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Abstract

Ear classification refers to the process by which an input
ear image is assigned to one of several pre-defined classes
based on a set of features extracted from the image. In
the context of large-scale ear identification, where the in-
put probe image has to be compared against a large set of
gallery images in order to locate a matching identity, classi-
fication can be used to restrict the matching process to only
those images in the gallery that belong to the same class
as the probe. In this work, we utilize an unsupervised clus-
tering scheme to partition ear images into multiple classes
(i.e., clusters), with each class being denoted by a proto-
type or a centroid. A given ear image is assigned class
labels (i.e., cluster indices) that correspond to the clusters
whose centroids are closest to it. We compare the classi-
fication performance of three different texture descriptors,
viz. Histograms of Oriented Gradients, uniform Local Bi-
nary Patterns and Local Phase Quantization. Extensive ex-
periments using three different ear datasets suggest that the
Local Phase Quantization texture descriptor scheme along
with PCA for dimensionality reduction results in a 96.89%
hit rate (i.e., 3.11% pre-selection error rate) with a pene-
tration rate of 32.08%. Further, we demonstrate that the hit
rate improves to 99.01% with a penetration rate of 47.10%
when a multi-cluster search strategy is employed.

1. Introduction

Classification involves assigning a class label to a sub-
ject based on features extracted from the subject’s biometric
data. The number of classes is usually much smaller than
the number of subjects in the gallery database and each sub-
ject is typically assigned to exactly one class. Class labels
can either be based on anatomical properties of the observed
biometric characteristic or on inherent structural or geomet-
ric properties of the biometric sample.While classification
and/or indexing techniques have been developed for finger-
prints [16,20], iris [10, 17] and face [19,22], the possibility
of classifying ear images has received limited attention in
the biometrics literature. To the best of our knowledge, this
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Figure 1: Morphology of the outer ear.

is the first work on automated unsupervised classification of
ear images.

In this work, we explore the possibility of clustering 2D
ear patterns into multiple categories based on their texture
and structure. The texture is captured by the use of a texture
descriptor, while local histograms capture the structure of
the ear. We used texture-based features rather than explicit
shape-based features because (a) extracting shape informa-
tion from 2D ear images is a challenging problem, that of-
ten requires a highly constrained capture scenario [1], and
(b) the discriminability of shape-based features is limited in
low-quality 2D images.

One of the earliest work on ear classification was done
by lanerelli [1 1], where he classified ear images into 4 cat-
egories - round, oval, triangular, rectangular - based on a
visual assessment of the ear. However, this classification
process is difficult to automate due to the subjective nature
of the assessment process. Further, as noted in [7], the num-
ber of members in each class is unevenly distributed.

In previous work, Khorsandi and Abdel-Mottaleb [13]
categorized ear images into two groups - male and female
- based on Gabor Filters and Sparse Representation. Mo-
tivated by their work, we aim to further explore the capa-
bility of texture descriptors for ear classification. In this
regard we analyze commonly used texture descriptors, viz.
Histograms of Oriented Gradients (HOG) [4], unified Local
Binary Patterns (uLBP) [18] and Local Phase Quantization
(LPQ) [2]. LBP and HOG have already been successfully
used in the context of ear recognition [3,5,9]. LPQ has re-
cently been used in face recognition, where it is shown to
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Figure 2: Illustration of the clustering scheme with prepro-
cessing, cluster assignment and identity retrieval. The input
parameters for each stage are shown on the left. The output
is a list of possible gallery candidates to search.

be more robust to blur than LBP [2]. For an elaborate sur-
vey of features used for ear recognition, we refer the reader
to [1].

In this work, we use unsupervised clustering in conjunc-
tion with texture-based local histograms to discover classes
of ear patterns. Instead of using pre-defined labels such as
triangular, oval, etc. [1 1], we deduce clusters based on the
distribution of texture features in a high-dimensional space.
Although this approach may not result in classes that can be
trivially interpreted by a human, it allows us to circumvent
ambiguities in class label assignment and results in classes
with more evenly distributed numbers of members. The ex-
traction of shape features can be complex and time consum-
ing. Our goal is to use simple features that can be generated
quickly and that do not bear the risk of error in the feature
extraction process.

The primary contributions of this work are (a) an analysis
of the clustering tendencies of feature spaces corresponding
to 3 different texture descriptors; (b) a detailed experimental
evaluation demonstrating the benefits of the proposed clus-
tering approach for ear classification; and (c) a method for
fusing the outputs of multiple classification schemes.

Superaurale
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Figure 3: Tllustration of the CPR-based geometrical normal-
ization of ear images. We fit an ellipse that encloses the ear,
and rotate the whole image such that the major axis of the
ellipse is vertical.

2. Clustering 2D Ear Patterns

The proposed approach has two distinct phases: the
training phase and the classification phase. The training
phase has two stages: (a) feature subspace creation, where
texture-based feature vectors are extracted from a set of
training images in order to define a feature subspace; and
(b) cluster generation, where unsupervised k-means clus-
tering is used to discover clusters in this feature space, with
each cluster being denoted by its centroid. It must be noted
that the subjects whose images were used in the training
phase are not used in the testing/classification phase.

The classification phase has two stages: (a) gallery clas-
sification, where each gallery image in the database is pro-
jected onto the feature subspace created in the training
phase and assigned a class label (i.e., a cluster index) based
on the minimum distance criteria; and (b) identity retrieval,
where the class label of an input probe image is first com-
puted and a matching identity is obtained from the database
by restricting the search to only those gallery images associ-
ated with this class label. Below we describe each phase in
more detail. An overview of the complete system, including
feature space creation, cluster assignment for gallery im-
ages and identity retrieval for probe images is given in Fig.
2.

All training and test ear images are pre-processed, in or-
der to remove the influence of rotation, scale and illumi-
nation. We first adjust the contrast by using CLAHE [24].
Subsequently, we crop and geometrically normalize the im-
ages. This is done by applying cascaded pose regression
(CPR) [6]. Using CPR, we train a classifier that fits an el-
lipse to the ear region, such that the ear is fully enclosed by
the ellipse (see Fig 3). We then normalize rotate the cropped
ear image, such that the major axis of the ellipse is vertical.

Finally, all images are resized to 100x 100 pixels in order
to compensate for different resolutions and to facilitate the
extraction of local histograms in the subsequent step. We



experiment with three different texture descriptors, namely
LBP, LPQ and HOG.

3. Training Phase
3.1. Feature Subspace Creation

Uniform Local Binary Pattern (uLBP): uLBP [ 18] en-
codes local texture information on a pixel level by compar-
ing the grey level values of a pixel to the grey level values
in its neighbourhood. The size of the neighbourhood is de-
fined by a radius around the pixel g;, which is at least 1 (for
a neighbourhood having 8 pixels). Every pixel g; within
the radius that has a larger grey level value than the center
pixel is assigned the binary value 1, whereas all pixels with
a smaller grey level value are assigned the binary value 0.

The binary values of the neighborhood pixels are con-
catenated to form a binary string corresponding to the center
pixel. Only those binary strings which have at most two bit-
wise transitions from O to 1 (or vice-versa) are considered -
there are 58 such strings. Each binary string is then mapped
to a value between 0 and 58 (the first 58 bins correspond
to the uniform binary strings, and the 59-th bin corresponds
to the rest). The uLBP-based ear descriptor is computed by
sliding a window of a predefined size and overlap (step size
in pixels) in the horizontal and vertical direction over the
LBP image. From each sub window a local histogram with
59 bins is extracted.

The final descriptor is the concatenation of each local
histogram. For a window size of 2020 pixels and an over-
lap of 10 pixels, this results in a feature vector of dimension
3776.

Local Phase Quantization (LPQ): The concept behind
LPQ [2] is to transform the image into the fourier domain
and to only use the phase information in the subsequent
steps. Given that a blurred image can be viewed as a convo-
Iution of the image and a centrally symmetric point spread
function, the phase of a transformed image becomes in-
variant to blur. For each pixel in the image, we compute
the phase within a predefined local radius and quantize the
phase by observing the sign of both the real and the imag-
inary part of the local phase. Similarly to uLBP, the quan-
tized neighbourhood of each pixel is reported as an 8-bit
binary string.

Given an image, the LPQ value is computed for every
pixel. Next, local histograms with 256 bins are computed
within a sliding window. We move this window, with a cer-
tain overlap between two neighbouring windows, in the hor-
izontal and vertical directions over the image and concate-
nate the resulting local histograms. For a 20x20 window
size and an overlap of 10 pixels, this results in a 16,384 di-
mensional feature vector.

Histogram of Oriented Gradients (HOG): Computa-
tion of the HOG [4] descriptor involves five steps: gradi-

ent computation, orientation binning, histogram computa-
tion, histogram normalization and concatenation of local
histograms. The algorithm starts with computing the lo-
cal gradient by convolving a 3 x 3 region (HOG cells) with
two one-dimensional filters (—101) and (—101)". The lo-
cal orientation associated with the center of each HOG cell
is the weighted sum all filter responses within the cell. The
local orientation is quantized into a bin value in the [0, 27]
interval. Subsequently, the image is divided into blocks of
equal size and a local histogram of quantized orientations
is computed for each block. This histogram is normalized
with the L2-norm. Finally, all local histograms are concate-
nated to form the HOG descriptor for the image. The HOG
descriptor for a block size of 8 x8 pixels and 9 orientation
bins has 5184 dimensions.

Subspace projection: Once the texture descriptors are
computed, they are projected onto a lower subspace using
a projection matrix (one for each descriptor). The projec-
tion matrix is computed using PCA on the training set. The
optimal number of dimensions for the target feature sub-
space is estimated using Maximum Likelihood Estimation
(MLE) [15]. Depending on the choice of training data and
the texture descriptor used, the resulting feature space has
at least 18 and in some cases up to 150 dimensions.

3.2. Cluster Generation

Once the feature subspace corresponding to a texture de-
scriptor is derived, the next step is to cluster the training
data in this subspace (see step @ in Fig. 2). The K-means
algorithm ! is used to accomplish this. The input to the K-
means algorithm is the projected feature vectors from the
training data. The output consists of K cluster centroids,

{010](}

4. Testing Phase
4.1. Gallery Classification

In step (2), we divide the test set into two distinct parts,
the gallery and the probe set. The subjects in the test set are
different from the ones in the training set. The gallery set
contains exactly one image for each identity. The probe set
may contain any number of images for each identity. The
images in the gallery and probe sets do not overlap. We
use the feature extraction and projection matrix that were
computed in the training stage to project the gallery im-
ages into the feature space. Let I, be a gallery image and
F, be the projected feature vector (corresponding to one of
the texture descriptors). Then, the distances between Fj,

'We also evaluated Hierarchical Clustering and Gaussian Mixture
Models, but neither of them returned satisfactory results. Hierarchical
Clustering does not converge well and produces inconsistent solutions,
whereas GMM returns one large cluster that covers nearly all of the iden-
tities and K — 1 small clusters that contain outliers.



and the cluster centroids is computed as d; = ||[F, — Cjl|,
1 = 1... K. These distances are sorted in ascending order
and the gallery image (identity) is labelled with the cluster
indices corresponding to the A < K smallest distances.

4.2. Probe Identity Retrieval

In the retrieval step @, the given probe image, I,,, is pro-
jected into the feature subspace (corresponding to a texture
descriptor), resulting in a feature vector F},. The distance
between F), and the K centroids is next computed, and the
probe is assigned the cluster indices corresponding to the
A smallest distances. Thus the search is confined to the
gallery images (i.e., identities) in )\ target clusters. Note that
A = 1 denotes a single-cluster search, while A > 1 denotes
a multi-cluster search. The output of the retrieval process is
the list of gallery identities, Lgqiery, corresponding to the
A target clusters.

It is also possible to generate two different feature sub-
spaces (e.g., corresponding to two different texture descrip-
tors) and generate clusters independently in these individual
subspaces. Let there be two sets of clusters corresponding
to two subspaces S* and S? with centroids {C/...C'}} and
{C?...C2}. The classification process will now result in
two sets of cluster indices, one corresponding to S* and the
other corresponding to S2. Thus the output of the retrieval
process will be two sets of gallery identities, Léa”ery and
Lga””y. Subsequently, we can combine the two lists of
identities using simple set operations such as union and in-
tersection. The final list of gallery identities to be matched

: 1 2 1 2
will be (Lgallery U Lgallery) or (Lgallery N Lgallery )’ respec-
tively.

5. Experimental Analysis

The classification performance is defined in terms of a
trade off between the pre-selection error and the penetration
rate as defined in [12]. The pre-selection error rate (PSE)
computes the probability that an image I, from the probe
set is not assigned to the same cluster as the corresponding
identity I, in the gallery set >. The penetration rate (PEN)
is defined as the average fraction of the gallery database
that has to be searched based on the list of retrieved gallery
identities. The ultimate goal in classification is to reduce
both the penetration rate as well as the pre-selection error
rate. In an ideal clustering and classification scheme, the
pre-selection error rate would be zero and the penetration
rate would be 1/n where n is the number of images in the
gallery set.

Let K be the total number of clusters in a feature sub-
space. Further, let n be the number of images in the gallery
set and m the total number of images in the probe set. In
our experiments, each identity in the gallery has exactly one

2The pre-selection error rate is (1 - hit rate)

Figure 4: Example images in each cluster for LPQ-3-20-15
with K'=4. The images show the closest ears to each cluster
centroid in ascending order (from left to right)

image. Let §,, C{C;...C} be the cluster labels of I,,,, the
i-th probe, and L, be the corresponding list of gallery im-
ages (identities) retrieved from the database. Moreover let
&y, C{C1...Ck } be the cluster labels of the corresponding
gallery image I,, with the same identity as I,,. Note that

|£pi = |€91 =A

. 1, if &, C&,.
Hit(p;) =< P 1
it(ps) {0, otherwise W

1 m
PSE=1—-— Hit(p; 2
- ; it(p;) o)
Accordingly, the penetration rate can be written as
1 & | Ly,

PEN = — = 3
m; . 3)

6. Evaluation and Results

All results in this section are based on a heterogeneous
dataset that has been composed of images from the UND-
J2 (1800 images from 415 subjects) [23], AMI (700 im-
ages from 100 subjects) [8] and IITK (494 images from 125
subjects) [14] databases. The dataset used in our classifi-
cation experiments consists of 2432 images from 555 sub-
jects: 363 subjects from UND-J2, 67 subjects from AMI
and 125 subjects from IITK. There are at least two samples
per subject. (Images of 52 subjects from UND J2 and 33
subjects from AMI were used to train the CPR model for
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Figure 5: Cluster analysis for LPQ-3-20-15 with K =4
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Figure 6: Cluster analysis for HOG-8-9 with K =4

ear normalization, and were not used in subsequent experi-
ments).

Training is accomplished by randomly selecting 253
subjects; all images of the 253 subjects are used in the
training phase. On average, the training set contains ap-
proximately 1100 images. The remaining 302 subjects are
used for testing. For each test subject, 1 image is added to
the gallery database while the remaining images are used
as probes. All experiments were conducted with 10-fold
cross-validation.

In order to generate the clusters for a specific feature sub-
space, the K-means algorithm is used. The input consists of
the projected feature vectors for a set of training images and
the output is a set of cluster centroids. Since the output re-
lies on the initialization process, the K-means technique is
run 1000 times with a different set of initial centroids each
time. From these 1000 solutions, we pick the one with the
smallest sum of distances between all feature vectors and
their respective cluster centroids. An analysis of the best so-

lution using the silhouette measure [2 1] indicated that small
values of K result in more coherent clusters than large val-
ues of K.

Given that we have a solution with a fixed number of cen-
troids, we evaluated the performance of the proposed clas-
sification and retrieval scheme in three different steps. In
the first, step we focus on the pre-selection error when the
search process is confined to a single cluster for each probe.
In the second experiment, we allow the search to expand to
multiple clusters corresponding to the nearest centroids. Fi-
nally we evaluate the classification performance when can-
didate lists corresponding to multiple feature subspaces are
combined *.

6.1. Single Cluster Search

In the first experiment, we compare the classifica-
tion performance due to feature subspaces generated from

3We found that fusing the identity lists of more than two cluster spaces
does not improve the performance.



Table 1: PSE//PEN (in %) for different configurations of the three texture descriptors for a single-cluster search. The
performance is reported for different values of K. The best tradeoff between PSE and PEN for each configuration is
denoted in bold. The best performance was achieved with LPQ-3-20-15.

Number of Clusters (K)

Algorithm K=2 K=3 K=4 K=5 K=6 K=10 K=20
LPQ-3-20-0 1.37//65.46 7.6//35.37 7.06//30.72 9.13//29.30 14.42//25.66 30.00//14.25 37.83//11.38
LPQ-3-30-10 1.97//63.94 4.71//37.90 5.10//32.49 12.57//25.94 18.82//20.37 31.50//14.03 44.77//8.11
LPQ-3-20-15 0.77//65.81 4.75//38.65 3.11//32.08 3.77//32.64 8.68//27.34 30.43//13.4 32.52//12.84
LPQ-3-12-7 1.07//65.52 4.28//42.76 5.09//32.94 6.53//31.13 10.99//27.85 27.01//16.22 33.59//12.86
LPQ-5-20-15 0.61//57.25 7.66//3534 5.9//31.70 10.23//27.85 17.53//21.69 27.21//14.31 36.01//10.02
LPQ-10-20-10 4.16//53.06 9.66//35.10 12.46//28.06 18.85//20.47 23.85//17.60 33.02//12.07 44.78//7.06
HOG-8-9 6.46 //49.88 16.87//37.81 19.75//29.55 25.33//21.41 28.52//18.73 33.63//11.35 48.8//6.23
HOG-16-32 11.14 // 50.08 24.64 // 36.05 26.61//29.09 31.58//21.44 34.89//18.47 43.27//11.96 42.27//6.45
uLBP-1-20-0  5.60//50.69 7.96//35.88 9.12//30.24 19.25//21.70 21.44//19.13 33.17//12.30 46.44 // 6.67
uLBP-1-20-10 5.07//50.09 6.64//35.54 9.24//29.54 16.52//21.81 20.56//17.98 31.94//12.20 43.81//6.92
uLBP-1-20-15 4.61//50.85 5.15//36.00 5.13//20.83 16.43//18.83 17.75//31.32 31.17//12.63 42.85//7.71
uLBP-2-20-10 5.64//50.04 8.61//36.18 10.17//20.33 21.6//17.16 25.03//28.92 33.90//11.93 48.43//6.76

uLBP, LPQ and HOG. Each texture descriptor was tested
with different parameter sets and with different window
sizes. However, we found that many of the configura-
tions result in similar performance. In Table 1, we re-
port the pre-selection error (denoted as PSE) and the
penetration rate (denoted as PEN) of specific configura-
tions. The configurations for LPQ and uLBP-techniques
are defined as follows: <algorithm> - <radius> -
<windowSize> - <overlap>. The configuration for
HOG is defined as <algorithm> - <block size>
— <number of bins>.

For all texture descriptors in Table 1, we see that the
PSFE declines monotonically with an increasing number of
clusters. As expected, the penetration rate decreases with
an increasing number of clusters. This implies that there
is no optimal number of clusters that can be automatically
determined for each of the feature subspaces.

When comparing the performance of LBP, LPQ and
HOG feature spaces, we observe that LPQ with a small
radius and large overlap between the local windows has
the best classification performance (also see Fig. 4). In
our experiments, HOG yields the largest pre-selection er-
ror rates. The performance of uLBP lies between HOG and
LPQ when the number of clusters is smaller than 6. For
K > 10 the classification performance of HOG and uLBP
becomes similar. When performing single cluster search
with LPQ, solutions with K'=4 appear to be a good choice,
whereas for uLBP, K < 3 appears to be good. The HOG
descriptor does not seem to lend itself to clustering since the
pre-selection error rate is larger than 5% for K=2.

The penetration rate for HOG and uLBP is roughly 1/ K,
whereas the penetration rate for LPQ tends to be larger than
1/K. We can conclude from this, that the points in all ex-

amined feature subspaces are not uniformly distributed and
that the number of identities per cluster is different. This
is further illustrated in Fig. 5, where an example solution
for LPQ-3-20-15 is shown. Fig. 6 shows an example so-
lution in the HOG feature space, where the preselection er-
ror is significantly larger than for LPQ. As shown in Fig.
5c, clusters 3 and 4 mainly contribute to the overall pre-
selection error, because these two clusters are located next
to each other in Fig. 5a. * As shown in Fig. 5b the num-
ber of identities per cluster varies across the clusters. These
variations can partly be explained by the fact that the in-
put images come from three different datasets that contain
a different number of subjects. C'; mainly contains images
from IITK, whereas C; contains many images from AMI.
Fig. 4 shows examples of the five closest ear images to each
centroid for LPQ-3-20-15. Images that originate from a par-
ticular database are overrepresented in some of the clusters;
however, each cluster contains images from all of the three
original databases. This implies that the classification not
only reflects the identity of a person, but also contains in-
formation about skin tone (IITK contains ear images from
Asian Indians, while AMI and UND-J2 mainly contain im-
ages from Caucasians). This is confirmed by evaluations
using only a single database, where the capture settings and
the skin tone of most subjects are the same. The perfor-
mance of these individual databases is lower than that of
the combined dataset. On UND-J2, for instance, we obtain
a penetration rate of 81.45% for a pre-selection error rate of
1.11%.

Cross-database evaluations show that texture descrip-
tors contain information that captures the demographic at-

4The reader has to exercise caution when interpreting these figures.
These are projected features - the original dimensionality is 73



Table 2: PSE and PEN (in %) for different configurations of the three texture descriptors when multi-cluster search is
used. Here K = 10. The best tradeoff between PSE and PEN for each configuration is denoted in bold. The best results were

achieved with LPQ-3-20-15.

Number of clusters searched (\) for K = 10.

Algorithm A=2 A=3 A=4 A=5 A=6 A=T7 A=8

LPQ-3-20-0  10.58//28.01 2.77//40.99 1.30//53.48 0.27//65.93 0.10//74.98 0.00//84.84 0.00//92.76
LPQ-3-20-10  8.77//27.90 2.00//40.80 0.83//53.56 0.27//66.55 0.03//75.24 0.00//81.10 0.00//89.94
LPQ-3-20-15 6.20//32.74 0.99//47.10 0.40//61.69 0.00//73.58 0.00//81.68 0.00//90.59 0.00//97.30
LPQ-3-12-7 8.07//31.41 1.70//46.08 0.601//59.99 0.30//72.49 0.20//81.06 0.03//89.73 0.03 // 96.77
LPQ-5-20-15 8.30//28.12 1.47//41.65 0.53//53.17 0.23//64.48 0.03//75.64 0.00//87.01 0.00//96.23

LPQ-10-20-10 14.45//23.08 6.89//34.23 3.41//45.67

1.97 /1 56.52 0.57//67.31 0.20//78.28 0.03// 88.77

HOG-8-9

17.43 //22.34 8.83//33.58 4.27//44.31
uLBP-1-20-10 11.32//23.62 4.30//34.66 2.40//44.42

2.17//54.71 1.30//65.11 0.77//75.13 0.40//85.11
1.73//53.93 0.97//63.21 0.37//72.48 0.20// 82.77

tributes of the subjects and the acquisition settings. The
cluster centroids obtained from one database do not prop-
erly reflect those from the other databases. We plan on in-
corporating additional features related to the shape of the
ear to mitigate this concern.

6.2. Multi Cluster Search

In the second experiment, we explore the impact of multi
cluster search. Based on the probe feature vector, the clus-
ters corresponding to A nearest centroids are searched. This
potentially decreases the pre-selection error, but will also
increase the penetration rate. The results for this experi-
ment are summarized in Table 2. Here, the best configu-
rations from Table 1 corresponding to K = 10 were used.
We found that, for solutions with a larger K, the number
of clusters does not influence the rate in which the penetra-
tion rate converges. This means that a graph depicting the
ratio between pre-selection error rate and penetration rate
will have the same shape, regardless of K (see Fig. 7). For
higher values of K, we have more possibilities to select A
in a way that meets the requirements of a particular appli-
cation.

As the results show, multi cluster search quickly reduces
the pre-selection error at the cost of increased penetration
rate. Due to the fact that the number of identities in each
cluster varies, the penetration rate increases much faster
than 1/\ with A < K. However, searching through the
closest two clusters significantly improves the performance
by keeping the penetration rate below 50% while reaching
a pre-selection error that is as small as 0.1% for LPQ-3-20-
15. For other LPQ-based configurations with a radius of
3, the pre-selection error falls below 1% when four clusters
are included in the search process at the cost of a higher
penetration rate between 53.5 and 60%. All the other con-
figurations result in searching at least 75% of the gallery
images in order to obtain a pre-selection error below 1%.

Upon evaluating the identification performance, we ob-
tain a rank-1 recognition rate of 93.06% when searching
through three neighboring clusters using LPQ-3-20-15. As
opposed to an exhaustive search, where we would obtain
a similar performance, we only have to compare against
47.10% of the images, on an average, in the database.

6.3. Feature Space Fusion

As pointed out in Section 4.2, the identity lists corre-
sponding to multiple feature subspaces can be combined to
facilitate the retrieval process. Fusion is carried out by ei-
ther using the union or the intersection of these two lists.
Additionally, the previously mentioned multi-cluster search
can be used in each of these feature spaces. Our results are
based on different numbers of clusters searched () and K
=10.

As expected, the penetration rate when using the union
operator on the identity lists is much higher than when using
the intersection operator. The intersection operator results
in a pre-selection error rate of 1.98% at a penetration rate
of 55.53% when a single cluster search strategy is used in
each subspace. Searching through 5 clusters only slightly
improves the performance and yields a pre-selection error
rate of 1.65% and a penetration rate of 66.69%. Using the
union operator results in a pre-selection error rate of 0.99%
at a penetration rate of 47.65% when searching though 3
clusters in each feature space. This implies that the clas-
sification performance was not necessarily improved when
fusing two identity lists.

7. Summary and Future Work

Using a single cluster search strategy the best results
were obtained using LPQ with a radius of 3 and a 20x20
window size with 15 pixels overlap (pre-selection error rate
was 3.11% with a penetration rate of 31.7%). A multi clus-
ter search strategy further reduces the pre-selection error to
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Figure 7: Impact of K on the convergence rate of the pre-
selection error rate and penetration rate trade-off with LPQ-
3-20-15. The number of clusters to be searched increases
from right to left.

0.99% with a penetration rate of 47.1%. In summary, we
have the following observations.

Unsupervised classification of 2D ear images using
texture descriptors is possible.

e Solutions with four clusters are a good choice for sin-
gle cluster search when using the LPQ texture descrip-
tor.

e A multi cluster search strategy further improves the
classification performance.

e Fusion of candidate lists corresponding to two differ-
ent feature subspaces using the union or intersection
operator does not improve the classification perfor-
mance.

This work can be extended in many ways: (a) We will in-
vestigate if all three texture descriptors cluster the subjects
similarly. (b) In this work, only left ear images were used.
We plan to investigate if the left and right ears of subjects
are clustered similarly. (c) We will study the classification
error when the quality of the input image is degraded. (d)
We plan on incorporating shape features to improve classi-
fication accuracy, especially in homogeneous datasets.
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