in the PDF, figure 21,

50
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Figure 20: PAD capability of voicebiometry.org algorithm

the state-of-the-art PLDA comparator is not capable in distinguishing
unit-selection attacks from bona fide speech samples, attack samples
are even more likely to be accepted than genuine samples. Thus, PAD
subsystems for unit-selection are strongly motivated.
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Figure 21: PDF of voicebiometry.org on unit-selection attacks

In order to develop a PAD system for unit-selection attacks, multi-
ple approaches are examined in this thesis. State-of-the-art PAD sys-
tems utilize features imitating the human perception of speech [6].
The countermeasures introduced in this thesis are motivated by fre-
quency analysis of an unfiltered signal. A basic algorithm generates
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the sum over the differences of the analysed frequencies. The PAD
performance of derived features can be optimized by machine learn-
ing techniques. The performance of the algorithms is evaluated with
two independent data sets.

4.1 detection algorithms

As shown in section 3.3.6, there are multiple possibilities for detecting
unit-selection attacks. Figure 22 depicts a classification of different de-
tection methods. In this thesis, the focus is put on frequency analysis.

PAD for Unit-Selection

Frequency

Fourier Transformation Spectrum Wavelet

Prosodic

Formant-analysis

Background noise

SNR

Figure 22: PAD for unit-selection attacks

The state-of-the-art algorithm introduced in section 3.6.4 utilizes an
adapted CFCC in combination with MFCCs as feature vectors. Both
features aim to simulate the perception of the human ear. The fea-
tures introduced in this section do not utilize any filter banks, thus
frequencies not perceived by the human ear are considered as well.

4.1.1 Fourier-based Detection

Speech is a concatenation of phonemes, the point of concatenation
will be referred to as transition. In human speech, the phonemes are
smoothly transferred into each other. The continuous transition of a
human speech signal is displayed in figure 23. Audio-signals which
are compound of multiple voice fragments and not smoothed after-
wards show more abrupt changes of the frequency in the signal, as
displayed in figure 25.

These abrupt changes are reflected in the frequency domain of the sig-
nal. The smooth transitions in human speech can be represented in
the frequency domain by lower frequencies, whereas the transforma-
tion of the abrupt concatenated signal requires much higher frequen-
cies. The spectrogram of human speech sample, figure 24, shows no
frequencies above 7500Hz. The spectrogram of a unit-selection attack,
figure 26, shows regions where all frequencies are occupied. Based on
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Figure 23: Example of a human speech signal and transitions
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Figure 24: Spectrogram of a human speech signal and transitions
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these observations, multiple possibilities in detecting a discontinuity
in audio signals arise.

As a non-continuous signal causes higher frequencies in the frequen-
cy domain, a Fourier transformation of the whole signal should pro-
vide bigger amplitudes in higher frequencies as a smooth human sig-
nal does. The frequency spectrum of a unit-selection attack should be
distinguishable from the frequency spectrum of human speech.
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Figure 25: Example of a unit-selection speech signal and transitions

The Fourier transformation results in a two dimensional vector over
frequency and amplitude. In purpose of creating a score, the sum
over the derivation is calculated.

4.1.2 Spectrogram-based Detection

Another countermeasure is motivated by the assessment of the spec-
trogram of the audio files. As figure 26b points out, the spectrogram
of unit-selection attacks contains non-natural bars through all fre-
quencies. For the purpose of calculating the spectrogram, multiple
parameters have to be defined. The signal has to be divided into win-
dows of fixed length, a defined overlap of the windows is common.
In order to reduce the leakage effect of the Fourier transformation, a
window function is applied to the signal [38]. Hamming or Gaussian
windows are common for speaker recognition algorithms. In general,
an algorithm for the transformation into the frequency domain has to
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Figure 26: Spectrogram of a unit-selection speech signal and transitions

be selected. A fast method is the STFT with FFT [42, p. 294]. For the
STFT method, a granularity of the determination of frequencies has
to be defined. Smaller windows increase the accuracy of the result,
but also the expense of the transformation and the size of the output.

State-of-the-art speaker recognition systems utilize spectrograms for
the generation of MFCCs [7]. Common parameters for the generation
of the spectrogram for MFCCs are a window size of 20ms, a step size
of 10ms, a Hamming window [79] and a resolution of 256 frequency
bins. The window size is chosen in order to be able to account for
changes in the human voice.

As this approach aims at the detection of bars through all frequencies,
much smaller window sizes around 5ms can be chosen. Accounting
for the smaller windows, an overlap of 3ms is chosen, persisting the
window to overlap ratio. This results in a corresponding step size of
2ms. For the window, a Gaussian or Hamming function should be
considered, as it fortifies the appearance of the bars.

There are at least two possible ways of detecting the bars in the spec-
trogram. First is to monitor all frequencies higher than a threshold,
for instance 15 600Hz for a 16 000Hz signal. As the spectrogram of
human speech does not occupy these regions, the maximum of the
sum of the energy of these frequencies can detect an unit-selection
attack. There are further possibilities of fusing the energies, for exam-
ple by the product, the square sum or a weighted sum.
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As the sudden change of the signal in unit-selection attacks affects the
whole frequency band, a more sophisticated approach may take all
frequencies into account. The product over all energies per window
would be zero for windows with unoccupied frequencies, whereas
windows with all frequencies occupied should result in a huge prod-
uct. In order to raise the influence of the higher frequencies, a linear
or exponential weighting can be applied to the spectrogram. In the
case of samples recorded with 16 000Hz, a spectrogram with 8000 fre-
quencies can be generated. A multiplication of 8000 values can lead
to extremely high values which are hard to calculate and store. Hence
a previous binning of the frequencies is mandatory. For the purpose
of initial analysis, a number of 160 bins seems to be suitable.

The STFT results in a three dimensional vector over time, frequency
and amplitude. In a first step, the amplitudes are merged over the
frequencies. As the focus is put on higher frequencies, lower frequen-
cies are omitted. Possibilities for merging are for example the sum,
RMS or product. As the change of high frequencies is of interest, the
derivation of the vector is calculated. In order to obtain a scalar, the
sum over the vector is conducted.

4.1.3 Wavelet-based Detection

Another possibility of frequency analysis is the wavelet transforma-
tion. As shown in section 2.4.3, the main difference between STFT and
wavelet transformation is the relation between time and frequency
resolution. The wavelet transformation provides a higher time resolu-
tion for higher frequencies. As the detection of unit-selection attacks
focuses on the upper frequency band, this transformation seems to
be promising for detecting the unit-selection specific changes.

In practice, the DWT is used as an implementation for the wavelet
transformation. As shown in section 2.4.3, the DWT can be under-
stood as a bandpass filter. Each iteration provides a new level of de-
tail. The number of reasonable detail levels will be examined in this
thesis, also a fusion of detail levels can be used to improve the detec-
tion algorithm.

The result of the DWT is a two dimensional vector over time and
amplitude. As only the detail levels of higher frequencies are con-
sidered, the vector contains the high-pass filtered acoustic signal. In
order to detect changes in the high frequency band, the signal is de-
rived, with the assumption, that unit-selection samples contain more
changes in higher frequencies, thus the length-normalized sum over
the signal is calculated. The score of unit-selection attacks is expected
to be higher, than the score for bona fide samples.
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4.1.4 Edge-Detection-based Detection

The wavelet transformation, in particular the DWT is for instance
known for edge detection in the field of computer vision [80, p. 15].
A possibility is be to bend an edge detection algorithm to detect the
transitions in unit-selection samples. The wavelet transformation is
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Figure 27: Wavelet Transformed of sigmoid function

utilized as an edge detector, in order to detect fast falling or ascend-
ing sections of the signal representing the image. In the details of a
wavelet transformation, the fast changing parts of the signal result in
higher amplitudes [81]. Figure 27 exemplary demonstrates an edge
detection. The sigmoid function symbolises an edge, for example the
grey scale changes from dark to light. The first detail level of a wavelet
transformed, figure 27b, shows a peak, where the sigmoid function
changes the most.

Transitions in concatenated unit-selection samples are not directly
comparable to edges in images. They cannot be detected by abrupt
changes in the signal itself, but by changes in the frequency of the
signal. Figure 28 depicts an abrupt change of a oscillating signal. The
first detail level of the wavelet function works as a high pass filter to
the original signal. The transition does not generate a detectable peak
in the wavelet transformed signal.

Continuative approaches may apply edge detection on the spectro-
gram. As illustrated in figure 26a, the transitions in unit-selection
samples cause edges in the spectrogram. A wavelet based approach is
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Figure 28: Wavelet transformed of transition

expected to be capable of detecting these edges, and thus be utilized
for generating features for unit-selection attack countermeasures. Due
to the further research required by this approach and the tight timing
constraints of the thesis, this feature will not be processed further in
this thesis.

4.2 experimental set-up

In general, for the development of PAD systems, a database with
according attacks is needed. For the task of detecting unit-selection
attacks, only the S10-attacks provided by the evaluation set of the
ASVspoof are available. As the evaluation set should remain unseen
during the development process, additional unit-selection attacks are
necessary in order to create distinct data sets.

4.2.1 Databases for Unit-Selection Voices

In order to generate an independent database, a certain amount of
unit-selection samples has to be produced by a set of unit-selection
voices. Every unit-selection voice is created by using a set of bona fide
samples of one subject. As the database will be used for developing
a method for distinguishing bona fide and unit-selection samples, a
sufficient number of subjects should not be used for the creation of
unit-selection voices. In order to find a proper development database
for the purpose of examining unit-selection countermeasures, speech
synthesis and speaker recognition databases are discussed regarding
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their suitability for the generation of unit-selection voices, in partic-
ular ARCTIC, MOBIO, YOHO and Open Speech Data Corpus for
German.

ARCTIC1 data from CMU contains seven hours of speech, but only
one subject. The unit-selection voice generated with this database is
able to produce comprehensible sentences. For the database the ARC-
TIC data can not be used, as it only contains one subject.

Another database deserving attention is the MOBIO database2. MO-
BIO is a bi-modal database covering video and audio. 152 subjects
from 6 different sites have been captured in 6 sessions. The sessions
consist of short response questions, free speech questions and the
reading of a predefined text. The database has no explicit transcrip-
tion files, but the answers to the short response questions and the pre-
defined text are well known. After an adjustment of the data, a total
duration of less than 45 minutes per subject remains. Most samples
of one subject contain the same sentences, for example the answer
to "’What is your name?"’ does not vary. Thus the generated unit-
selection samples are prone to be of poor quality, since the variety of
units is reduced.

The next database to be examined is the YOHO Speaker Verification
corpus3. It contains 138 subjects with 136 utterances in 14 sessions.
The utterances consist of two-digit numbers spoken continuously in
sets of three. The samples are named with the numbers read, so a
transcription of the samples can be derived. Due to the high number
of samples, the database reaches a total duration of approximately 90
minutes of speech per subject. As the samples solely consist of num-
bers, the amount of diphones is lower than for common text.

A differing database is the Open Speech Data Corpus for German
from TU-Darmstadt4. MOBIO and YOHO are designed for speaker
recognition tasks, whereas this database is designed for speech syn-
thesis. The data has been recorded in a clean environment with a
constant distance between subject and microphone. In order to re-
duce speaking errors and artefacts, the samples are reworked. The
database contains utterances of 180 subjects, reading German Wiki-
pedia, protocols from European Parliament and some individual com-
mands. This leads to a total of around 4 hours of speech per subject.
The database provides a full transcription of the samples.

1 http://www.speech.cs.cmu.edu/cmu_arctic/packed/cmu_us_slt_arctic-0.95-

release.tar.bz2

2 https://www.idiap.ch/dataset/mobio
3 https://catalog.ldc.upenn.edu/LDC94S16

4 https://www.lt.informatik.tu-darmstadt.de/de/data/open-acoustic-models/

http://www.speech.cs.cmu.edu/cmu_arctic/packed/cmu_us_slt_arctic-0.95-release.tar.bz2
http://www.speech.cs.cmu.edu/cmu_arctic/packed/cmu_us_slt_arctic-0.95-release.tar.bz2
https://catalog.ldc.upenn.edu/LDC94S16
https://www.lt.informatik.tu-darmstadt.de/de/data/open-acoustic-models/
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Table 2: Databases for unit selection voices

Database Subjects Speech Per
Subject

Tran-
scription

Language

ARCTIC 1 ca. 7 h Yes English

MOBIO 150 <45 min partial English

YOHO 138 <90 min derived English

G Speech Data 179 <4 h Yes German

Table 2 benchmarks the discussed databases in terms of suitability for
unit-selection attacks. As the German Speech Data Corpus promises
the most success for generating high quality unit-selection voices, it
has been chosen for the creation of the development set. In order to
achieve stable results, a development set with a balanced ration of
bona fide and attack samples is eligible.

The creation of a unit-selection voice is time-consuming and labori-
ous, whereas the generation of unit-selection samples with the voice
is very fast and only limited by the number of sentences available. As
the quality of the unit-selection voice depends on the time of speech
material used for training, the 20 subjects with the highest overall
sample duration are utilized to generate 20 unit-selection voices.

4.2.2 Sentences for Unit-Selection Attacks

After the creation of unit-selection voices, 12 950 bona fide speech
samples of 169 subjects remain unaffected. In order to achieve a bal-
anced development set, ca. 15 000 unit-selection samples have to be
generated. As 10 unit-selection voices are generated, each voice may
produce 1 500 samples. To avoid unintended dependencies, each voice
is assigned with its own sentences.

The source for the german sentences is a Dump of the Wikipedia-
Database, accessible via Wikimedia5. The archive contains all german
Wikipedia-Pages of the 26.12.2015. The Wikipedia Extractor of the
Università di Pisa6 is utilized in this thesis in order to obtain plain
text transcription.

The resulting text files were separated into sentences. Afterwards the
sentences are sanitized. Special characters and short sentences are re-
moved. From the remaining sentences, 15 000 are randomly selected
and distributed in equal parts among the unit-selection voices.

5 https://dumps.wikimedia.org/dewiki/20151226/dewiki-20151226-pages-

articles.xml.bz2

6 http://medialab.di.unipi.it/wiki/Wikipedia_Extractor

https://dumps.wikimedia.org/dewiki/20151226/dewiki-20151226-pages-articles.xml.bz2
https://dumps.wikimedia.org/dewiki/20151226/dewiki-20151226-pages-articles.xml.bz2
http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
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4.2.3 Protocol for the Unit-Selection Database

The creation of a unit-selection speaker takes at least two hours cal-
culation time per subject. Due to timing constraints, a set of 20 unit-
selection speakers was created. In this thesis, a protocol for a unit-
selection database is derived, providing a distinct development and
evaluation set. For a second evaluation on an independent dataset,
the ASVspoof database is utilized.

4.2.3.1 Development Set

The development set is used for developing unit-selection detecting
algorithms. The subset of human speaker and unit-selection attack
does not need to contain the same subjects.

In order to be able to find a way of discriminating bona fide and attack
samples, the aim of the development set is a large number of bona
fide and attack samples. The corpus features 179 subjects. 20 subjects
were used for the generation of unit-selection attacks. 159 subject are
remaining for the bona fide subset. A total of over 14 000 bona fide
samples is achieved. 10 of the 20 unit-selection speakers were used
to create the development set. In order to achieve comparable sized
bona fide and attack subsets, 15 000 attack samples were created.

4.2.3.2 Evaluation Set

The evaluation set is used to determine the performance of the de-
veloped algorithms. Not only the capability of the algorithm of dis-
criminating bona fide and attack samples, but also the baseline per-
formance of a SIV-system and the performance of the same system
against unit-selection attacks is of interest.

Therefore, the dataset has to consist of an enrolment- and a verifica-
tion-subset with bona fide samples and an attack subset containing
unit-selection attacks. 10 unit-selection voices are trained for this sub-
set. 50 bona fide samples of each subject are not used for the train-
ing and divided into 40 enrolment and 10 verify samples. Eachunit-
selection voice generates 10 attack samples. Summarized, the evalua-
tion dataset consists of ten subjects with each 40 reference, 10 probe
and 10 attack samples. The resulting database is displayed in table 3.

4.2.3.3 Second Evaluation Set

In order to determine the stability of the developed algorithms, the
unit-selection attacks of the ASVspoof database are utilized. ASV-
spoof provides 9 404 bona fide samples and 18 398 unit-selection at-
tacks.
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Table 3: Protocol for unit-selection database

Subset Enrol Verify Attack

Development Set 14 088 bona fides 14 945

Evaluation Set 400 100 100

ASVspoof S10 9 404 bona fides 18 398

4.2.4 Algorithms

Experiments are carried out investigating the performance of the three
methods for frequency-based unit-selection attack detection proposed
in 4.1. In order to reach comparable results, the signals are adapted.
First, the silence has to be removed. This can be done by VAD. In this
approach a basic energy-based silence-detection [35] is applied. With
the silent parts removed, the amplitude of the signal has to be nor-
malized in order to reach comparable spectrograms, in this approach
a maximum-normalization was employed.

Fourier-Based detection: For the Fourier transformation of the signal
the FFT implementation of MATLAB was utilized. In order to reduce
the leakage effect of the transformation a hamming-window was ap-
plied to the signal. The score S is calculated according equation 39:

S =
1

N

N∑
k=1

F′d(k). (39)

Whereas

Fd(k) =

N−1∑
n=0

f(nTa) · e
−j2πkn
N (40)

and N = 8 000, as a signal with 16 000Hz is analysed.

Spectrogram-Based detection: The spectrogram based approach uti-
lizes the spectrogram implementation of MATLAB, which employs
the STFT. The window size for the STFT is set to 80, which corre-
sponds 5ms. In order to reduce the leakage effect of the Fourier trans-
formations, a hamming window is applied to each frame. Due to the
fragmentation of the signal into frames and the usage of a window
function, transitions between two frames may remain undetected. To
avoid this problem, a window overlap of 75% is utilized. The resolu-
tion of the STFT is set to 10% of the signal frequency.
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The chosen configuration for the STFT results in a three dimensional
vector over time, frequency and amplitude. In order to obtain a score,
the dimensions have to be reduced. The score S is calculated as

S =

M∑
m=0

(
N∑
k=K

Fγ(m,k)

)′
, (41)

whereas M has to be the number of frames of the STFT. As changes
in the higher frequencies are of interest, the lower frequencies are dis-
carded and the higher frequencies are derived. The limit for the fre-
quencies, K, is set to 100, 500 and 1000 which corresponds to the band
from 15 800, 15 000 and 14 000 to 16 000Hz. The STFT, Fγ(m,k), is de-
fined in equation 23. The sum over the frequencies can be replaced
with the RMS or the product. As the utilization of the product easily
results in infinite or zero values, only sum and RMS were tested.

Wavelet-Based detection: For the wavelet-based approach, the DWT
implementation of MATLAB is utilized. Three different wavelets are
tested: Haar, Daubechies 1 and Daubechies 10 [46]. In a first attempt
the details of the first three iteration levels are analysed, later the ex-
amination is extended to the sixth iteration.

As described in section 2.4.3, the DWT can be considered as band-
pass filter. Therefore, the outcome of the DWT is a two dimensional
vector over time and amplitude. As the changes in the high frequen-
cies are of interest, the derivation of the details are considered. In
order to obtain a score, the weighted sum of the derived details is
calculated.
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4.3 evaluation of basic approaches

The performance of the proposed algorithms is examined on the de-
velopment set defined in section 4.2.3.1. A PDF is used to visualize
the score distribution for bona fide and attack samples. In order to
create a comparable result of the classification performance of the
algorithms, the EER and DET diagram of APCER and BPCER are uti-
lized.

The proposed basic approaches assume more occurrences of frequency
changes on unit-selection signals than on human speech, see section
4.1. As the score represents a measure for presentation attacks, it will
be referred to as PA score.

4.3.1 Results for Fourier-based Detection

The PA score generated by the Fourier transformation approach shows
a difference for bona fide and attack samples. In the PDF, figure 29, a
different distribution of the scores is visible.

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50
PA-Score

D
en

si
ty

Population Attack Bona fide

Figure 29: PDF for basic Fourier transformation based approach

The mean of both distributions differs, but a large overlap of both
distributions degrades the performance of the tested PAD algorithm.
The DET in figure 30 visualizes the performance of the algorithm,
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yielding an EER of 33.4%, which is comparable to the unit-selection
detection performance of many ASVspoof submissions but not appli-
cable.
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Figure 30: DET for basic Fourier transformation based approach and
wavelet based approach with Haar wavelet and 5 iterations

4.3.2 Results for Spectrogram-based Detection

The proposed basic approach of employing a scalar representation
for spectrogram results in poor performance which can be attributed
to the variability of calibrateable spectrogram parameters. The PDFs,
figure 31, of bona fide and attack samples are indistinguishable.

Table 4: EER for PAD with spectrogram based approach

Frequencies 100 500 1000

RMS 43.6 41.6 42.5

Sum 43.8 41.6 41.9

The EER for the different configurations are displayed in table 4. The
best performance achieved is an EER of 41.6% for 500 frequencies for
RMS or Sum. The calculation of the spectrogram feature has a lot of
variables to tune. Window size, overlap and frequency resolution are
parameters that can be changed at STFT level. The fusion of frequen-
cies can be done by more advanced methods like weighted sums and
the range of used frequencies can be deeper explored. Due to the bad
initial performance, the approach of spectrogram based analysis for
PAD will not be traced further in this thesis.
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Figure 31: PDF for basic spectrogram based approach

4.3.3 Results for Wavelet-based Detection

The wavelet-based detection seems to be the most promising app-
roach. For the transformation, three wavelets are tested: two Daube-
chies wavelets (DB1 and DB10) and a Haar wavelet. The resulting vec-
tor is summarized to a scalar. The PDFs of PA scores of bona fide and
attack samples of the first three iterations is displayed in figure 32.

The difference between the BD1 and Haar wavelet is negligible. The
highest discrimination between attack and bona fide samples can be
made for DB1 and Haar wavelets in third iteration.

The resulting EERs for different wavelets and iterations are listed in
table 5, the lowest EER achieved is 33.2%. Contrary to the assump-
tion, later iterations, displaying lower frequency bands, yield a higher
distance of the PDFs. As the EER improves for deeper detail levels,
further iterations are analysed in order to find the optimum. The
wavelets achieve a minimum EER at the fifth iteration. At sixth itera-
tion, the performance is declining. Figure 30 shows the DET function
for the configuration causing the lowest EER on the development set.
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Table 5: EER for PAD with wavelet based approach

Iteration DB1 DB10 Haar

1 40.2% 44.4% 40.2%

2 33.4% 33.4% 33.4%

3 33.2% 39.1% 33.2%

4 31.4% 36.2% 31.4%

5 29.8% 30.6% 29.7%

6 44.5% 38.3% 44.6%

Fusion 3-5 33.1% 37.4% 33.1%

Fusion 1-5 40.8% 40.8% 42.0%

As the bandpass filter changes for each iteration, the returned sig-
nal for each iteration contains different informations. Therefore, the
merge of the results of multiple iterations can achieve an improve
in performance of the PAD algorithm. Two approaches of fusion are
made. The fusion is applied on the details of the iterations, as method
sum is used. The three most promising iterations, three, four and five,
are fused and in another attempt the first to fifth iteration.

No further gains are yielded by this fusion compared to single detail
level approaches. Table 5 shows the EERs for both fusion approaches
with the different wavelets. The fusion is approximately as bad as the
worst iteration used for the fusion.
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Figure 32: PDF for basic wavelet based approach
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4.4 improvements of frequency-based detection

The evaluation of the basic PAD algorithms shows the need for more
advanced countermeasures. The best result achieves an EER of 29.7%,
which is not satisfactory for practical scenarios. Due to the simple
reduction of the feature vector to a score by building the sum, many
informations are lost. In order to explore Fourier, spectrogram, and
wavelet-features more in depth, non-trivial comparison approaches
are investigated, in particular SVMs and GMMs. Three different fre-
quency based features are examined in combination with the machine
learning techniques.

4.4.1 Design of Feature Vectors

For the purpose of SVM and GMM-based comparisons, coherent fea-
ture spaces need to be designed, which allow class modelling. A sim-
ple method for generating fix-length vectors would be to define a spe-
cific length for the samples. Longer samples are truncated, shorter
samples are padded to the desired length. A big disadvantage of
this method is, that information is lost by truncation and fragments
are added by padding. In the field of speaker recognition and in the
state-of-the-art of unit-selection detection, the employment of the fix-
dimensional MFCC-feature vectors is common, where a decorrelation
and dimension reduction is performed by employing a DCT. By trans-
forming the signal into the frequency domain, a fix-dimensional fea-
ture space can be established. The frequency domain is time-indepen-
dent, each outcome of the Fourier transformation has the same length.
In the thesis the Fourier transformation is employed instead of the
DCT.

In general, long feature vectors may comprise more information. But
a machine learning algorithms like GMM or SVM needs more sam-
ples to train with larger feature vectors. The number of training sam-
ples is limited, so a trade-off for the feature length has to be found.

Fourier-Based Feature Vectors: The basic approach with Fourier trans-
formation is already time independent as the FFT is employed. By
changing the resolution of the FFT the resulting feature space dimen-
sionality is varied. A lower resolution contains less information, but
produces shorter feature vectors.

Wavelet-Based Feature Vectors: The outcome of the wavelet trans-
formation is linear dependant from the length of the audio sample.
As shown in section 2.4.3, the Fourier transformation provides a loss-
less transformation of any signal into the frequency domain. If a FFT
is applied to the outcome of the wavelet transformation, it produces
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a representation of the wavelet transformation as an equal length vec-
tor. The length of the feature vector can be varied by the resolution of
the FFT.

Due to the Fourier transformation, both feature vectors contain com-
plex values. In order to avoid complications with the machine learn-
ing algorithms, the complex magnitude, |a+bi| of the values is calcu-
lated as

|a+ bi| =
√
a2 + b2. (42)

4.4.2 Subsets for Machine Learning

The machine learning algorithms examined in this thesis are SVM
and GMM. SVM was chosen, as it represents a well established ma-
chine learning algorithm which provides binary classification, GMM
is a common classification method in speaker recognition [13, 24, 28].

In general, machine learning algorithms are based on the training on
data samples. As a testing of the trained SVM and GMM is manda-
tory, the development set defined in section 4.2.3.1 has to be subdi-
vided. In order to avoid data snooping, the subjects in training and
test set should be distinct. As shown in table 3, the development set
consists of 12 950 bona fide and 14 945 attack samples. The attacks
are generated from 10 subjects, the bona fide samples are from 159
subjects. 70% of each population of the development set are selected
for the train set, the remaining 30% are used for testing.

Table 6: Test and training set for machine learning

Subset Bona Fide
Samples

Attack
Samples

Attack
Subjects

Bona Fide
Subjects

Train 10 343 10 461 7 111

Test 3 745 4 484 3 48

Development Set 14 088 14 945 10 159

4.4.3 Training the Machine Learning Algorithm

According to section 4.3, the Fourier and wavelet based approaches
are the most promising. Therefore these two are further examined
with machine learning algorithms. The Fourier based approach is
tested with frequency resolutions from 100 to 3 000. The wavelet based
approach is tested for the DB1 wavelet with five iterations, as well as
for the best fusion approach with iteration three to five.
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Two machine learning approaches are examined in the thesis. For
a simple binary classification a SVM is utilized. As SVMs are known
for good pattern recognition performance [20, p. 1504], it is likely
that they are capable of determining characteristic patterns for dis-
tinguishing bona fide and attack samples. Following the assumption,
that Fourier based feature spaces comprise linear segregable popula-
tions, linear SVM kernels may yield adequate performances. In addi-
tion to the SVM approach, a GMM was trained. GMMs are known for
good performance in speaker verification scenarios. Due to the lim-
ited amount of training data, a GMM with 16 components is chosen.

4.5 evaluation of machine learning approaches

Due to the subdivision of the development set, the set of samples
used for the evaluation of the trained SVMs and GMMs is 30% of
the set used for evaluating the basic approach. As the test-set repre-
sents a subset of the development set, the results should be nearly
comparable. In order to achieve comparable scores, EER and DET
will be utilized to exemplify the PAD performance of the improved
algorithms.

4.5.1 Results for PAD with Machine Learning

The different EERs of the algorithms observed at different frequency
resolutions are depicted in figure 33. The best EER of 5.0% can be
achieved with a feature created by the wavelet approach with fusion
of the third, fourth and fifth iteration and FFT with 600 frequencies.

The performance of the GMMs is in general not as good as the perfor-
mance of the SVMs. Further tuning of the parameters of the GMMs
may improve the performance. The performance for all algorithms
degrades, if the number of frequency bands exceeds 1000. It can be
assumed, that the feature space dimensions reach a limit, where the
machine learning algorithms are not capable of distinguishing bona
fide and attack samples, with the number of samples available for
training. The EER of the approaches utilizing the wavelet algorithm
are increasing faster than the algorithms utilizing the basic FFT. Table
7 summarizes the best-performing observed configurations for each
algorithm.



4.5 evaluation of machine learning approaches 72

10

20

30

40

50

1000 2000 3000
number of Frequency bands

EE
R

in
%

Algorithm
DWT-5+FFT+GMM

DWT-5+FFT+SVM

DWT-fusion+FFT+GMM

DWT-fusion+FFT+SVM

FFT+GMM

FFT+SVM

Figure 33: EER for machine learning approach with different frequency res-
olutions

The DET plots of the configurations listed in table 7 are displayed in
figure 34. There are no fundamental differences in the shape of the
DET plots of the FFT based approach and the DWT based approach
with fusion. The performance of DWT without fusion is far beyond
the others. All plots are vertical straightened, which influences the
behaviour of the PAD algorithm if the threshold is moved from the
EER. A lower BPCER can easily be achieved. With the DWT approach
with fusion and SVM, for example, an BPCER of 1% results in an
APCER of 10%. A lower APCER however results in a fast increase of
the BPCER. An APCER of 1% would lead to a BPCER of nearly 80%.

Table 7: Configuration for best EER

Algorithm EER Number of
Frequencies

DWT-fusion+FFT+SVM 5.0% 600

DWT-fusion+FFT+GMM 5.6% 200

FFT+SVM 6.1% 1000

FFT+GMM 6.3% 1100

DWT-5+FFT+SVM 23.1% 100

DWT-5+FFT+GMM 20.0% 1600
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Figure 34: DET plots for configurations with best EER on development set

4.5.2 Results for Evaluation Set and ASVspoof

In general, machine learning algorithms carry the risk of overfitting.
In this case, the results on the training set are much better than on
other sets. The best configurations, listed in table 7, are tested against
the two evaluation sets, defined in table 3. An almost constant perfor-
mance of the algorithms would support the hypothesis of universality.
As the data available for evaluation in the development set and both
evaluation sets differ, a comparison of the calculated EERs and DET
functions is not exact. Additional to the difference in the sample num-
ber, the ratio between bona fides and attack samples depends on the
utilized set.

As shown in table 3, the evaluation set has a small number of sam-
ples. According to the Rule of 30 [82], to be 90% confident that the
true error rate is in a confidence interval of ±30% of the measured er-
ror rate, at least 30 errors have to be detected. Lines for 30 bona fide
and attack presentation classification errors are displayed in the DET
plots. Whereas the DET plots for development set and ASVspoof data
stay far beyond the 30 errors lines, the DET plot for the evaluation set
falls below the Rule of 30. This has to be considered when examining
the results.
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Table 8: Best configurations evaluated with evaluation set and ASVspoof

Algorithm EER Eval-set EER ASVspoof

DWT-fusion+FFT+SVM 7.1% 11.7%

DWT-fusion+FFT+GMM 15.0% 24.6%

FFT+SVM 8.5% 22.6%

FFT+GMM 9.5% 27.7%

DWT-5+FFT+SVM 27.0% 11.7%

DwT-5+FFT+GMM 40.1% 45.7%

Table 8 benchmarks the EERs for the best algorithms of the previous
approach. SVM and GMM are the ones trained on the development
set data. A repeated training on the evaluation sets may reinforce
the performance, but as in a real-world scenario the attacks are not
known, a repeated training would distort the results.
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Figure 35: DET plots for configurations with best EER on evaluation set

Independent from the algorithms, the performance of the SVM is less
affected than the performance of GMM. The best algorithm of table 7
remains the best for the evaluation sets. The performance of the DWT
approach without fusion is only slightly affected by different data
sets. The EER for the development set and ASVspoof remained the
same. A possible explanation for this behaviour is the small number
of 100 frequencies analysed in this configuration.
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Figure 35 visualizes the DET performance of the algorithms on the
evaluation set. The function is rather steppy than the one shown for
the development set. This is caused by the much lower number of
samples available in the data set. The shape of the DET function is
nearly the same, compared to the development set.
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Figure 36: DET plots for configurations with best EER on ASVspoof S10 at-
tacks

Figure 36 visualizes the DET performance of the evaluation with the
ASVspoof S10 attack. The EER of the DWT algorithm with fusion and
SVM increases by 6.7 percent points, which doubles the error rate. All
other algorithms, but the DWT with five iterations and SVM, rise over
20%. The performance of the DWT with five iterations and SVM sur-
prises, as it doubles compared to the evaluation set. The DET function
of the algorithm is the best in this data set, the EER is the same as the
DWT approach with fusion.

4.5.3 Results with Larger Training Sets

In general, the performance of machine learning algorithms strongly
depends on the amount of data used for training. An approach of
increasing the performance of the introduced algorithms was made
by increasing the training data. For this purpose, the complete de-
velopment set is utilized for the training of the algorithms. The new
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trained classifiers cannot be evaluated with the development set, but
an evaluation with the evaluation set and ASVspoof data is still pos-
sible.

Table 9: Best configurations evaluated with evaluation set and ASVspoof,
algorithm trained on full development-set

Algorithm EER Eval-set EER ASVspoof

DWT-fusion+FFT+SVM 11.3% 13.8%

DWT-fusion+FFT+GMM 14.7% 20.9%

FFT+SVM 13.0% 24.9%

FFT+GMM 12.0% 23.2%

DWT-5+FFT+SVM 27.0% 11.1%

DwT-5+FFT+GMM 41.9% 46.9%

The EERs of the new trained algorithms are listed in table 9. In
general, the performance of SVM based algorithms decrease, except
the DWT approach without fusion. For the GMM algorithms, the
DWT-fusion approach, improves the performance, in particular on
ASVspoof S10 data.
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Figure 37: DET plots for configurations with best EER on evaluation set, Al-
gorithm trained on full development-set
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Figure 37 visualizes the DET functions of the new trained algorithms.
In general, the new training did not effect the shape of the functions.
It is difficult to determine a difference between the DET functions dis-
played in figure 35 and the new DET functions in figure 37.
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Figure 38: DET plots for configurations with best EER on ASVspoof, Algo-
rithm trained on full development-set

Figure 38 shows the DET functions for the evaluation of the new
trained algorithms with the ASVspoof attacks. Due to the broader
training set, the DET for the DWT approach of the fifth iteration and
SVM outperforms all other systems amongst all operating points. Es-
pecially for high BPCER the APCER is lowered.

4.6 summary

The examined SIV baseline system is not capable of detecting an unit-
selection attack. A preceding PAD is required. Conventional PAD
algortihms employ features conventionally utilized in speech and
speaker recognition. In this thesis, it is assumed, that information is
lost by extracting common features, due to the employed filter banks.
Thus, three different frequency analysing methods for unfiltered sig-
nals are proposed and examined based on Fourier spectrum, spec-
trogram, and wavelet transformation. In order to achieve a detection
score, the sum of the derivation of the tested algorithms is calculated.
However, non satisfiable results are yielded, indicating a non-trivial
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problem. The spectrogram based approach is not capable of distin-
guishing bona fide and attack samples. The Fourier spectrum and
wavelet transformation approaches show two differing distributions
for the samples with a huge overlap. Thus an EER of 29.7% can be
achieved for the wavelet based approach in fifth iteration. The fusion
of multiple iteration levels does not improve the result significantly.

The employment of machine learning algorithms effects an enormous
improvement of the detection performance of the algorithms. The
EER drops to 5.0% on the development set. Contrary to the basic
approach, the employment of a fusion of the wavelet transformation
iterations is much more successful.

In general, the performance of the tested algorithms is lower on other
data sets. On the evaluation set the best EER increases by 2.1 per-
cent points, for the ASVspoof data the EER at least doubles for most
algorithms. For the best algorithm the performance increases by 6.7
percent points to 11.7%. The character of the DET plot remains the
same for different data sets. The increasing performance of the fusion
less wavelet approach in fifth iteration in combination with a SVM
on the ASVspoof data yields, that further research on the tuning of
features and machine learning algorithms may improve the detection
performance.

The increase of the amount of training data for the machine learn-
ing algorithms results in no significant improvement. Especially, the
performance for the evaluation set drops, which is caused by overfit-
ting of the machine learning algorithms. The best EER achieved raises
by 4.2 percent points to 11.3%. The result of the fusion less wavelet
approach in fifth iteration in combination with a SVM is remarkable.
The EER drops again by 0.4 percent points, outperforming the other
approaches.

In general, features of the Fourier spectrum and wavelet transforma-
tion with fusion perform good on the development and evaluation set.
On the ASVspoof dataset, the state-of-the-art algorithm presented in
3.6.4 excels the presented approaches by 2.6 percent points, yielding
an EER of 8.5%

The proposed algorithm performing best on the ASVspoof dataset
yields an EER of 11.1%. Table 10 compares the presented algorithms
with three approaches proposed at the spoofing challenge 2015 yield-
ing the best unit-selection detection performance. The combination
of CFCCIF and MFCC yields a slighly better performance, which
is likely caused by the utilization of the phase-considering IF. Pure



4.6 summary 79

phase-based features, i.e. CNPCC, which are eligible for detecting
synthesis and voice conversion attacks, are outperformed by the al-
gorithms proposed in this thesis, although the SVM is not trained on
ASVspoof data.

Table 10: Comparison of proposed countermeasures to algorithms intro-
duced in ASVspoof

Features EER

DWT-fusion+FFT+SVM 11.7%

DWT-5+FFT+SVM 11.7%

DWT-fusion+FFT+SVM+full-training-set 13.8%

DWT-5+FFT+SVM+full-training-set 11.1%

CFCCIF+MFCC [6] 8.49%

High Dimensional Magnitude and Phase [4] 26.1%

CNPCC [73] 26.39%
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4.7 future work

In this thesis, novel approaches for unit-selection detection are pro-
posed. The presented feature extraction methods are able to distin-
guish bona fide and attack samples. In order to improve the perfor-
mance of the countermeasures further research is recommended.

The proposed methods utilize a Fourier transformation for extracting
a fix-dimension feature vector. The utilization of further frequency
analysing techniques, like the early discarded STFT can be examined.
As introduced in section 4.1.4, an edge detection or pattern recogni-
tion on the spectrogram promises the capability of creating a discrim-
inative feature vector for bona fide and attack samples. A fusion of
edge detection and Fourier-based features can be considered as well.

In this thesis, the magnitude of the transformed signal. Further im-
provements are prospective, if a feature is created with the complex-
valued result of the Fourier transformation, as current research shows
the importance of the consideration of phase-information in the field
of PAD.

The machine learning algorithms utilized in this thesis are configured
based on experience values. Further examination of different configu-
rations of the machine learning algorithms may improve the discrimi-
nation performance on the developed feature vectors. Also the exam-
ination of further machine learning techniques, i.e. Deep Neuronal
Networks (DNNs) or Mult Layer Perceptrons (MLPs), may improve
the detection performance.

Further, the creation of unit-selection attacks requires additional re-
search. For example, the decisive parameters for the quality of unit-
selection attacks are not determined yet. Also there is no standard-
ised metric for the performance estimation of unit-selection attacks.
A further topic to examine is the dependence between quality of unit-
selection attacks and the detection performance of PAD subsystems.



5
C O N C L U S I O N

This thesis examines PAD for unit-selection attack. The focus is set on
frequency based feature vectors extracted from unfiltered speech sig-
nals. Multiple detection algorithms are proposed, evaluated and im-
proved. The evaluation is realised according to ISO/IEC CD2 30107-3
utilizing the ASVspoof database.
In general, biometric systems are vulnerable against attacks. Due to
the advanced technology for speech synthesis, SIV systems are threat-
ened in particular. This thesis examines the PAD performance of stan-
dard SIV systems on unit-selection attacks. State-of-the-art SIV sys-
tems are not capable of distinguishing bona fide and attack samples,
thus additional countermeasures are needed.
A basic examined PAD algorithms did not perform well. The results
of the machine learning approach was good for the development
set. The performance drop for the ASVspoof data requires further
research regarding the universality of the features. The improvement
of the fusion less wavelet approach shows, that further investigation
on the feature vectors can be meaningful.
The spectrogram based approach, discarded after the first evaluation,
could be improved by a wavelet transformation, detecting edges in
the spectrogram. Another possibility of improving the features could
be the consideration of phase informations. For length normalization
the FFT of the features is calculated. In the presented algorithms,
the magnitude was utilized. A feature vector preserving the phase
promise to lead to a more accurate classification.
The approach utilising machine learning outperforms the basic algo-
rithms by far. Further research on configuration and training of the
GMM and SVM is expected to improve the performance of the clas-
sification. The GMM shows slightly better results for larger training
sets.
The ASVspoof dataset provides a solid basis for the uniform evalua-
tion of PAD systems. The algorithms developed in this thesis scored
second on the dataset, benchmarked with the submissions to the
spoofing challenge.
This thesis demonstrates, that PAD without the usage of speech-recog-
nition related features like MFCCs and CFCCs is possible. Further re-
search on the frequency analysis of unfiltered speech signals promises
further improvement of the detection performance.
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allophone Phonemes can be pronounced different, the possible pro-
nunciations are called allophones. 43

attack potential Attribute of a biometric presentation attack express-
ing the effort expended in the preparation and execution of
the attack in terms of elapsed time, expertise, knowledge
about the capture device being attacked, window of opportu-
nity and equipment, graded as Basic, Enhanced-Basic, Mod-
erate, High, or Beyond High [15]. 32

attack type Set of presentation attacks distinguished either by a com-
mon recipe for creating the artefact including the parameters
(e.g. regarding environment or interaction method) used in
the biometric capture process or by a common method of
mutilating, altering, or imitating a human biometric charac-
teristic [15]. 31

biometric characteristic Biological and behavioural characteristic of
an individual from which distinguishing, repeatable feature
can be extracted for the purpose of biometric recognition [17].
2, 6–9

biometric enrolment Act of creating and storing a biometric enrol-
ment data record in accordance with an enrolment policy [17].
6

biometric feature Numbers or labels extracted from biometric sam-
ples and used for comparison [17]. 2, 5–8

biometric identification Process of searching against a biometric en-
rolment database to find and return the biometric reference
identifier(s) attributable to a single individual [17]. 2, 6, 7, 30

biometric probe Biometric sample or biometric feature set input to
an algorithm for use as the subject of biometric comparison
to a biometric reference(s) [17]. 6, 7, 32, 61

biometric recognition Automated recognition of individuals based
on their biological and behavioural characteristics [17]. 2, 8

biometric reference One or more stored biometric samples, biometric
templates or biometric models attributed to a biometric data
subject and used as the object for biometric comparison [17].
6, 7, 32, 61

biometric sample Analog or digital representation of biometric char-
acteristics prior to biometric feature extraction [17]. 5–9, 11,
15, 82

biometric verification Process of confirming a biometric claim through
biometric comparison [17]. 2, 6, 7, 9, 30

82
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bona fide presentation Interaction of the biometric capture subject
and the biometric data capture subsystem in the fashion in-
tended by the policy of the biometric system [15]. 3, 46, 48,
50, 51, 56, 58, 60–62, 64–66, 70, 71, 73, 78, 80

challenge response A type of protocol, characterized by one entity
sending a challenge to another entity. The second entity must
respond with the appropriate answer. 33, 34

concealment The attempt to be not identified by a biometric system.
30

diphone A diphone is a segment of speech that starts at the middle
of one phone and extends to the middle of the next phone.
The cut points are located in the middle of the phonemes, in
the acoustic most stable region [32]. 14, 34, 44, 59

formant f0 Formants are frequency-ranges with high gain, caused by
resonances. The lowest formant is referred to as f0. 13, 33, 34,
43, 44

overfitting In the field of machine learning, overfitting refers to a too
excessive trained on a training population, so the accuracy of
the model for further populations is reduced. 73, 78

phoneme A phoneme is the smallest sound unit, that is needed to
distinguish two words. 12–14, 43, 44, 52

prosody The rhythm and pattern of sounds of poetry and language.
14

replay attack The speech of the attacked person is recorded and re-
played in front of the microphone of the SIV [17]. 33, 35

signal energy The energy of a signal is the sum over the absolute
squares of its time-domain samples. 18

signal power The power of a signal is the sum of the absolute squares
of its time-domain samples divided by the signal length. 14

subversive biometric capture subject Biometric capture subject who
attempts to subvert the correct and intended policy of the
biometric capture subsystem [17]. 30

subversive users user of a biometric system who attempts to subvert
the correct and intended system policy [17]. 30

syllable A syllable is a concatenation of phonemes, which can be
vocalized at once. 13

unit-selection TTS-System based on the concatenation of speech sam-
ples. Regarding target cost and join cost the suitable units are
selected during the synthesis process. 2–4, 14, 34, 35, 43–46,
50–52, 54–61, 64, 65, 69, 78, 80, 81
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voice transcription A textual representation of a corresponding speech
sample. A file containing a transcription is referred to as tran-
scription file. 43, 59, 60
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