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ABSTRACT

The vast majority of text-independent speaker recognition
systems rely on intermediate-sized vectors (i-vectors), which
are compared by probabilistic linear discriminant analysis
(PLDA). This paper proposes a PLDA-alike approach with
restricted Boltzmann machines for i-vector based speaker
recognition: two deep architectures are presented and exam-
ined, which aim at suppressing channel effects and recovering
speaker-discriminative information on back-ends trained on
a small dataset. Experiments are carried out on the MOBIO
SRE’13 database, which is a challenging and publicly avail-
able dataset for mobile speaker recognition with limited
amounts of training data. The experiments show that the
proposed system outperforms the baseline i-vector/PLDA ap-
proach by relative gains of 31% on female and 9% on male
speakers in terms of half total error rate.

Index Terms— PLDA-RBM, deep learning, speaker
recognition, MOBIO

1. INTRODUCTION

In past years, speaker recognition systems based on interme-
diate-sized vectors (i-vectors) [1] became state-of-the-art bio-
metric features in combination with a Gaussian probabilis-
tic linear discriminant analysis (G-PLDA) [2] back-end. Re-
cently [3], non-linear PLDA schemes have been shown to
be applicable on the domain shift JHU-2013 i-vector set [4],
where further gains were also yielded by deep architectures.

In 2012 a proof-of-concept [5] illustrated, that restricted
Boltzmann machines (RBMs) can be designed, such that the
behaviour of conventional PLDA is achieved at comparable
performance to PLDA (PLDA-RBM). Similarly to PLDA,
PLDA-RBM extracts latent speaker factors by removing
channel effects, i.e.: hidden speaker and hidden channel units.
Conceptually, i-vectors are reconstructed by the activation of
hidden speaker units, which are then used for comparison.

While RBMs in machine learning usually rely on non-linear
energy functions, [5] presumed linear energy functions fol-
lowing the conventional Gaussian assumption. Our work
examines the impact of Bernoulli energy functions, intro-
duces two stacking approaches, and analyses the information
reinforced by each layer. Aiming at mobile environments,
experiments are carried out on the publicly available MOBIO
speaker recognition evaluation task (MOBIO SRE’13) [6, 7],
which provides a challenging and realistic test-bed for cur-
rent state-of-the-art speaker verification [7]. Two concepts
for deep PLDA-RBM are examined for compensating chan-
nel effects still being persistent on i-vector back-ends trained
on limited data sets. The proposed concept is shown to be
applicable for systems operating on limited mobile data.

This paper is organized as follows: Section 2 introduces
related work, Section 3 describes PLDA-RBMs and the pro-
posed deep designs, Section 4 presents and discusses experi-
mental analyses results, and Section 5 concludes.

2. RELATED WORK

2.1. PLDA-based Speaker Recognition

State-of-the-Art speaker recognition techniques rely on gen-
erative pairwise models [8]. In PLDA, an i-vector is,c is de-
composed into a speaker- and channel-independent mean µ,
latent speaker factors ys, and residual noise εc, where s, c de-
note speaker- and channel-dependencies: is,c = µ+Φ ys+εc
with ys ∼ N (0, I) and εc ∼ N (0,Λ), where Φ constrains
the low-rank speaker factor subspace, and Λ is the covariance
matrix of the residual noise εc. A speaker verification score
S is computed as a log-likelihood ratio of the hypotheses, a
reference and a probe i-vector iref, iprb are (a) belonging to the
same speaker, or (b) not, which is analytically evaluated by
marginal Gaussian likelihoods [9].
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Fig. 1. Factorization concepts, with: data samples x, hidden variables h, PLDA parameters θ = {µ,Φ,Λ}, weights W.

2.2. Restricted Boltzmann Machines

A RBM is a bipartite undirected graphical model, with no
connections between units of the same layer [12]. This prop-
erty makes the distributions of the two layers conditionally
independent, and hence allows fast sampling-based training
techniques to apply. RBMs can serve different purposes e.g.,
probabilistic principal component analysis (PPCA), feature
reconstruction, or unsupervised initialization of Deep Neural
Networks (DNNs) [5, 11, 13, 14].

RBMs are two-layer structure models containing a visible
and a hidden layer v = {vi}i=1,...,dv

, h = {hj}j=1,...,dh
,

which are connected through a weight matrix W = {wi,j}
[5, 11]. The joint probability density function (pdf) of (v, h)
is a (dv + dh)-dimensional Gaussian depending on an energy
function E(v, h): P (v, h |W) = Z−1 exp(−E(v, h) ) with
normalizing constant Z.

Energy functions model the distribution of visible and
hidden units: Gaussian-Gaussian (GG) layers assume Gaus-
sian distribution for visible and hidden units, Gaussian-
Bernoulli (GB) layers assume Gaussian distribution for vis-
ible units and Bernoulli distribution for hidden units. By
assuming zero mean for GG energy functions, the distribu-
tions take the form of PPCA [5, 13]. The GB energy func-
tion E(v, h) considers the hidden unit pdf to be Bernoulli-
distributed [13, 15], such that the GB energy function takes
the form of [13]:

E(v, h) =
∑
i∈dv

v2i
2σ2

i

−
∑
j∈dh

bj hj −
∑
i∈dv
j∈dh

vi
σi
hj wij . (1)

3. PLDA-RBM AND DEEP PLDA-RBM

RBMs can be used in a specific way to achieve a PLDA-
similar back-end, i.e. visible units representing i-vectors
can be decomposed into hidden speaker units hspeaker

s and
hidden channel units hchannel

c representing speaker and chan-
nel/residual factors, respectively.

3.1. Basic PLDA-RBM Algorithm

We are following a similar approach to [5]. Our main dif-
ference is the usage of Bernoulli hidden layers, i.e. a GB
PLDA-RBM. The PLDA-RBM is trained with CD1 using
mini-batches and standard L2 regularization, while no mo-
mentum terms are added [13]. During recognition phase, fea-
tures are extracted using the speaker layer, one per i-vector.
In the case of multi-sample enrolments, references are created
as averaged template features. Reference and probe features
are compared by cosine distance. Fig. 1 depicts PLDA, RBM,
and PLDA-RBM architectures.

3.2. Deep Designs

One of the motivation behind the i-vector paradigm was the
insufficiency of JFA in distinguishing between speaker and
channel information, as channel factors were shown to con-
taining speaker information [1]. A two-step approach, where
a total variability subspace is first estimated, followed by a
back-end (PLDA, LDA with cosine distance, a.o.) that dis-
tinguishes the two types of variability on the i-vector space
proved to be superior to the JFA monolithic classifier.

However, in cases where limited labelled data is avail-
able for back-end training, the problem of speaker informa-
tion linkage to channel factors may reappear. To address this
issue, we propose a deep architecture in which the channel
factors of the initial PLDA-RBM are further processed using
a second PLDA-RBM model. The same approach is repeated
N times, leading to a deep architecture that is trained using
greedy CD1. For completeness, the same idea is also applied
to the speaker layers. Both approaches are described below.

3.2.1. Stacking on Channel Units

Following the hypothesis of biometric information to be
still present in hidden channel units, the extracted hidden
channel units are further examined by deeper PLDA-RBM
layers, i.e. hidden channel units of the (N-1)th-layer are re-
processed by the N th-layer, resulting in the hidden speaker
units ĥspeaker

s . Thereby, CD1 training is performed layer-
wise (greedy), where L2 regularization is only applied on
the first layer, since the weights of deeper layers decreased
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dramatically in our experimental set-up on limited training
data. We propose to fuse hidden speaker units of all layers
{hspeaker

s , . . . , ĥspeaker
s } by concatenation in order to assemble

an augmented reconstructed biometric feature, cf. fig 2a.

3.2.2. Stacking on Speaker Units

Following the hypothesis of noisy speaker units, the recon-
structed hidden speaker units are refined by deeper PLDA-
RBM layers, i.e. hidden speaker units of the (N-1)th-layer are
re-processed by the N th-layer, resulting in the hidden speaker
units ĥspeaker

s , which we propose as biometric features, cf.
fig. 2b. Though, this approach may also lead to further loss of
biometric information, if the original hspeaker

s units comprise
already well-reconstructed features, which can be over-fitted
by re-assessment e.g., due to limited training data.
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Fig. 2. Comparison of proposed deep PLDA-RBM designs
with ĥ as deep hidden units of deeper layers N , where gray
layers indicate the proposed biometric features.

4. EXPERIMENTAL ANALYSES ON MOBIO TASK

Experiments are carried out on the MOBIO SRE’13 task [7].
A standard speaker recognition front-end is used based on
rastamat [16] and jfacookbook [17]: 60-dimensional speech
signal features based on 19 Mel-Frequency Cepstral Coeffici-
tans (MFCCs) with log-Energy and derived ∆ and ∆∆ coeffi-
cients on a standard hamming window. Feature warping [18]
is applied using a 3 s sliding window, and non-speech features
are removed by unsupervised GMM voice activity detection
described in [19]. Raw i-vectors are extracted with 400 di-
mensions based on a 512-component UBM.

4.1. Database Description: MOBIO SRE’13

The speaker recognition subset of the MOBIO database [6,7]
was recorded on mobile phones and laptops, however in the
MOBIO SRE’13 [7] only data from mobile phones was used.
Table 1 depicts the amount of speakers and samples for each
of the backround, development (dev-set) and evaluation set
(eval-set). The subsets contain in total 50, 42 and 58 subjects,
which is not sufficient for large-scale deep learning.

Table 1. Partitioning of MOBIO database, see [7].
Set Female Male

Subjects Samples Subjects Samples

Background 13 2496 37 7104

dev-set (ref) 18 90 24 120
dev-set (prb) 18 1890 24 2520

eval-set (ref) 20 100 38 190
eval-set (prb) 20 2100 38 3990

4.2. Evaluation Criteria

The biometric performance is reported in accordance to the
ISO/IEC IS 19795-1 [20] by the Equal-Error-Rate (EER), and
the False Non-Match Rate (FNMR) at a 1% False Match Rate
(FMR100). As an application-independent performance met-
ric, we emphasize on the minimum cost of log-likelihood ra-
tio (LLR) scores Cmin

llr , which represents the generalized em-
pirical cross-entropy of genuine and impostor LLRs with re-
spect to Bayesian thresholds η ∈ (−∞,∞) assuming well-
calibrated systems [21,22]. As primary metric in [7], the half
total error rate (HTER) is the averaged FNMR and FMR at
the dev-set EER-threshold.

4.3. Baseline Systems

Systems are gender-independent due to the limited data. For
the baseline G-PLDA system [2], i-vectors are projected into
a spherical unit space by length-normalization, incorporating
mean-subtraction, rotation by within class covariance normal-
ization (WCCN), and projection onto the unit sphere. LDA
was not applied, since no significant gains were yielded in
reported systems [7].

The baseline PLDA-RBM system is based on the Matlab
Environment for Deep Architecture Learning (MEDAL) [23]
and the architecture described in Section 3. PLDA-RBM lay-
ers are CD1-trained using the background set, where the mini-
batches comprise a quarter of the i-vectors per subject. Then,
PLDA-RBM is re-trained using the dev-set in order to cope
dataset shifts on limited short-utterance mobile data.

Table 2. Performance of baseline systems on dev-set.

System
Female Male

EER FMR100 Cmin
llr EER FMR100 Cmin

llr

G-PLDA [2] 15.3 63.5 0.488 12.2 44.6 0.413

PLDA-RBM
GG [5] 17.7 64.2 0.552 16.7 60.4 0.526
GB 13.5 51.2 0.451 12.3 48.3 0.418

Table 2 indicates the baseline performance in terms of
EER (in %), FMR100 (in %) and Cmin

llr of G-PLDA with 400
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speaker factors and PLDA-RBM with 400 hidden speaker
units with GG and GB energy functions. Re-training is not
applied at this stage. GB PLDA-RBM significantly outper-
forms GG PLDA-RBM, where also performance gains to the
G-PLDA baseline can be observed. However, this observa-
tion may change on big data background sets, such as on
NIST SRE scenarios.

An optimal configuration regarding the number of hidden
speaker and channel units was examined on dev-set. Fig. 3
depicts Cmin

llr for GB PLDA-RBM with dev-set re-training,
where good results were observed at 850 hidden units.

Fig. 3. Comparison of different number of hidden speaker
and channel factors incorporating dev-set re-training.

400 600 800 1,000
0.3

0.4

0.5

Number of hidden speaker and hidden channel units

C
m

in
llr

Female
Male

4.4. Experimental Results

The hypotheses of Section 3 are examined on up to three
layers on dev-set, cf. table 3. While stacking on hidden
speaker units decreases information in terms ofCmin

llr , stacking
on channel units is able to retrieve information.

Table 3. Cmin
llr comparison of stacking concepts up to three

layers on dev-set: channel units (chn) and speaker units (spk).

# layers
Female Male

chn spk chn spk

1 0.420 0.370
2 0.392 0.481 0.341 0.452
3 0.394 0.487 0.346 0.475

Further, we investigated on the Cmin
llr entropy of channel

unit stacked PLDA-RBM: by comparing the performance of
hidden speaker units per layer to the proposed concatenation
of hidden speaker units assembled from all layers, cf. ta-
ble 4. Subject information can be still retrieved on the 5th

layer, but without further significant gains, on which hidden
speaker units are more prone to be zero in this set-up.

Table 5 compares HTER performances of the examined
GB PLDA-RBM with 850 hidden speaker and channel units
to female and male systems of MOBIO SRE’13, which have
been reported as competitive. Contrary to state-of-the-art sys-
tems, both systems follow the Gaussian Mixture Model vs.
Universal Background Model (GMM – UBM) approach.

Table 4. Cmin
llr entropy by single (s) and fused (f) layers on

channel-stacked PLDA-RBM.
# layers 1 2 3 4 5

Female
s

0.420
0.505 0.551 0.691 0.715

f 0.392 0.394 0.398 0.394

Male
s

0.370
0.459 0.510 0.639 0.681

f 0.341 0.346 0.340 0.342

Table 5. HTER (in %) and Cmin
llr comparison of best single

systems of MOBIO SRE’13 on eval-set to proposed systems.
None of the systems incorporates calibration.

System
Female Male

HTER Cmin
llr HTER Cmin

llr

MOBIO-female [7] 11.6 n/a 9.1 n/a
MOBIO-male [7] 12.8 n/a 8.9 n/a

G-PLDA [2] 16.4 0.522 9.9 0.326

GB PLDA-RBM 12.0 0.397 10.6 0.361
2-layer PLDA-RBM
(channel-stacked)

11.3 0.368 9.0 0.319

5. CONCLUSION

In this paper, we demonstrate the applicability of PLDA-
RBM for limited data mobile environment speaker recogni-
tion. PLDA-RBM benefits from GB assumptions on limited
mobile data outperforming the conventional G-PLDA by re-
constructing speaker features and removing channel impacts.
Moreover, deep PLDA-RBM is shown to recover relevant
biometric information from discarded channel units by using
the proposed stacking on channel units concept.

However, compared to competitive systems of MOBIO
SRE’13, which rely on GMM – UBM, the proposed system
achieves no significant different results, which is rather ac-
ceptable for e.g., forensics, where processing efforts are of
minor concerns, but reliable evidence is rather important. Fu-
ture research will focus on the use of drop-outs in order to
increase the robustness of the RBM training, and on examin-
ing effects on large-scale NIST SRE databases with respect to
optimal configurations regarding energy functions, adequate
fine-tuning mechanisms and the amount of hidden speaker
and channel units per layer.
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