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Abstract
The biometric and forensic performance of automatic speaker
recognition systems degrades under noisy and short probe utter-
ance conditions. Score normalization is an effective tool taking
into account the mismatch of reference and probe utterances. In
an adaptive symmetric score normalization scheme for state-of-
the-art i-vector recognition systems, a set of cohort speakers are
employed to calculate the mean and variance of impostor scores
when compared to reference and probe i-vectors. In dealing
with real-life conditions where the quality of audio recordings
in test phase does not match enrolment utterance(s) of speak-
ers, we demonstrate the effectiveness of utilizing a condition-
matched cohort set for score normalization. The cohort set au-
dio material is shortened and degraded by noise in different rea-
sonable and controlled signal-to-noise ratios according to ex-
pected test conditions, yielding in multiple set of cohorts. Fur-
ther, we propose automatic cohort pre-selection based on mod-
eling each degradation category. For each i-vector, a quality
vector is assigned as the posterior probability of degradation
classes. The cohort set is then formed by i-vectors representing
small KL-divergence of respective quality vectors when com-
pared to reference and probe. Further gains are observed by
including this quality vector also into the score calibration.
Index Terms: speaker recognition, AS-norm, duration, SNR,
cohort selection, quality characterization

1. Introduction
Biometric speaker recognition becomes more and more valu-
able for commercial and forensic applications. Thereby, auto-
mated recognition systems need to be inter alia duration and
noise robust in order to cover a vast broadness of environmental
constraints. Literature usually emphasizes on one type of signal
degradation so far, and many commercial systems are devel-
oped for restricted environments. In this work, mutual duration
and noise effects are examined, i.e. sample completeness and
ambient noise.

By placing focus on the score post-processing, we exam-
ine adaptive symmetric score-normalization (AS-norm) tech-
niques. In practice, a conventional AS-norm is applied [1,
2]. Condition-informed (unconstrained) AS-norm generally in-
creases recognition accuracy by relying on higher-evident com-
parison statistics, which was shown to be effective on duration
conditions in [3]. However, by extending this approach to mu-
tual duration and noise conditions, practical issues will arise in
terms of reliable signal-noise-ratio (SNR) estimations: proper-
ties of the underlying clean samples will remain unknown to the
system.

Thus, we suggest to use unified audio characteristics
(UACs), proposed in [4], for cohort pre-selection: sample
quality vectors (q-vectors) are derived from condition pos-
terior probabilities. Probe-alike cohort templates are deter-
mined by the minimum (symmetric) Kullback-Leibler diver-
gence. Hence, condition-matched cohort sets can be approx-
imated. Thereby, the theoretical framework on using quality
measures [5] is extended by the score normalization stage.

Experiments are conducted for five duration and five SNR
conditions. SNR conditions stem from two noise sources, in
particular: air conditioner (AC) and crowd (CROWD) noise.
By degenerating voice samples from the I4U file list of NIST
SRE’12 [6], mutual quality and completeness degradation ef-
fects are examined on 55 conditions on a state-of-the-art sys-
tem comprising i-vector features [7, 8] and probabilistic linear
discriminant analysis (PLDA) comparison [9, 10, 11]. While in
many scenarios reference samples can be captured under very
good conditions, probe samples are affected by signal degrada-
tion, hence emphasis is put on condition-variable probe sam-
ples.

This paper is organized as follows: in Section 2 related
work on adaptive symmetric score normalization is briefly sum-
marized and the cohort selection scheme of unconstrained AS-
norm is explained. Section 3 links the idea of audio characteri-
zation to automatic cohort pre-selection. Experimental evalua-
tions are carried out in Section 4, and conclusions are given in
Section 5.

2. Adaptive symmetric score normalization

Score-normalization augments log-likelihood ratio (LLR)
scores with additional knowledge of prior observations. Sym-
metric score normalization (s-norm) considers zero normal-
ization (z-norm) and test normalization (t-norm). In z-norm,
scores are normalized by the score distribution of cohort probes
with respect to each reference [12]. In t-norm, acoustic ef-
fects of probes are addressed, such that score distributions over
cohort references are normalized with respect to each probe
[13]. State-of-the-Art JFA and i-vector systems utilize either
cosine or PLDA comparison. Where cosine comparison based
systems, usually consider in-series normalization e.g., zt-norm
[13], PLDA based approaches refer to symmetric fusion of z-
norm and t-norm, which is known as s-norm [7]. Adaptive
variations (AZ, AT, AS), which utilize most competitive sub-
cohorts, are considered being more robust by omitting very low
cohort scores of these norms [1, 2, 13].



Table 1: Label scheme for mutual duration and noise conditions.

Condition 1 2 3 4 5 6 7 8 9 10 11 . . . 15 16 . . . 30 31 . . . 55

Duration 5 s 10 s 20 s 40 s full 5 s 10 s 20 s . . . full 5 s . . . full

Noise clean AC CROWD
SNR 0 dB 5 dB 10 dB 15 dB 20 dB 0 . . . 20 dB 0 dB . . . 20 dB 0 dB . . . 20 dB

2.1. Conventional AS-norm

Conventioned AS-norm (cAS) considers well-enrolled cohort
subjects, i.e. clean/full cohort samples are used for extracting
cohort templates [1, 2]. Comparison scores are computed, and
reference (ref) and probe (prb) i-vectors are scored against all
cohort templates using the same comparator as on reference –
probe comparison. From each of the two resulting score sets
R,P representing reference – cohort and cohort – probe scores,
first and second moment statistics µref, σref, µprb, σprb are de-
rived based on the top-n R,P scores, respectively. Thereby,
the most competitive cohort scores are symmetrically selected
with adaptation towards reference and probe features. AS-
normalized scores SAS are computed by an averaged symmetric
zero-normalization of comparison score S:

SAS =
1

2

(
S − µref

σref
+
S − µprb

σprb

)
. (1)

2.2. Unconstrained AS-norm

Contrary to cAS, unconstrained, condition-informed AS-norm
(uAS) takes (easy) quantifiable sample conditions into account
in cohort selection, such as duration and noise. The main idea
is to achieve reference- or probe-matching conditions for the
cohort set [3]. In this terms, uAS seeks probe-alike cohort
samples for R-comparisons and full/clean cohort samples for
P-comparisons (as in cAS) [3]. In terms of Eq. (1), this re-
ceipt interprets S−µref

σref
as normalization against successful co-

hort impostor attempts on references, and S−µprb
σprb

as normaliza-
tion against successful probe impostor attempts on cohorts.

Condition-matching cohort selection schemes are expected
to not only normalize false matches on references and false non-
matches on probes, but also to encounter condition-depending
signal degradation.

3. Cohort pre-selection by audio quality
The optimal score normalization needs to utilize cohorts whose
audio characteristics correspond best with probe or reference.
In order to establish an automated mechanism for extracting re-
liable audio quality metrics and select an appropriate cohort set,
we propose a probabilistic cohort pre-selection scheme based
on the unified audio characteristic approach of [4] aiming at
posterior probabilities of conditions. The selection scheme fa-
vors cohort templates having the lowest relative information di-
vergence to the characteristics of a probe.

3.1. Audio characterization

For the purpose of measuring condition posteriors, single mul-
tivariate Gaussian models Λi ∼ N (µi,Σ), i = 1, . . . , 55 are
trained in original i-vector space. The models have condition-
dependent mean vectors µi and share a full covariance matrix
Σ. Class-dependent means are estimated using i-vectors from
respective quality condition and Σ is estimated by pooling all
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Figure 1: Condition confusion matrix on q-vector max-
posterior classification maxP (Λ1,...,55|w).

the i-vectors. The resulting vector of posterior probabilities for
an i-vector w represents a condition quality vector (q-vector) q,
where:

q(i) =
P (w |Λi)∑55
i=1 P (w |Λi)

. (2)

All templates (ref, prb, cohort) are extended to a pair of an
i-vector and a corresponding q-vector.

Figure 1 depicts the confusion matrix among all condi-
tions, where the condition indexes are defined in Table 1.
While conditions 31 – 40, comprising the highest signal degra-
dation of 5 s/CROWD and 10 s/CROWD, are more likely to
be confused with other 31 – 40 conditions (up tp 51% mis-
classification rate), the vast majority of conditions are far more
well-classified, i.e. with less than 20% mis-classification and
up to 99.6% correct classification rates. On AC and CROWD
noises, 10% of 40 s/noisy conditions are recognized as their
full/noisy condition equivalents having similar SNR levels.

3.2. Cohort selection criterion

While conditions can be classified by the maximum posterior
probability, the cohort selection requires a similarity metric to
find close audio segments in sense of q-vector. Inspired by [14],
we propose the symmetric Kullback-Leibler divergence DsymKL

of two q-vectors qa, qb for pre-selecting cohorts:

DsymKL(qa||qb) =
1

2

55∑
i=1

qa(i) log
qa(i)

qb(i)
+ qb(i) log

qb(i)

qa(i)
.

(3)
The closest top-c cohort q-vectors are denoted by minDsymKL.

4. Experimental results
Condition-dependent sample versions were created from long-
duration and clean samples of the I4U file list prepared for sites
participating in NIST SRE’12 [6] by truncation into duration
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Figure 2: Baseline performance on I4U eval-set affected by mutual signal degradation, no calibration.

groups of 5 s, 10 s, 20 s, 40 s, and full (original duration) as in
[15], and by applying AC and CROWD noise using FaNT, such
that noise groups of 0 dB, 5 dB, 10 dB, 15 dB, 20 dB, and clean
(original SNR) were established. In total 55 conditions were
examined (see Table 1).

4.1. Experimental setup

Stabilized weighted linear prediction (SWLP) [16] is employed
for robust spectrum estimation after enhancing the audio us-
ing maximum-likelihood short-time spectral amplitude (ML-
STSA) [17]. The rest of the front-end processing is similar to
our earlier work in [18, 19]. Raw i-vectors were drawn from
samples after Voice Activity Detection (VAD). The VAD labels
from clean condition are then applied to corresponding noise
versions. We assume perfect VAD for this experiments in order
to exclude undesirable effects rising from VAD shortcomings
in low SNRs. Full/clean probe samples of the I4U development
set (dev-set) and evaluation set (eval-set) of all male subjects
were modified condition-dependently.

Then, all reference samples of the dev-set were modified
condition-dependently in order to serve fair i-vector process-
ing: discriminant spherical space projection was performed by
an LDA dimension reduction [20] from 400 to 200 dimen-
sions, within-class-covariance-normalization (WCCN) [19] and
length-normalization [10]. For the sake of tractability of analy-
sis, we experiment with only male speakers data. The i-vectors
are compared by PLDA [10] with 200 speaker factors. PLDA is
trained in a multi-condition pooled fashion as in [21].

4.2. Evaluation criteria

The biometric performance is reported in accordance to the
ISO/IEC IS 19795-1 [22] by the Equal-Error-Rate (EER), and
the False Non-Match Rate (FNMR) at a 1% False Match Rate
(FMR100). As an application-independent performance met-
ric, we emphasize on the minimum cost of log-likelihood ratio
(LLR) scores Cmin

llr , which represents the generalized empirical
cross-entropy of genuine and impostor LLRs with respect to
Bayesian thresholds η ∈ (−∞,∞) assuming well-calibrated
systems [23, 24]. The actual Cllr [24] is computed over genuine
and impostor scores SG, SI by:

Cllr =

∑
g∈SG

ld(1 + 1
eg

)

2 |SG|
+

∑
i∈SI

ld(1 + ei)

2 |SI |
. (4)

4.3. Baseline results

Figure 2 shows the performance of a state-of-the-art baseline
system without score normalization nor calibration. In gen-

eral, CROWD noise causes higher performance deterioration
than AC noise. Longer duration and lower SNRs lead to higher
performance, and in the vast majority of conditions, clean/full
outperforms other conditions with 0.019 Cmin

llr and 0.4% EER
(as expected). By focusing on the effect of noise level on Cmin

llr ,
0 dB on AC and 0 dB and 5 dB on CROWD are causing high
signal degradation leading to significantly worse performance,
while the performance of 20 dB and clean is very similar on AC
across duration conditions. By shifting the focus on duration
effects, EER and Cmin

llr performance linearly depend on the log-
duration as observed by [18], and mutual effects appear as a
linear combination of log-duration and log-SNR impacts.

4.4. Analysis: i-vector pool mean shift

In order to measure i-vector property changes by signal degra-
dation, we examine the i-vector condition means, raising the
question whether cross-condition i-vectors share the same mean
or not. Contrary to [3], where i-vectors were element-wise
tested for shared mean dimensions by Student t-test, in this
work we consider vector space mean among the i-vector con-
dition pools by utilizing the generalized, multi-variate Student
t-test, in particular: the Hotelling’s T-squared statistic [25, 26].
In the according statistic test for population-independent means,
H0 states i-vectors sharing the same mean among conditions,
H1 states different i-vector means by assuming equal covari-
ances. The test value of the generalized Student’s t-test t2 uti-
lizes the averaged scatter of both populations W and is defined
as:

t2 =
nx ny
nx + ny

(x̄− ȳ)′W−1(x̄− ȳ),with:

W =

∑nx
i=1 (xi − x̄)(xi − x̄)′ +

∑ny

i=1 (yi − ȳ)(yi − ȳ)′

nx + ny − 2
,

x̄ =

∑nx
i=1 xi

nx
, ȳ =

∑ny

i=1 yi
ny

, (5)

where nx, ny are the number of observations onD-multivariate
data sets x and y, respectively. In this experimental setup, D
equals 200. P-values are estimated by the cumulative distribu-
tion function F of χ2 distributions [25, 26]:

t2 ∼ χ2
D,

p = 1− Fχ2
D

(t2). (6)

Figure 3 illustrates observed test values between all 55 con-
ditions; p-values will result either as exactly one on χ2 scores of
zero, or as p-values lower than 10−13 ≈ 0 indicating high sig-
nificance. Only same-condition tests result in zero χ2 scores.
Hence, all cross-condition mean shifts are highly significant.
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Figure 3: Multi-variate Student’s t-test: comparison of χ2

scores examining i-vector mean-similarity among conditions.

4.5. Oracle versus automatic cohorts pre-selection

By taking information of other comparisons into account, AS-
norm can compensate subject and condition-dependent vari-
ances on score domain. Examining Cmin

llr performance, uAS
outperformed the baseline (and cAS) among the vast majority
of conditions with relative gains up to 8.2% in Cmin

llr , 15.9% in
EER, and 23.4% in FMR100. The cohort size in terms of top-n
selection size, however, had no impact on this metrics, making
a cohort size of 50 interesting for least-effort concerns. We also
examined a cohort selection scheme seeking reference-alike R
cohorts and probe-alike P cohorts, however no sufficient gains
to cAS were observed, confirming the uAS approach.

Aiming at mutual high-degradation conditions, Figure 4
compares AS-norms by SNR levels on 10s/CROWD and by du-
ration groups on CROWD-0 dB: the proposed cohort selection
significantly outperforms all other systems in Cmin

llr and EER in-
cluding oracle cohort selection of uAS proving the soundness
of quality based cohort selection.

Figure 5 illustrates which conditions and cohort subjects
were considered in pre-selection: cohorts having similar noise
source, duration and SNR level are favored, while the vast ma-
jority of other conditions is not considered even in a single
cohort speaker. The most amount of cohort templates are se-
lected from conditions 36 – 38 (10s/CROWD-0 – 10 dB), then
from conditions 39 and 40 completing the block of SNR lev-
els in 10s/CROWD conditions. Noise source impacts reveal
from condition 2 and 11 selections representing 10s/clean and
10s/AC-0 dB, respectively. Duration impacts reveal from se-
lections of conditions 31 –35 denoting 5s/CROWD noise con-
ditions. This pattern is also observed on increasing duration,
where much more cohort speakers are considered among dura-
tion and noise similar conditions by longer probe durations.

Inspired by [5], by including q-vector information into cal-
ibration stage in terms of:

S′ = w0 + w1 S + w2 cos(qref, qprb)S, (7)

with weights w0, w1, w2, S′ stating the calibrated score, and
S denoting the score of the proposed uAS method, a marginal
gain is observed in system performance. Eq. (7) assumes score
impact factors based on the quality gap between reference and
probe i-vectors which is represented by the angle between ref-
erence and probe q-vectors qref, qprb. We have left finding more
efficient techniques for including q-vectors in calibration stage
for further research.
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Figure 4: Cmin
llr and EER comparison of conventional AS-norm

to oracle cohorts and the proposed pre-selection by q-vectors in
extreme conditions.
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Figure 5: Pre-selected cohort subjects and conditions on
10s/CROWD-0 dB (condition 36) by unique selection (black).

5. Conclusion
Mutual duration and noise effects severely effect speaker recog-
nition concerning sample completeness and quality. Condition-
informed (unconstrained) AS-norm robustly improves biomet-
ric and forensic performances, but it is clearly not capable of
reaching the performance on full/clean samples. However, by
quality-based cohort pre-selection instead of relying on oracle
cohort sets, significant gains in biometric and forensic perfor-
mance are yielded, such that this approach seems also promis-
ing for other, similar issues, such as domain shift compensa-
tion.

6. Acknowledgment
We would like to thank the I4U consortium for database sharing.
This work has been partially funded by the Center for Advanced
Security Research Darmstadt (CASED), the Hesse government
(project no. 467/15-09, BioMobile) and the Academy of Fin-
land (project no. 256961 and 284671).



7. References
[1] S. Cumani, P. D. Batzu, D. Colibro, C. Vair, P. Laface, and V. Vasi-

lakakis, “Comparison of Speaker Recognition Approaches for
Real Applications,” in Interspeech. ISCA, 2011.

[2] D. Colibro, C. Vair, K. Farrell, N. Krause, G. Karvitsky,
S. Cumani, and P. Laface, “Nuance - Politecnico di Torino (NPT)
System Description for NIST 2012 Speaker Recognition Evalua-
tion,” in Proc. NIST SRE’12 workshop, 2012.

[3] A. Nautsch, C. Rathgeb, C. Busch, H. Reininger, and K. Kasper,
“Towards Duration Invariance of i-Vector-based Adaptive Score
Normalization,” in Odyssey 2014: The Speaker and Language
Recognition Workshop. ISCA, 2014.

[4] L. Ferrer, L. Burget, O. Plchot, and N. Scheffer, “A Unified Ap-
proach for Audio Characterization and its Application to Speaker
Recognition,” in Odyssey 2012 – The Speaker and Language
Recognition Workshop. ISCA, 2012.

[5] D. Garcia-Romero, J. Fierrez-Aguilar, J. Gonzalez-Rodriguez,
and J. Ortega-Garcia, “On the use of quality measures for text-
independent speaker recognition,” in Odyssey 2004 – The Speaker
and Language Recognition Workshop. ISCA, 2004.

[6] R. Saeidi, K. A. Lee, T. Kinnunen et al., “I4U submission to
NIST SRE 2012: A large-scale collaborative effort for noise-
robust speaker verification,” in Interspeech. ISCA, 2013.

[7] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouel-
let, “Front-End Factor Analysis for Speaker Verification,” Audio,
Speech and Language Processing, IEEE Transactions on, 2010.
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