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ABSTRACT
The vast majority of speaker recognition cross-entropy eval-
uations are focused on score domain. By examining the gen-
eralized relative distance between genuine and impostor sub-
spaces, biometric characteristics become comparable to other
authentication approaches. In this paper we demonstrate that
the i-vector feature space’s biometric information measured
by relative entropy is comparable to e.g., knowledge-based
mechanisms or face recognition.

Examining NIST SRE 2004-2010 corpora, short samples
of e.g, 5 seconds duration, comprise already 127 bits in a text-
independent scenario. Further, the vast majority of short sam-
ples does not fall below 50% of the biometric information of
samples having a duration of more than 40 seconds. The gen-
eralized i-vector feature space entropy of long samples corre-
sponds to 182.1 bits, and the highest lower entropy bound of
a subject was observed at 471.6 bits.

Index Terms— biometric information, relative entropy,
speaker recognition, i-vector, duration

1. INTRODUCTION

Forensic and industrial applications are based on evidence or
security level of an automated recognition system [1]. Ad-
ditionally, information about the underlying feature space is
required [2, 3], in which a feature vector represents the bio-
metric characteristic of a subject [4]. By measuring the rela-
tive entropy of one subject’s subspace compared to the gen-
eralized space of all other subjects, the biometric information
within a given feature space can be reported [2]. In compari-
son, the entropy of passwords or PINs H(string) can be com-
puted by the string length L and the number of different string
characters that can occur, N [5]: H(string) = L log2N .
Thus, 4-digit PINs have an entropy of 13.3 bits. Compared to
more secure passwords having at least 128 bits including spe-
cial characters (printable & extended ASCII codes N = 224)
users need to remember passwords having L = 17 charac-
ters. Further, by emphasizing high-evidence or high-secure
systems, it is further of interest to know, when collisions will

occur in the best case. This can be directly derived from a
feature space’s entropy H(space) as the probability pcol [6]:

pcol(space) = 2−H(space), (1)

where pcol(PIN) ≈ 1 × 10−4, pcol(password) ≈ 3 × 10−39

for 4-digit PINs and secure passwords, respectively. Com-
pared to passwords, biometric systems are user-friendly and
avoid problems of remembering passwords, since the key is
the subject itself in biologic or behavioral terms [7].

We will show that the relative entropy in speaker recogni-
tion can be considered to be roughly equal to 128 bits-strong
passwords on short samples having less than 20 seconds,
and to be much more higher on longer samples. This paper
will contribute an evaluation of the biometric information
of state-of-the-art speaker recognition systems with respect
to probe sample duration, such that speaker recognition sys-
tems become more competitive to other authentication meth-
ods. We place focus on the analysis of the identity vector
(i-vector) feature space [8], which has become state-of-the-
art in speaker recognition [9].

2. RELATED WORK

Recent speaker recognition approaches rely on i-vector based
speaker representations, which represent the characteris-
tic speaker offsets from an Universal Background Model
(UBM), which models the distribution of acoustic features
such as Mel-Frequency Cepstral Coefficients (MFCCs) [10].
Thereby, concatenated UBM component’s mean vectors form
a supervector ~µUBM, which is the base of a Front-End [8]
speech feature space, where a speaker supervector s is decom-
posed by a total variability matrix T into a lower-dimensional
and higher-discriminant i-vector~i as an offset to ~µUBM:

s = ~µUBM + T~i. (2)

The total variability matrix is trained on a development set
using an expectation maximization algorithm [8, 11]. In or-
der to compare samples of varying duration and to achieve
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i-vectors with un-correlated vector elements, a spherical pro-
jection is performed on the i-vectors by applying whitening
transform and length-normalization [12, 13]. State-of-the-art
i-vector comparators belong to the Probabilistic Linear Dis-
criminant Analysis (PLDA) family [13, 14], where it has been
also widely utilized in 2014 NIST i-vector machine learning
challenge [9].

Since speakers are separated using statistical models,
the biometric performance and evidence strength of recog-
nition systems strongly depends on the reference and probe
i-vector’s significance [15, 16]. The sample duration has a
vast influence on the significance of i-vector features, be-
cause this features depend on UBM statistics accumulated
over-time, namely zero and first order Baum-Welch statistics,
which are sparse on short-term signals [11].

Recent work on compensating duration effects empha-
sized e.g., in the score, comparator, or i-vector extractor
domain: in [16, 17] duration-sensitive score calibration and
normalization schemes are applied. In [15, 18] are PLDA
comparators trained with respect to certain duration groups.
Elaborated i-vector extractors [19] refer to Vector Taylor Se-
ries (VTS) expansions of the Baum-Welch statistics. While
most of the compensation approaches rely on the same feature
space, VTS-related research seek new feature spaces, which
promise consistent biometric information independent of a
sample’s duration. In this paper, we place focus on common
MFCC-based i-vectors, where we expect gains by increasing
duration, because the correlation of i-vector length, speech
duration and performance is an expected phenomenon based
on the prior distribution of i-vectors as shown in [12, 15].

3. MEASURING FEATURE SPACE ENTROPY

Estimations for biometric information were done inter alia by
Ratha et al. [6], Daugman [3], and Adler et al. [2]. Adler et
al. also referred to the biometric information as a measure-
ment for the biometric uniqueness. The approaches rely on
collision estimations by brute force, estimating the number of
independent bits on binarized feature vectors, and the relative
entropy between genuine and impostor sub-spaces.

Ratha et al. [6] looked for the probability of guessing the
features in random. For fingerprints, they evaluated the to-
tal number of possible variations for K minutiae locations,
m minutiae, and d number of minutiae orientations, such that
they formulated the collision probability as 1/

((
K
m

)
dm
)

,
from which entropy can be measured using Eq. (1). This ap-
proach address the robustness of a feature space on brute-
force attacks rather than it’s ability to distinguish between
subjects.

Daugman [3] analyzed binary iris features, on which the
Hamming distance is used for comparing all subjects of a
database to each other. He related the score distribution to a
Bernoulli-Experiment having N = µ(1 − µ)/σ2 degrees-of-
freedom, where µ is the observed Hamming distance mean

value and σ2 is the variance, respectively. A feature space’s
entropy is referred to by N , which represents the amount
of coin tosses needed for a feature space collision. This
method describes the unique feature space elements of a bi-
nary feature space. On this method, Adler et al. [2] argue that
the question of to what extent are biometric characteristics
unique needs to be more addressed, than the uniqueness that
is provided on the feature space elements.

Adler et al. [2] introduced a measurement for biometric
information, that addresses the inter-subjects information of
features x, which is measured by the Kullback-Leibler diver-
gence D(p||q) of the intra-subject distribution p(x) and the
inter-subject distribution q(x), and represents the needed ex-
tra information (in bits) to represent p(x) with respect to q(x):

D(p||q) =
∫ ∞
x=−∞

p(x) log2
p(x)

q(x)
dx. (3)

The p distribution represents a subject’s feature sub-space,
while the q distribution represents the feature space of all
other subjects. It is assumed that p and q follow a Gaus-
sian distribution with parameters p(x) ∼ N (~µp,Σp) and
q(x) ∼ N (~µq,Σq), respectively. By using the Gaussian
model, the Kullback-Leibler divergence represents a lower
bound to the estimated relative entropy and Eq. (3) can be
formulated as [2]:

D(p||q) = k(λ+ trace((Σp + T)Σ−1q − I)), (4)

with k = log2
√
e, λ = ln

|Σq|
|Σp|

,T = (~µp − ~µq)
t(~µp − ~µq).

The relative sub-space entropyH(p) is computed by the aver-
age relative subject entropy. Fig. 1 illustrates how the Gaus-
sian model acts as an lower bound compared to a more sophis-
ticated model, i.e. a Gaussian Mixture Model (GMM) over q
on Gaussian-distributed exemplary data.

In order to estimate each subject’s relative entropy signifi-
cantly, Adler et al. [2] refer to two regularization approaches:

a) Regularization for degenerated features: usually high-
dimensional feature spaces are extracted from samples e.g.,
with F = 400 dimensions, while the analyzed database may
only contain a couple of samples per subject e.g., Np = 10.
In order to significantly estimate entropy, the feature space
is transformed into a G-dimensional space by the Principal
Component Analysis (PCA), where G ≤ F . The PCA is
performed on the q distribution covariance by Singular Value
Decomposition (SVD), since the q distribution is much more
accurately estimated that the p distribution, such that:

USqV
t = svd(Σq). (5)

The matrices U,Sq,V are truncated to the dimension G ac-
cording to an adaptive impact threshold considering the PCA-
impact of the first element 10−10[Sq]1,1. Elements are trun-
cated at [Sq]j,j < 10−10[Sq]1,1. Then, the subject’s PCA
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Fig. 1. Estimating the lower bound of relative entropy by
using a generalizing Gaussian model compared to a more de-
tailed GMM on exemplary data. The single-Gaussian model
estimates a lower bound of 47.5 bits, while the GMM’s esti-
mation is calculated by the mean of each GMM component’s
relative entropy, i.e. as the average distance of the sub-spaces
of subjects q1, q2 to p with 39.5 bits and 73.5 bits, respec-
tively: GMM-mean(q1, q2) = 56.5 bits.

feature space covariance Sp is computed by:

Sp = UtΣpV, (6)

and the Kullback-Leibler divergence is restated as:

D(p||q) = k(ν + trace(U((Sp + St)S
−1
q )− I)Vt), (7)

with ν = ln
|Sq|
|Sp|

St = UtTV.

b) Regularization for insufficient data: given Np samples,
covariance estimations on G ≥ Np will lead to singular Σp

and let the entropy diverge to∞. In order to avoid ill-disposed
Σp, non-diagonal elements [Σp]i,j are set to zero at i, j ≥ Np

e.g., onNp = 10 all non-diagonal covariances with column or
row indexes i, j ≥ 10 are zeroed, while the diagonal variances
remain.

Since this regularization scheme needs to be extended, the
truncated matrix derived from a positive finite (covariance)
matrix is not necessarily positive finite as well. Adler et al. [2]
referred to a database, on which 16 samples are distributed for
each subject, such that covariance estimations are much more
confidential compared to the case of varying sample amounts
per subject with Np ≤ 10. Thus, we extended the regulariza-
tion scheme by:

c) Regularization for ill-conditioned PCA covariances:
non-diagonal elements [Σp]i,j are iteratively zeroed until Σp

is positive finite.
d) Regularization for insufficient sample amount: mean

and covariance estimations need to be estimated from a proper

amount of samples, which can be variable in databases. Fac-
ing the properties of most databases, proper is denoted, such
that only subjects are examined, which have at least Np = 10
samples.

4. DATA ANALYSIS & EXPERIMENTS

For experiments in this paper, we used the NIST SRE 2004-
2010 corpora. The evaluation protocol follows I4U file lists
[20] and their extended version for studying the speech du-
ration effect in [15]. The system architecture and settings of
i-vector extractor used in this study can be found in [21]. The
database contains 551 female and 425 male subjects having
at least 10 samples, respectively. Subject-disjunct develop-
ment and evaluation subsets are separated into female and
male template and probe data sets, respectively. While both
template sets only contain full i-vectors, the probe set con-
tains truncated i-vectors of the duration groups 5, 10, 20,
40 seconds and full (>40 seconds) stemming from the same
sample.

For analytic purposes of estimating the biometric infor-
mation of state-of-the-art speaker recognition in a duration-
sensitive manner, we compared duration-variable p sub-
spaces with full-duration q spaces simulating the automatic
recognition case, in which full reference i-vectors are com-
pared to probe i-vectors of all duration groups. Fig. 2 and
Tab. 1 compare the relative entropy among the duration
scenarios (full-vs-5/10/20/40/full), and show correlations
to the biometric and score cross-entropy performance of a
corresponding PLDA comparator with 400 speaker factors.
The biometric performance is reported in accordance to the
ISO/IEC IS 19795-1 [22] by the Equal-Error-Rate (EER), and
the False Non-Match Rate (FNMR) at a 1% False Match Rate
(FMR100). As an application-independent performance met-
ric, we emphasize on the minimum cost of LLR scores Cmin

llr ,
which represents the generalized empirical cross-entropy of
genuine and impostor LLRs with respect to Bayesian thresh-
olds η ∈ (−∞,∞) assuming well-calibrated systems [1, 23].

Table 1. Relative entropy and performance comparison of
mixed gender PLDA recognition.

Duration
group

Entropy (in bits) PLDA (400)
µ σ min max EER FMR100 Cmin

llr

full-5 127.2 24.0 71.5 226.6 17.0% 66.7% 0.529
full-10 124.3 28.1 65.0 254.8 8.7% 31.6% 0.296
full-20 135.5 35.3 63.2 319.0 4.1% 9.8% 0.147
full-40 155.0 43.1 71.1 421.9 2.1% 3.2% 0.078
full-full 182.1 50.0 88.7 471.6 1.7% 2.1% 0.069

In general, biometric information increases by duration,
which results in better speaker verification performances and
lower Cmin

llr . This behavior is expected, since i-vectors gain
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Fig. 2. Comparison of feature and score domain relative
entropy along with speaker recognition performance among
the duration groups in common recognition scenario (full vs.
variable duration) using PLDA with 400 speaker factors on
mixed gender.

more significance by duration. The standard deviation of the
subject-wise relative entropy increases as well as the max-
imum entropy. According to the experiments in this paper
we observe that the lowest entropy can be estimated to be
as low as 63.2 bits fort short duration, and 88.7 bits for full
segments. The exact numbers of entropy for different system
set-ups could be different, but it is deemed that the trend
would be consistent. Where the trend of minimum entropy is
higher than the fused face recognition feature space’s entropy
referred to by Adler et al. [2] with 46.9 bits. The mean of
the calculated entropy shows a minimum of 124.3 bits for
the full-10 condition, which reveals that even short speech
samples can compete with 128 bit-strong passwords in terms
of feature space entropy. The biometric information of full
segments yields the highest mean entropy value of 182.1 bits.
In gender-dependent analysis, we obtained similar results,
where the highest relative entropy on the female and male
sub-sets for full segments exceeded 300 bits and 400 bits,
respectively.

In order to provide more detailed information about the
actual respective subject’s relative entropy, Fig. 3 visualizes
the duration-based accumulation of relative entropy by each
subject, in which the relative full-full entropy normalizes the
relative entropy of all duration conditions. Besides a few out-
liers having more biometric information on shorter samples,
the vast majority of all relative entropies is within 50 – 100%
of the subject-according full-full entropy. Where the subject
discrimination in terms of a subject’s relative entropy accu-
mulates by increasing duration. However, in comparison to
other duration conditions, relative entropy of the full-5 con-
dition is more widely distributed, and partly reach full-full

level. Further, full-10/20/40 relative entropy values accumu-
late continuously, while there is a gain from full-40 to full-full
among the vast majority of all subjects.
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Fig. 3. Speaker sub-space accumulation by duration: relative
entropy is subject-wise normalized by the according full-full
entropy, such that the accumulation is logarithmic visualized
by ratios, i.e. all full segment ratios are 1 perishing actual
entropy value comparisons.

5. CONCLUSION

In this work we demonstrated that current speaker recog-
nition feature spaces reach the relative entropy level of
128 bits-strong passwords already at 20 seconds of speech,
and promise acceptable recognition performance. The gener-
alized collision probability of i-vector based speaker recog-
nition can be estimated as pcol(voice127.2 bit) ≈ 5 × 10−39

for short samples and pcol(voice182.1 bit) ≈ 2 × 10−55 for
long samples, respectively, i.e. automated speaker recogni-
tion is viable instrument for forensic investigations. From an
industrial perspective, voice is found to be a suitable biomet-
ric characteristic for user-friendly high-security commercial
authentication mechanism, e.g. e-banking. Further gains are
expected by fusing i-vectors stemming from different speech
signal features.
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D. Garcia-Romero, J. J. Godfrey, T. Kinnunen, A. F.
Martin, A. McCree, M. Przybocki, and D. A. Reynolds,
“The NIST 2014 Speaker Recognition i-Vector Ma-
chine Learning Challenge,” in ISCA Odyssey 2014: The
Speaker and Language Recognition Workshop, 2014.

[10] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn,
“Speaker Verification Using Adapted Gaussian Mixture
Models,” in Conversational Speech, Digital Signal Pro-
cessing, 2000.

[11] P. Kenny, “Joint factor analysis of speaker and session
variability: Theory and algorithms,” Tech. Rep., Centre
de recherche informatique de Montréal (CRIM), 2005.
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