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Abstract {English}

Smartphones are an integral part of our daily routine. With being the most widely used

mobile operating system, cyber criminals naturally extended their malicious activities

towards Android. Security analysts recognized an alarming increase in Android malware

families of 390% from 2012 to 2013.

The major challenge in analyzing this massive amount of malware samples is a growing

number of employed obfuscation techniques disguising the malicious portions of source

code from analysts. Sandboxes are able to overcome obfuscation by executing malware

within an isolated environment. Unfortunately, sophisticated malware can determine

that it is running within an analysis environment and dynamically adapt its behavior

to be considered as benign.

To conquer this limitation, we extend the Android application sandbox DroidBox to be

more resilient towards detection techniques and additionally feature compatibility with

up-to-date Android applications. Thus, this Thesis is divided into two, not directly re-

lated, challenges: First we verified the accurate operation of DroidBox 4.1 and utilized

it as a base for our continuative porting to the most recent version of Android. Thereby

we semi-automated the porting procedure to aid further developments. Second, we in-

vestigate defense strategies applied by Android malware to thwart dynamic analysis. A

taxonomy is developed and leveraged to cluster a huge amount of practically applicable

sandbox evasion techniques. Finally, we propose anti-detection measures in alignment

with the taxonomy and successfully tackle all introduced evasion techniques. Conse-

quently, from malware’s point of view our extension of DroidBox is indistinguishable

from a real device.

We demonstrate our detection methods to not only be effective against all existing online

sandboxes, but also putting the defenders a step ahead by assisting analysts in combating

evasive mobile malware through an improved version of DroidBox. Ultimately, it is

integrated into the online analysis services Mobile-Sandbox.
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Abstract {German}

Smartphones sind mittlerweile ein fester Bestandteil unseres täglichen Lebens. An-

droid ist dabei die am weitesten verbreitete Plattform und deshalb auch zunehmend das

Ziel von Computerkriminalität. Von 2012 auf 2013 konstatieren Sicherheitsexperten ein

alarmierendes Wachstum von Android Schadsoftware-Familien um 390%.

Die Herausforderung bei der Analyse dieser großen Mengen von Schadsoftware ist der

steigende Einsatz von Verschleierungstechniken, die den bösartigen Programmcode vor

Analytikern verbergen. Sandboxen sind in der Lage diese zu überwinden und führen

die Schadprogramme in einer isolierten Umgebung aus. Leider können hochentwickelte

Computerviren feststellen, dass sie in einer Analyseumgebung ausgeführt werden und

adaptieren ihr Verhalten dynamisch, um gutartig zu erscheinen.

Um diese Einschränkung zu eliminieren, wurde DroidBox, eine Sandbox für Android,

widerstandsfähiger gegen solche Detektionsmaßnahmen gemacht. Außerdem wird die

Kompatibilität zu neusten Android Anwendungen hergestellt. Somit gliedert sich diese

Arbeit in zwei nicht unmittelbar themenverwandte Abschnitte: Zunächst verifizieren wir

die korrekte Funktionsweise von Droidbox 4.1 und verwenden es als Basis für unsere an-

schließende Portierung auf die neueste Version von Android. Dabei automatisieren wir

diesen Prozess teilweise, um spätere Portierungsvorhaben zu unterstützen. Zweitens un-

tersuchen wir die von Android Schädlingen eingesetzten Sandboxdetektionsmaßnahmen.

Hierfür wird ein Klassifikationsverfahren entwickelt, mit dessen Hilfe sich eine Vielzahl

von praktischen Erkennungsmethoden zusammenfassen lässt. Schließlich zeigen wir An-

tidetektionsmaßnahmen, mit der wir alle zuvor entwickelten Erkennungsstrategien er-

folgreich abwehren können. Aus Sicht von Schadsoftware kann die erweiterte DroidBox

nicht von einem echten Gerät unterschieden werden.

Es wird gezeigt, dass unsere Erkennungsmethoden nicht nur wirksam gegen alle beste-

henden Online-Sandboxen sind, sondern auch, dass die Verbesserung der DroidBox An-

alysten wirksam bei der Bekämpfung von Computerviren unterstützt. Abschließend

wurde die gehärtete DroidBox in die Mobile-Sandbox Umgebung integriert.
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Chapter 1
Introduction

1.1 Motivation

Over the last decades information technology (IT) became an indispensable part of

our everyday lives. Particularly the interconnectedness of IT systems via the Internet

has reached unprecedented levels. According to the International Telecommunications

Union (ITU), 2.75 billion individuals are using the Internet which equals 38.8% of the

world population [36]. Developed countries have, as expected, significantly more In-

ternet users: USA 81%, Germany 84%, Spain 72%, or Netherlands 93% [87]. While

inhabitants of the mentioned countries embraced the convenience of the Internet into

their daily routines, the developing countries are expected to push the number of users

within the next decades even more.

Initially IT supported traditional businesses in terms of increasing efficiency and perfor-

mance, but meanwhile it rather transformed into an independent business branch. The

online-based economy including shipped goods had a turnover of 39.8 billion euros in

Germany [11] and 384.8 billion dollars in the USA [19] in 2013. Aside from the total

numbers the upturn of the e-commerce market is still continuing, as depicted in Figure

1.1.

The aforementioned monetary valuation of the Internet as well as the sheer number of

users do not remain without consequences: Criminals are attracted by the new mar-

ket. Whereas hackers were merely persuaded by fun in the early days, cyber criminals

determined the opportunity to gain financial profit from this new cyber world [34, 89].

The size of the global market of cyber crime was estimated to exceed one trillion dollars

1



Chapter 1. Introduction 2

Figure 1.1: E-commerce sales growth in Germany [82].

according to the Vice-President of the European Commission responsible for the Digi-

tal Agenda of Internet Security [41]. Criminals attempt to gain control over computer

systems or networks in order to achieve their financial goals. Therefore the attack-

ers typically exploit vulnerabilities which unfortunately are enclosed in any software or

hardware. Programs that infect systems through such loopholes, referred to as malware,

may cause harm to users (cf. Section 2.2). Consecutively, we illustrate the threat of

cyber crime by revealing numbers and facts published by IT security vendors:

• For a survey 3,716 Internet users from selected countries were asked if they have

ever been infected by malware. Although users might be unaware of an infection,

58% admitted a malware infestation [37].

• Kaspersky counted 5,188,740,554 cyber attacks on user’s computer systems in 2013

[38].

• Symantec counted on average 160 targeted attacks per day in 2013, which is an

increase of 42% compared to 2012. The number of exposed identities per breach

rose to 604,826 [86].

• In 2012 74,000 unique malicious web domains were registered [86].

• The absolute number of vulnerabilities detected in 2012 was 9,776, discovered in

2,503 products from 421 different vendors [74].

• Malware targets on stealing information, wiping data, blocking infrastructure op-

eration, and stealing money [38].
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As outlined by the given statistics, attackers have great impact and threaten our cyber

space. Whereby in the beginning of the digital age the conventional way of accessing the

Internet was to use ordinary computers, this is rapidly changing. We are shifting from a

Internet society to a mobile Internet society [6]. Despite the high availability of wireless

local area network (WLAN) access points, true mobility can only be provided through

the cellular infrastructure. Thus, mobile providers extended the range and bandwidth of

their infrastructure extensively within the last years. As of 2012 the population coverage

of Third Generation (3G) mobile networks is comparatively high: USA 93%, Germany

90%, Spain 98%, Netherlands 99%, and Poland 69% [57]. As stated by Evans [21], Chief

Futurist of Cisco, forecasts predict that over 50 Exabytes of data will be exchanged by

mobile devices in 2015.

This massive bandwidth usage is caused by a steady rising number of smart devices.

At the beginning of the new millennium a new device class emerged at the market:

Smartphones. This revolution is driven by a profound change of mobile phone’s assets.

Smartphones have particularly advanced hardware and software capabilities. Typical

hardware features are large screens (3 to 5 inch), touch input interfaces, reasonable

computing power, several connectivity interfaces, and a diversity of sensors. These

components are utilized by software running on a complete operating system (OS) similar

to ordinary desktop systems. This allows the development of complex applications

(referred to as apps) like full featured browsers, e-mail clients, office tools, or media

players that increase the usability considerably. In fact, innovative new applications

are published which make use of the mobility combined with device sensors such as

geolocation (GPS) or acceleration sensors. Moreover, the tightly integrated apps can

be installed at a given time of the user’s choice through a distribution platform for

third-party apps: The so called app stores. Not only in the private sector third-party

apps play a key role. Enterprise software vendors such as SAP or Oracle supply apps to

access business management systems on the go via mobile devices [64, 71].

Whereas we exemplified the rise of cyber crime along the ongoing growth of the Internet

beforehand, we provide insight in how the described transformation towards mobile In-

ternet usage indeed let attackers expand their vicious activities to aim at smartphones

likewise. Hence, the higher goal can clearly be outlined as gaining financial profit, the

question of direct incentives is not answered yet. Given the implication that the value of

personnel information is greater than ever before, criminals are particularly interested

in looting private data. As highlighted by Felt et al. [25], it is the most common target.

Approximately 60% of the instances in their sample database collecting sensitive user
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information. Address books may contain up to several hundred data sets and could be

used for spam spreading or identity theft. Also credentials which are typically saved

within apps to access services, such as social media or cloud storage services, running

the risk of being purloined for account abuse. This turns into an even more drastic

exposure if login information for bank accounts or payment details are concerned.

Besides, a common attack purpose is to generate revenue for attackers by the stealthy

engagement of premium services [25, 80]. Despite the legitimation of premium-rate

phone calls and short message service (SMS) messages for value added services, they

are repeatedly instrumented by criminals. Costs for the users up to several euros per

minute or message are easily generated. Furthermore, it could feasibly go unfolded until

the user’s next bank statement.

All the mentioned attack vectors lead to a situation where malicious software for mobile

devices cannot be considered as an individual case anymore. Malware for the Symbian

mobile platform has been around since a decade. With the dropping market share and

the decreasing number of spotted malware families in the wild it becomes neglectable.

In contrast, at the same time the increasingly popular mobile environment Android (cf.

Section 2.1) turns into an profitable target, as illustrated in Figure 1.2. FakePlayer,

Figure 1.2: New malware families by quarter 2004 - 2013 [22–24].

the very first malware targeting Android, appeared in August 2010 [47]. Over time,

however, we observed a continuous growth in the numbers of malicious Android applica-

tions. In early 2012 Zhou and Jiang presented their seminal findings on characterization

and evaluation of Android malware wherein they discuss the need for better detection

measures and anti malware solutions for mobile devices, due to the exploding growth of

infection risk [101]. Recently released threat reports of security vendors exemplify the

great amount of malicious applications which can possibly harm smartphones. Syman-

tec recognized an increase about 58% of mobile malware families from 2011 to 2012 [86].

For 2013, F-Secure even stated a growth of 390% [23, 24] compared to 2012 as depicted
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in Figure 1.2. In absolute terms, an average number of 550,000 new samples per quarter

in the first three quarters of 2013 are counted by Intel Security (formerly McAfee) (cf.

Figure 1.3) [50]. Hence, it is difficult to define what should be considered as a unique

instance of a malicious app. In analogy to ordinary malware, authors try to evade detec-

tion by repackaging, recompiling, or other transformations of already identified samples.

Obviously, the security vendors are interested in an preferably threatening analysis of

the situation, since their business is to sell security solutions. As shown by Maggi et al.

[46], there are already several products for Android mobile devices available.

Figure 1.3: New unique malware samples by quarter 2011 - 2013 [50].

Nevertheless, the quintessence of both, scientific researchers and security vendors, clearly

states the ongoing rise of mobile malware. In particular, the Android environment is

targeted. With an estimated market share of about 80% of global smartphone sales (cf.

Figure 1.4) it is the market leader even though it was just released in 2008. Google’s

Senior Vice President Sundar Pichai announced 1 billion device activations in September

2013. Beyond the device figures, Google’s Play Store, the app distribution channel for

Android, serves more than one million apps as of mid-2013 [96].

The open design of the Android platform allows users to install apps from unofficial

sources like third-party stores. Indeed, neither the Play Store nor other stores, notwith-

standing all their efforts, prevent distribution of malicious apps with absolute certainty.

Scammers will find ways to circumvent protection measures to sneak malware into the

stores. Especially Russian and Chinese platforms seem to be affected [49].

Due to the rampant growth, more applications must be analyzed in a given time to enable

researchers, store operators, and security vendors to develop effective countermeasures.
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Figure 1.4: Global smartphone sales share to end users by quarter 2009 - 2013 [27, 83].

The traditional method which investigates each sample manually is error-prone and time

consuming (cf. Section 2.3). Thus, it is required to use automated analysis techniques.

In order to overcome code obfuscation techniques, which can prevent an effective static

analysis, a large body of dynamic analysis research has been proposed [9, 20, 42, 81].

The so called sandboxes examine potential malware during execution in a controlled en-

vironment (cf. Section 2.3.2). Google established Bouncer, a service to scan submitted

apps for malicious behavior, to limit the number of unwanted apps in their store [44].

However, research has shown that it is in fact possible to bypass it [56]. Attackers obvi-

ously aim on protecting their ”intellectual property” and do not perform any malicious

activity as soon as they detect that it is running within an analysis environment.

In conclusion, not only the total number of malware targeting Android is still growing,

also its sophistication is steadily increasing. Moreover, the concepts practically applied

for automated analysis environments lack effectiveness due to the explained evasion mea-

sures implemented by malware authors. We predict a similar development as seen in

the ordinary computer sphere. In the near future we expect all serious Android mal-

ware families to at least employ strong obfuscation techniques or even sandbox evasion

procedures. This calls for a continuously improvement of existing solutions. We stress

that it is crucial to understand presently conducted sandbox detection strategies and to

apply findings to existing solutions. The overarching goal is to analyze arbitrary appli-

cations in dynamic environments at any time and to conduct meaningful results even

for upcoming generations of malware.
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1.2 Problem Definition and Objectives

As already mentioned in Section 1.1, the market for smart mobile devices grew consid-

erably and is believed to continue its rise in the near future. The Android platform has

a significant market share and the number of available apps grows fast. Beyond the

fact that it also appeals to criminals, they become even better organized. An increasing

number of malware, and in particular more sophisticated ones are the consequence.

Thus, it is required to use automated analysis techniques in order to identify potential

harmful software, to understand its behavior, and to develop adequate countermeasures.

DroidBox is an open source sandbox to analyze Android applications. Unfortunately, it

comes with an eminent drawback: Apps which are deployed for novel versions of Android

cannot be examined. In fact, most applications deployed for outdated Android versions

still run on up-to-date systems. In contrast, those which make use of the new features

or changed APIs of later versions are not compatible anymore.

To address the changing market shares of the different versions, the existing version of

the Android 2.3 based DroidBox sandbox has to be ported to version 4.x. The current

version’s shortcoming, that only a subset of the existing applications can be analyzed,

would be eliminated. The porting is supported by an already existing version of Taint-

Droid, compatible with Android 4.1. TaintDroid is a taint tracking (cf. Section 2.3.3)

system which is the basis for DroidBox [20]. Afterwards, the profound changes require

an conscientious evaluation of the updated environment to prove the correctness.

In practice, regarding the continuous development of Android with its continuous major

releases, such a port is required frequently. In order to alleviate this costly procedure, a

preferably generic approach should be derived and outlined.

As aforesaid, sophisticated Android malware already employs defense strategies like the

sandbox detection. If an instance is running within an analysis environment it could

try to thwart it by changing the behavior and not revealing malicious actions. The

applied evasion capabilities need to be examined and structured. Based on the gained

insight, solutions to prevent a detection should be developed and implemented for the

ported DroidBox. In order to demonstrate the effectiveness it will be integrated into a

real world solution. This means, it is tested with a representable amount of malware

samples. Finally, we give a comprehensive comparison of the features with other well-

known online analysis platforms.

The briefly summarized objective is to build an Android sandbox which is notably harder

to identify by malware in comparison to DroidBox. Additionally, it is supposed to be
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compatible with up-to-date Android apps.

1.3 Out of Scope

Whereat we delineated the objectives for this Thesis in the previous chapter, a definition

to clarify the work out of scope is given here.

Neither do we cover techniques to obfuscate source code, nor approaches to circumvent

such obfuscation techniques.

Furthermore, this work does not contribute to increase the robustness of taint tracking

by utilizing static information flow analysis. Therefore we refer to ”Detecting Control

Flow in Smartphones”, published by Graa et al. in 2012 [30]. Nevertheless, insight on

the limitations is given in Section 2.3.3.

Although evasion tactics and anti detection for Android are addressed in depth, how-

ever, measures exploiting so-called rootkits to circumvent detection are not. We stress,

once malware resides deeply in the kernel it is infeasible either to inspect its behavior or

to prevent it from detecting the sandbox. For related reading please refer to ”A Guide

to Kernel Exploitation” by Perla and Oldani [66].

We are also not covering advancements of emulation software in order to mitigate sand-

box detection.

When the practical work for this thesis had already been completed, TaintDroid 4.3 was

released. Hence we do not take it into account.

1.4 Thesis Outline

In order to follow the ideas of the authors, the reader is encouraged to read all chapters

of this Thesis sequentially in their given order. The structure of this Thesis is as follows:

Chapter 1 gives an introduction to the current threats of the Internet and the risk of

malware infections for mobile devices. Thereby it presents the motivation and objectives

for this work.

Chapter 2 presents the required background for the Android platform (Section 2.1).

Dynamic analysis systems in general (Section 2.3.2), and the Droidbox sandbox (Sections

2.3.4 & 2.3.5) are explained as a concrete implementation which is extended within the

context of this Thesis.
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Chapter 3 outlines the procedure of porting DroidBox to a more recent version of

Android. First, the developed version 4.1 of DroidBox is evaluated (Section 3.2). At

second, DroidBox is ported to the latest version of Android (Section 3.3). Moreover, the

approach to automate porting of prospective versions is discussed.

Chapter 4 introduces a taxonomy to cluster dynamic analysis detection methods. In

alignment with it, a huge amount of techniques to unveil sandboxes is given (Section 4.2).

Terminally, a complete list of measures to counter the previously described detection

vectors is demonstrated and implemented (Section 4.3).

Chapter 5 evaluates the proposed sandbox detection techniques and countermeasures.

Therefore, a set of online sandboxes is examined and compared to the improved sandbox

environment (Section 5.1). In addition, the integration of the extended DroidBox into

the Mobile Sandbox is briefly illustrated (Section 5.2).

Chapter 6 discusses the results and contributions (Section 6.1). Ultimately, an outlook

on possible future work is given subsequently (Section 6.2).



Chapter 2
Foundations

After introducing the motivation and objectives of this Thesis in Chapter 1, we cover

the essential foundations required to understand the work that is explained later on in

Chapters 4 and 5.

In the beginning we provide some details about the mobile operating system Android,

whereby we discuss the layered system architecture. Followed by an introduction of

mobile malware in Section 2.2 and an explanation of how it can be analyzed in Section

2.3. Thereafter, we compare the two analysis approaches and explain the sandbox

concept. Since the main part of this work describes the improvement of DroidBox, the

necessary insight into DroidBox (Section 2.3.5) and its base TaintDroid (Section 2.3.4)

is given. Finally, we will summarize the essence of this chapter.

2.1 Android

This section provides insights into the Android OS. Android is a Linux based open

source OS for mobile devices with Advanced RISC Machine (ARM) architecture [2],

developed by the Open Handset Alliance under the leadership of Google. Its market

share continues to grow rapidly as already outlined in Chapter 1.

The first publicly available Android version has been released in September 2008. All

consecutive major releases are listed in Table 2.1 with the corresponding release dates.

The latest Android OS version is 4.4 alias KitKat which was released in October 2013.

Any released version came with notable changes, some regarding the design others with

10
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Version Codename Release Date

1.0 Base September 2008
1.5 Cupcake April 2009
1.6 Donut September 2009
2.0 Eclair October 2009
2.2 Froyo May 2010
2.3 Gingerbread December 2010
3.x Honeycomb February 2011
4.0 Ice Cream Sandwich October 2011
4.1 Jelly Bean June 2012
4.2 Jelly Bean November 2012
4.3 Jelly Bean July 2013
4.4 KitKat October 2013

Table 2.1: The history of Android major releases.

massive modifications at the system’s architecture. For a more detailed explanation

please refer to the release notes [62].

The Android software stack contains four layers, as illustrated in Figure 2.1: Linux

kernel, libraries/runtime environments, application framework, and application layer.

They are connected by interfaces to assure a robust inter-layer communication. The

following discusses the different components (cf. Figure 2.1) [31, 76].

Google instruments a modified version of the open source Linux kernel as base for An-

droid. It comes with a few special additions such as wakelocks, a memory management

system, and security mechanisms. Most changes are due to the fact that system re-

sources are limited on mobile embedded platforms.

The next upper layer contains system libraries and the runtime environments, mostly

written in C/C++. The libraries are modules of code that are compiled down to native

machine code, comparable to those commonly used by other Linux distributions. All

libraries are required by the system itself and by third-party applications likewise.

Android possesses two different runtime environments. The Dalvik Virtual Machine

(DalvikVM or DVM ) is the default runtime environment and executes applications and

system services, each in its own virtual machine (VM) process to provide a sandboxed

environment. In Android 4.4, the Android Runtime (ART ) has been introduced exper-

imentally and will eventually replace the DVM in future releases [61]. Its main goal is

to increase execution performance by precompiling applications at installation and not

at runtime.

Despite the strict separation of the VMs there is a communication channel for exchanging
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Figure 2.1: The Android operating system software stack with its four layers [1].

information cross process boundaries. This inter-process communication (IPC) mech-

anism is called Binder, which allows high level components to interact with Android’s

system services in a simple manner.

The application framework layer exposes system functionality through an easy-to-use

application programming interface (API). The services run as a background process and

are divided into modular components depending on their functionality such as Search

Service, Telephony Manager, or Window Manager (cf. Figure 2.1).

The uppermost layer is the application layer. All third-party and some preinstalled ap-

plications, like Contacts or Browser, running inside the DVM on this layer.

The primary programming language for applications is Java, whereat the source code

is compiled into a machine code-like bytecode (.class). It can be interpreted by the

Java Virtual Machine (JVM), a computer architecture independent runtime environ-

ment. For Android, however, Google introduced the Dalvik bytecode (.dex) which is

derived from JVM bytecode and executable by the DalvikVM. The major difference is

that JVM bytecode is stored in one or more files and loaded dynamically at runtime,
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while Dalvik bytecode (even of multiple classes) is stored in one file only. As stated in

Figure 2.2, class files are transformed by the dx tool1 into a single dex file. Along with

all its resources and a manifest it is packed into an Android package file (.apk) which

can be distributed and installed on Android devices. The manifest file describes, among

other general information, the capabilities of its application. The compile process, as

implemented by modern integrated development environments (IDE) like Eclipse, is rep-

resented by the green arrows in Figure 2.2. Typically, that is not made transparent to

the developer. An explanation of the reverse process and the smali file format is given

in the next section.

Figure 2.2: The Android compile flow and its tools.

A key feature for the success of Android is the distribution model. Third-party applica-

tions are conveniently accessible through app store platforms. Even developers benefit

since they do not need to be concerned of the distribution chain or the handling of

payment. As of July 2013, Google’s app store (Play Store) served one million apps

[96]. Besides, several unofficial app stores exist (e.g. Amazon App-Shop, Yandex.Store,

1Mobile, etc.).

A shortcoming of the Android update philosophy is the failure of providing security

patches in a reasonable time frame. Updates are only delivered with new releases and not

as a continuous process for bug fixing. Considering the release cycle, a critical number

of devices is exposed to attackers due to unpatched security holes, not even taking

into account the time required by the smartphone manufacturers to adapt the new OS

version to their devices. Table 2.2 presents an overview of the version’s distribution as

of January 2014 [63].

1 The dx tool is part of the Android software development kit.
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Codename API vers. Share

Froyo 8 1.3%
Gingerbread 10 21.2%
Honeycomb 13 0.1%
Ice Cream Sandwich 15 16.9%
Jelly Bean 16, 17, 18 59.1%
KitKat 19 1.4%

Table 2.2: The Android version distribution [63].

2.2 Mobile Malware

Malware, short for malicious software, terms software which ”deliberately fulfills the

harmful intent of an attacker” [52]. To allow an instant correlation to a specific kind

of harmful behavior, malware is commonly classified with terms such as virus, worm,

or trojan. Malicious software exists for all computer platforms but originates form Per-

sonal Computers (PC). Traditionally, cyber criminals were driven by earning respect or

demonstrating security vulnerabilities. Nowadays financial gain is the main motivation

[34, 89, 102].

As pointed out in Chapter 1, the number of Android malware increased significantly

within the last years and the growth does not seem to slow down any soon. This trend

has been predicted by Becher et al. [6]. They identified the reasons as follows: First,

the total number of smartphones grew rapidly since they became more powerful and

cheaper, transmission capabilities of wireless networks grew while the prices decreased

at the same time, and they are easily third-party extensible as we already outlined in

the last section. Hence, a single piece of malware is capable of infecting far more de-

vices. Second, smartphones contain more sensitive information simultaneously, such as

payment details, authentication credentials, personal data (identity theft), or business

sensitive information compared to ordinary computers.

Mobile devices are exposed to several fundamental different attack vectors. These threats

are classified according to their target as follows [6, 79]:

• Hardware-centric attacks target physical vulnerabilities and are not exploitable

remotely.

• Attacks aiming at the communication infrastructure or back-end systems belong

to device-independent attacks.

• Software-centric attacks are attacks against software running on a mobile device,

including system apps, the OS itself, and drivers. In contrast to Becher [6], we
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include also so-called social engineering attacks into this class. These attacks evade

technical security measures by leveraging the trust of users who are not aware of

IT security foundations.

Software-centric attacks demand an opportunity to let target systems execute a portion

of code (the malware) on behalf of the attacker. Thus, it calls for methods to infect

devices (infection vectors) outlined below.

Android malware commonly utilizes repackaging attacks [101]. In essence, popular ap-

plications are downloaded and decompiled by the attackers, the malware’s payload is

added, the app is recompiled, and uploaded to an app store. Users may confuse these

repackaged versions with the legitimated benign ones and install them onto their device.

Since the harmful code is an integral part of the application, this could expose its pres-

ence to security software, either on the device or inside the app store already. Instead

of injecting the payload before distribution, malware authors make use of the update

facilities of most app stores referred to as update attack [101]. The base versions do not

contain malicious code and are therefore considerably harder to detect. At a time of the

attackers choice an update is performed and the harmful content is fetched.

Also, malware authors tend to simply name their software to sound alike popular ones,

but do not have anything else in common. The described infection vectors exploit one

of the three properties:

• Android allows its users to install software from untrusted sources, e.g. third-party

stores. Those stores are famous especially in Russia and Asia [4, 49, 86].

• The malware analyses performed by the stores are not sophisticated enough [56].

• The user’s decision-making process, prior installing a new app, whether it is ma-

licious or benign is not supported enough by the OS and by context information

given by the stores.

Furthermore, traditional exploitation of software vulnerabilities in order to infect An-

droid devices begins to rise. Modern software is generally composed of thousands or

millions lines of code. Hence, it is very unlikely that it does not contain any bugs. Mal-

ware exploits those bugs to break into systems, sophisticated pieces are even able, in

contrast to social engineering attacks, to do so without the user’s interaction. However,

to date such attacks are very rare but will probably emerge more often in the future.

Finally, we give an overview of threat classification subsequently, according to Felt et

al. [25] and the refinement of Spreitzenbarth [79].
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• Malware is used by attackers to obtain control over a mobile device. The purpose

is either to steal data or to perform criminal actions over the foreign smartphone.

In rare cases malware caused damage to the device. The possible infection path

are vulnerabilities or social engineering attacks, as denoted above.

• Spyware collects information about the device’s owner and sends it to the person

who put it in place. According to Felt, spyware is commonly installed by an

attacker who has physical access [25].

• Greyware, in contrast to malware and spyware, has legitimate functionality which

conceals its true goals. Therefore users install it unintentionally onto their devices.

Nevertheless, it collects far more information than needed for the service offered

and is often driven by marketing purposes. Those apps do not get banned from

the Play Store in every case since they do not violate the terms and conditions.

• Fraudware’s main ambition is to use premium services for making profit. The

advertised functionality is available after the user has sent premium Short Message

Service (SMS) messages. Indeed the user gets informed about the costs even

though the authors try to hide the reference about upcoming charges.

Within this section we provided an overview of mobile malware in general and Android

malware in specific. The sophistication of threats is rising and attacks are relevant in

practice. On that account the next section gives insight in the analysis of malware.

2.3 Malware Analysis

To successfully protect users and infrastructures from malware threats two conditions

must be met. First, suspicious applications need to be analyzed and classified as either

malicious or benign. Second, a piece of software once determined as malware needs to

be detected at any system without a repeated analysis.

Since the detection strategy of security software bases mainly upon ”some sort of sig-

nature matching process to identify known threats” [18], each new sample has to be

distinguished. Thereby another drawback has to be challenged: Signatures are easily

changeable through obfuscation techniques such as encryption or packaging [75]. How-

ever, each sample has to be classified as a variation of an already known threat or a

yet unknown one which requires further manual analysis. A sufficient proceeding is to

automate malware analysis. This can either be done statically or dynamically [8]. Static
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analysis involves examining the code of an executable without running it, while a dy-

namic analysis is performed by running the sample in a safe environment [75]. Both

approaches are described and compared in Section 2.3.1.

As illustrated in the introduction (cf. Chapter 1), the fast growing quantity of malware,

besides the increase in professionalism, is the main challenge for security vendors and

researchers. It appears that a classical manual analysis of suspicious applications is in-

feasible under this circumstances, since this process is error-prone and time-consuming.

Therefore, both techniques, static and dynamic should be automated up to a certain

degree to support the analyst’s decision whether an additional manual analysis is rea-

sonable or not.

2.3.1 Static vs. Dynamic

The classical approach for automated malware analysis is called static analysis. It is

concerned with the examination of source code or meta information obtained by disas-

sembling or decompiling of a malware sample.

As aforementioned, Android application packages (.apk) can be transformed back into

Java code by reversing the compile process (cf. Figure 2.2). The Android bytecode

files (.dex) are extracted from the app’s archive (.apk). As the next step to restore the

initial source code, the dex file is converted back into traditional Java bytecode (.class).

The dex2jar tool accomplishes this step and allows the commitment of graphical Java

decompilers (e.g. jad), which finally delivers human readable code. Unfortunately, the

transformation is error-prone and hence the result is not satisfactory in every case. Thus

it is required in some cases to transform the Android bytecode into a new language named

smali (.smali). Smali is rather simple to understand in comparison to bytecode but not

as convenient as Java. In order to demonstrated the differences Listing 2.2 exemplifies a

portion of smali code while Listing 2.1 shows the original Java source of a ”Hello World”

sample application.

public class MainActivity extends Activity {

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState );

setContentView(R.layout.activity_main );

sayHello("Hello World!", 3);

}

private void sayHello(String text , int duration ){
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Toast.makeText(this , text , duration ).show ();

}

}

Listing 2.1: Example of Java source code.

[...]

.method private sayHello(Ljava/lang/String;I)V

.registers 4

.param p1, "text" # Ljava/lang/String;

.param p2, "duration" # I

.prologue

.line 17

invoke -static {p0, p1, p2}, Landroid/widget/Toast;->makeText

Landroid/content/Context;Ljava/lang/CharSequence;I)Landroid/widget/Toast;

move -result -object v0

invoke -virtual {v0}, Landroid/widget/Toast;->show()V

.line 18

return -void

.end method

.method protected onCreate(Landroid/os/Bundle ;)V

.registers 4

.param p1, "savedInstanceState" # Landroid/os/Bundle;

.prologue

.line 11

invoke -super {p0, p1}, Landroid/app/Activity;->onCreate(Landroid/os/Bundle ;)V

.line 12

const/high16 v0, 0x7f030000

invoke -virtual {p0 , v0}, L[...]/ MainActivity;->setContentView(I)V

.line 13

const -string v0 , "Hello World!"

const/4 v1, 0x3

invoke -direct {p0, v0, v1}, L[...]/ MainActivity;->sayHello

(Ljava/lang/String;I)V

.line 14

return -void

.end method

Listing 2.2: The reversed smali code of Listing 2.1.

The major advantage of analyzing static code is that it can be performed fast while it is

relatively simple at the same time [53]. On the other hand malware employs obfuscation

techniques which aims to conceal the source code from the analyst [98]. Thus, the code

is unreadable or dynamically reloaded at an arbitrary point of time during execution

and is not available for the static analysis. An Android specific obfuscation approach

is to hide malicious code blocks outside the Dalvik runtime. For instance, in native
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system libraries or app sections which are written in the C programming language and

accessible through the Java Native Interface (JNI).

In contrast, dynamic analysis does not investigate code but rather refers to techniques

which execute malware samples within a safe, isolated environment. It allows an inves-

tigation without putting the own productive system or network at risk. Such sandboxes

(cf. Section 2.3.2) use specially prepared operating systems to monitor the applications

behavior and its interaction with other software. After a defined period of time a report

is generated automatically. It contains details including called API methods, modified

data at the hard drive, performed encryption, and network traffic.

Dynamic analysis is able to combat obfuscation techniques. Since it analyzes the sample

at runtime, access to the state of the system (calls, variables) is assured at any time.

Furthermore, several tracking systems manage to track variables while they propagate

through the systems (cf. Section 2.3.3). Certainly, authors of malware do not com-

ply with analysis environments which circumvent their deployed obfuscation measures.

Thence, they began to implement runtime detection methods to determine if the appli-

cation is running inside a sandbox [69]. In Chapter 4 we provide an overview of Android

detection schemes and suggest effective countermeasures.

In order to overcome the limitations of static and dynamic analysis it makes sense to

combine both techniques. Such a combined implementation can be found, among others,

in the Mobile-Sandbox [51, 79]. The next section describes the composition of an analysis

environment for Android.

2.3.2 Sandbox

Sandboxes feature isolated systems for the execution of untrusted or malignant code

within a realistic environment to conduct dynamic analyzes. Whereby isolation denotes

an important property for securing the analysis system, it restricts the access to critical

resources like communication interfaces or hardware devices. Furthermore, operations

performed by the malware can be observed to provide a better understanding of its

behavior. In spite of that, sandboxes are designed in a manner to not be unveiled. The

sample under analysis is supposed to behave exactly as it would on a real device. In this

sense, sandboxes are virtualized operating systems with specific additions.

In the domain of conventional PCs powerful sandboxes emerged already more than

a decade ago, e.g. CWSandbox [99], Anubis [5], or Java sandboxes [29]. However,

the development lacked of Android enabled systems until recently. In October 2010,
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Blaessing et al. were the first to present a sandbox for Android [9]. At the same time

Enck et al. presented TaintDroid [20] (cf. Section 2.3.4), which has been augmented

subsequently by DroidBox [35] (cf. Section 2.3.5), TraceDroid [92], SandDroid [10],

Mobile-Sandbox [79, 81], and Andrubis [93].

The Android emulator as part of the Software Development Kit (SDK) is the base for all

enumerated sandboxes. Its main purpose is to support efficient testing for developers.

Therefore it uses the open source QEMU virtualization solution which supports full

system emulation for the ARM architecture [7]. Additional devices like display, audio,

internal and external storage, network interfaces, and generic devices can be simulated

as well. Android device’s core hardware component is the System on a Chip (SoC)

that is fully emulated and called Goldfish. The Android Virtual Device (AVD) manager

provides a wrapper to define the concrete Android system’s configuration which is loaded

into QEMU. Ultimately, the emulator can run the Android OS within an emulated

environment without being distinguished by an ordinary app. It allows to trigger certain

system events as phone calls, incoming SMS, or geo locations from outside the emulator.

In order to leverage the Android emulator as sandbox for dynamic malware analysis it

needs to be embedded into a framework which enables an automated injection of suspi-

cious apps into the system, the monitoring for system events of interest, and a feature to

collect and report the obtained information. Such systems have been enumerated before

already. Since the Taint Tracking approach plays a crucial role for all those systems, it

is introduced in the next subsections.

2.3.3 Taint Tracking

Taint tracking, also known as taint checking, information flow tracking, or data tainting,

is a technique which allows to track flows of information while propagating through a

computer system, in order to increase the system’s security. Therefore a set of critical

information sources is defined. Besides, all critical processing units within the system

are defined as so-called sinks. The definition of sources or a sinks in practice highly

depends on the environment’s context. If the aim is to keep track of string propagation,

for instance to prohibit command injection attacks within a web application, all user

inputs would be sources. All methods that execute assigned code would be sinks. In

contrast, an environment which is designed to keep track of sensitive information within

a system would define methods which retrieve the information as sources. Interfaces to

other systems, such as network interfaces, would be defined as sinks.
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Any data originated from any of the sources is flagged or so-called tainted. The envi-

ronment keeps track of all tainted variables during the propagation through the system.

In general propagation through the system means transferring and transforming values

with functions or assignments, whereby functions use one or more variables as operands.

When the value of x is assigned to y (y = x) the information is said to flow from x to y

and is termed explicit flow. If the variable x is tainted, the variable y would be tainted

after the assignment too. In case of a tainted variable encountering a sink the system

would raise an alert.

Figure 2.3: An illustration of a dynamic taint tracking system.

The programming language family Perl designed by Larry Wall in 1987 [95, p. 1073]

introduced a taint tracking system. Any data originating from outside a program itself

is marked as tainted. During the execution flow Perl prevents the usage of tainted data

as arguments for sensitive functions or instructions [95, pp. 558]. Later on, other inter-

preted languages as Ruby [88] or Python [45] applied similar approaches.

Static taint tracking has been used to identify buffer overflow, string format, and Struc-

tured Query Language (SQL) injection vulnerabilities [30]. However, it comes with

major disadvantages. The program’s source code is required for static analysis, but

malware employs obfuscation or encryption techniques to prevent such an analysis [13].

Additional shortcomings are a high false positive rate [13] and some more general limi-

tations due to undecidability problems [30].

As a consequence, dynamic taint tracking systems have been introduced. Haldar et al.

[32] proposed a dynamic taint tracking system for Java which tracks user inputs at run-

time to prevent malicious code from being executed, imposing negligible performance
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overhead. It focuses on most prevalent attacks on web applications like command in-

jection, cookie poisoning, or cross-site scripting. At the same time, Chen et al. [14]

introduced an architectural technique to defeat attacks, based on the notion of pointer’s

taintedness. Pointers are tainted if user input can be used as the pointer value. An alert

is raised whenever a tainted pointer is dereferenced during program execution. Hence,

it is effective against memory corruption attacks like buffer overflow, heap corruption,

or format string. Panorama, developed by Yin et al. [100], is the first system which

tracks data while it propagates through the entire operating system. In fact, this makes

it possible to detect and categorize unknown malware. However, it comes with sig-

nificant performance issues. A variety of approaches have been published in order to

improve malware detection and classification [28, 55, 78]. Moreover, it was also possible

to leverage dynamic taint tracking that one is able to detect leakage of confidential in-

formation. In contrast, Enck et al. presented TaintDroid [20], a system-wide dynamic

taint tracking and analysis system capable of simultaneously tracking multiple sources

of sensitive data. It is implemented within the user space. Section 2.3.4 explains the

system’s properties in detail.

Another notably property of the proposed dynamic systems is that the taint tracking

concept has been transformed from a tool employed to protect from untrusted inputs

into the opposite: A tool to guard from unintended leakage of sensitive information

(output).

On the one hand, these approaches helped to overcome the previously mentioned short-

comings of static systems. On the other hand, they are facing new challenges since

malware began to embed evasion techniques to determine whether it is under analysis

or not [13]. These techniques exploit specific system properties of taint tracking envi-

ronments. All three logic units (cf. Figure 2.3) within a taint tracking environment have

specific weaknesses. Those will be discussed briefly below.

Information is only tainted if it was at some point obtained from a predefined source.

Thus, attackers do not necessarily read data from a source. Instead, they could read from

indirect sources like trusted applications or not tainted files [13]. Consider a pointer p

which points to an untainted file x. If a malware could change p on its behalf it can access

a tainted file undetected. Such vulnerable properties may occur inevitably within large

systems, notwithstanding the practical threat depends strongly on the system’s context

[13]. Moreover, large systems run generally the risk of not identifying all sensitive

sources.

The major weakness of dynamic taint tracking during propagation is the fact that it
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only tracks explicit flows. Explicit flows are, as previously exemplified, explicit transfers

of values from x to y, such as x = y. If y was tainted, the taintedness would haven been

transfered to x accordingly. In contrast, implicit flows do not assign variables directly

as depicted in Listings 2.3 and 2.4.

if(x = 1)

y := 1;

else

y := 0;

Listing 2.3: Implicit flow example.

Regardless, the value of x has been indirectly transfered to y (Listing 2.3). If x was

tainted the variable y would spuriously not be tainted.

boolean b := false

boolean c := false

if(! a)

c := true;

if(! c)

b := true;

Listing 2.4: Another implicit flow example [54].

An even more complex implicit flow is shown in Listing 2.4. When a is true the first

statement is false and the branch is not executed. As result b correlates with the value

of a, even in absence of a direct assignment. The fact of omitting the first branch

contains information which is exploited in the second if statement to prohibit b from

being tainted. Since a affects c and c affects b, it is a transitive enclosure: a is said to

affect b.

These false negatives are a known aftermath of the under-tainting problem. It is beyond

the means of the formerly referenced taint tracking approaches and further addressed in

various academic publications [13, 20, 30, 72].

An attacker can propagate an arbitrarily large amount of tainted information without

using explicit flows. Nair et al. propose with Trishul [54] an approach to overcome this

limitation by combining dynamic taint tracking with static concepts. Trishul captures

the set of variables involved in a conditional code branch and calculates a list of modified

variables for each block. The objects which are modified in any of the possible paths are
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tainted regardless whether the path is taken at runtime or not [54]. Graa et al. extend

this approach to overcome this weakness for the TaintDroid platform [30] (cf. Section

2.3.4). However, the practical implementation is not yet publicly available.

Another manner of circumventing taint tracking are side-channel attacks. They originate

from the field of cryptography and have been introduced by Kocher in Timing Attacks

on Implementations of Diffie-Hellman, RSA, DSS, and other Systems [40]. Since any

entity within a system interacts with and is influenced by its environment, information

may be leaked through this indirection, even if it is not intended. This kind of infor-

mation is called side-channel information, and the attacks on side-channel information

are called side-channel attacks. For illustration, Kocher measured the amount of time

to perform private key operations to make a qualified guess on the Diffie-Hellman expo-

nents or RSA factors [40]. The Windows malware W32/MyDoom uses a code execution

timing attack to determine if it is executed in a sandbox (cf. Section 2.3.2) or not [85].

An instance of a side-channel attack, targeted at a dynamic taint tracking system for

Android, is given in Section 2.3.4.

In regards of taint tracking the difficulties emerge, that side-channels are easily over-

looked during definition of taint sources. Moreover, the known countermeasure of heavy

tainting would lead to over-tainting. Due to this, side-channel attacks seem to be the

hardest weakness to challenge. Publications on the limitations of dynamic taint tracking

or information flow control tend to keep it out of scope [13, 30, 54].

In addition to the previously discussed components, the process of identifying and tag-

ging sinks reveals design weaknesses too. As explained beforehand, attackers do not

necessarily read data from a tagged source, the same holds true for writing data to

sinks. It is infeasible to identify all potential sinks within a complex system in practice.

Thus, we are showing in Chapter 4 a successful sensitive information leakage attack on

TaintDroid.

As stated in Section 1.3 the improvement of dynamic taint tracking systems by leveraging

static facilities to overcome the outlined shortcomings is beyond the scope of this Thesis.

Nevertheless, it is crucial to understand the limitations of the solution implemented in

TaintDroid respectively DroidBox. Solely in this way, one is able to understand evasion

techniques of malware samples under analysis.
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2.3.4 TaintDroid

In 2010 Enck et al. presented TaintDroid, a system-wide real time dynamic taint tracking

system to detect privacy leaks on Android [20]. It extends the Dalvik virtual machine

to track the flow of information from a tainted source through third-party applications.

TaintDroid’s design was inspired by the previously introduced publications [28, 32, 33,

100]. Thus, different challenges had to be addressed due to the limited resources of

mobile platforms and the requirement of real-time monitoring.

The Dalvik VM is instrumented to integrate different granularities of taint propagation

as described in TaintDroid: An Information-Flow Tracking System for Realtime Privacy

Monitoring on Smartphones [20] and visualized in Figure 2.4.

• Variable-level tracking is realized in the VM interpreter and taints variables in

application code.

• TaintDroid uses message-level tracking to reduce performance and storage over-

head since it tracks IPC messages, not single variables. As stated in Section 2.1 all

IPC occurs through binder. Hence, it is implemented directly within the binder

component.

• Method-level tracking is implemented to taint data, even when it is distributed

through native methods. Potential return values are tagged after at least one pa-

rameter was tainted. The native library loader is modified so that it exclusively

loads trusted system libraries and prohibits application’s private third-party li-

braries.

• The file-level tracking assures that information is correctly tainted even after a

persistence cycle. It includes database files.

Figure 2.4: Multi-level approach of TaintDroid [20].
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Figure 2.5 illustrates the TaintDroid architecture within Android. After information is

retrieved from a taint source (1) a native method is invoked through the taint interface

within the Dalvik VM interpreter. It stores the taint in the virtual taint map (2). The

taint tags are propagated according to the data flow (3). When tainted information

is used in an IPC transaction, the modified binder ensures (4) the correctness of taint

markings in the data transfer object (parcel). The parcel is transfered to the remote

binder via the system kernel (5). While it is unpacked, the remote binder assigns the

taint tag to all information read from it (6). The remote VM handles the taint marks

just as within the trusted application (7). In case tainted information is about to be

released through a sink (8,9) the event is reported and an alert is raised.

Figure 2.5: The architecture of TaintDroid [20].

The authors of TaintDroid categorized all taint sources they have identified as follows

(cf. Table 2.3):

• Low-bandwidth sensors provide information which change frequently and are used

by several applications at the same time. Hence, the OS provides multiplexed

access through a manager interface.

• On the contrary, the high-bandwidth sensors supply single applications with a large

amount of data. Data is shared through data buffers or files, thus TaintDroid places

hooks for both, to track microphone and camera data.

• Larger amounts of data are stored in databases and made accessible to apps by

manager interfaces. By adding tags to database files all data read from will be

tainted by design. SMS messages and contacts are tagged in this manner.
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Taint Source Sensor Type Implementation

Location sensor Low-bandwidth LocationManager

Accelerometer Low-bandwidth SensorManager

Microphone High-bandwidth Hooked API

Camera High-bandwidth Hooked API

Address book Database Database file

Phone number Device identifiers Hooked API

IMEI Device identifiers Hooked API

IMSI Device identifiers Hooked API

Table 2.3: Overview of TaintDroid sources.

• There is a variety of reasons modern communication devices need to be identified

uniquely. Since the information is privacy sensitive it needs to be encountered as

taint sources, too. It is accessed through a well defined API on Android, which is

instrumented as taint source.

Considering the fact that TaintDroid tracks information within the VM, the sink has

to be placed within interpreted code. It was placed directly in the Java framework

libraries, where the native socket library is called to provide a network connection.

Within TaintDroid, it is the only defined sink.

TaintDroid shares the limitations illustrated in Section 2.3.3. In the following we provide

an example to any explained weakness vector.

As already explained above, taint tracking systems can be circumvented by utilizing im-

plicit flows. In Listing 2.5 we demonstrate how to leak information (International Mobile

Equipment Identity (IMEI)2) obtained from a tainted source (getDeviceId()) [72]. Since

the single digits of IMEI are not explicit assigned to result, it is not tainted and can

be sent via a socket to a server of choice.

String IMEI = getDeviceId ();

String result;

for( int i = 0; i < IMEI.length (); i++){

switch (Integer.valueOf(IMEI.substring(i, i+1))) {

case 0:

result = result + "0";

break;

[...]

case 9:

result = result + "9";

break;

}

2 The IMEI is an unique identifier for each mobile phone world wide.
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}

sendOverSocket(result );

Listing 2.5: Exploitation of implicit flow in TaintDroid.

An instance of a side-channel attack is presented in Listing 2.6. It leverages the circum-

stance that reading the system clock is not classified as a sensitive operation. Through

this channel information can be transfered in an indirect way. For each digit of the

sensitive information (IMEI) the int value is taken and the current thread is paused

for this amount of time. A time stamp is saved prior and after the process is paused.

By subtracting the startT ime from the endT ime we get result[i] where the value of

IMEI[i] equals result[i].

String IMEI = getDeviceId ();

String result;

for( int i = 0; i < IMEI.length (); i++){

long startTime = getTime ();

this.sleep(Integer.valueOf(IMEI.substring(i, i+1))*10);

long endTime = getTime ();

result = result + ((int) endTime - startTime );

}

sendOverSocket(result );

Listing 2.6: Side-channel attack on TaintDroid.

In additional we found a communication channel which has not been defined as sink by

TaintDroid. It confirms the conclusion in Section 2.3.3 that identifying all taint sources

and sinks is an error-prone task. If any tainted data is send as Uniform Resource Locator

(URL) parameter through an intent triggered by an adversary, the information leakage

is not detected (cf. Listing 2.7).

String IMEI = getDeviceId ();

Intent browserIntent = new Intent(Intent.ACTION_VIEW ,

Uri.parse("http :// www.do.not.hit.sink.de/" + "imei" + id));

startActivity(browserIntent );

Listing 2.7: Information leakage through a browser intent.

Sarwar et al. [72], presented practical attacks on TaintDroid. However, the TaintDroid

authors clarify in their primarily publication [20] that first of all TaintDroid can be

circumvented through leaks via implicit flows indeed. Second, the system does not

detect side-channel attacks in any manner. Truly malicious applications can bypass
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the taint tracking system and exfiltrate information. Thus, Sarwar et al. keep the

question of effective countermeasures unanswered. In contrast, Graa et al. came up

with a promising approach, unfortunately it has not been implemented to date. To

track implicit flows at runtime they want to add a static analysis module to the Dalvik

VM bytecode verifier, which checks instructions at loadtime and considers the gained

insight during execution [30].

2.3.5 DroidBox

DroidBox is an Android sandbox developed by Lantz from Lund University in the con-

text of Google Summer of Code 2011 [16] in collaboration with Honeynet [35] and for

his master’s Thesis [42]. Because of the constraint that TaintDroid does not come with

a set of scripts or other framework features to perform an automated analysis of poten-

tial malware samples, DroidBox complements TaintDroid with its analysis framework.

Hence, its operation principle and the overall concept of taint tracking is characterized

in the previous section. Furthermore it modifies the OS core libraries with the aim to

log relevant events during the dynamic analysis. Such events are:

• File read and write operations.

• Dump content of file operations.

• Incoming and outgoing network data.

• Cryptography API operations.

• Sensitive information leaked through the following sinks: Network, file, and SMS.

• Sent SMS and phone calls.

• Started services and loaded classes through DexClassLoader.

• Circumvented permissions.

• Hashes for the analyzed package.

In order to support a human analyst in understanding and assessing a malware sample,

DroidBox comes with two behavior visualization techniques proposed in Visual Analysis

of Malware Behavior Using Treemaps and Thread Graphs [90]. A treemap (cf. Figure

2.6) represents a structured tree graph as a nested rectangle map. In analogy to a
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tree a branch is represented by a section. Sections are divided into smaller rectangles to

denote subbranches or nodes. The API calls performed by the applications are associated

with sections as network communication, file interaction, or cryptographic operations.

The width of any rectangle is proportional to the percentage of a section’s operation

occurrence. The higher a section rises, the higher is the operations frequency.

Figure 2.6: Sample treemap illustration.

As Figure 2.7 shows, behavior graphs visualize the sequence of performed actions (y-

axis) distributed over time (x-axis). Since one sample can easily perform thousands of

operations during its analysis, a threshold is required to be reached for a single operation

in order to include it into the graph.

The DroidBox system is, besides AASandbox [9], the first publicly available open source

dynamic analysis framework for Android. On that account it has been used as base

for other platforms including TraceDroid [92], SandDroid [10], Mobile-Sandbox [79, 81],

and Andrubis [93].
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Figure 2.7: Sample behavior visualization.

2.4 Summary

This chapter discussed the foundations relevant for the remainder of this Thesis. Initial,

the architecture of the Android OS is recapped. Thereafter insights of mobile malware

for the Android ecosystem are discussed. In order to analyze such malicious software

the proceeding of static and dynamic analysis is given. Finally, internals of a concrete

Android sandbox implementation DroidBox is outlined. Moreover, assets and shortcom-

ings are explained in detail. We ensured that the reader is equipped with all required

context information to follow the remainder of this Thesis.
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Porting DroidBox

After the introduction sketched the Thesis’s background and the previous chapter out-

lined the foundations, the reader should be familiar with the concept of dynamic malware

analysis for Android and understand the necessity to advance it.

This part of the Thesis focuses on porting DroidBox to a more recent version of Android.

Section 3.1 gives an overview of the initial situation of the existing Android sandbox

environments and its versions. The subsequent paragraph covers details on the proof of

correctness for DroidBox 4.1. In Section 3.3 the actual porting of DroidBox to Android

version 4.4 is reasoned. Finally, we summarize the still present shortcomings and discuss

the lessons learned.

3.1 Related Work and Initial Situation

As already concluded in the introduction, there is a strong demand for a dynamic anal-

ysis environment which runs up-to-date applications. At the time the current version of

Android is 4.4 alias KitKat, released in October 2013. When the work for this Thesis

began, DroidBox was available in version 2.3 and TaintDroid in version 4.1. The version

numbers of both environments correspond to the Android version they are based on. An

overview of relevant Android versions along with more precise API version codes can be

found in Table 2.2.

On the one hand, DroidBox 2.3 can be considered as comprehensive and one of the

only publicly available environments, but on the other hand, it is fairly outdated and

not capable of analyzing applications deployed for recent versions of the Android OS.

Since it bases on TaintDroid which is existent in version 4.1, the porting comes in as an

32



Chapter 3. Porting DroidBox 33

obvious option to overcome the sketched limitations. Unfortunately, this issue was not

only asserted by us. In October 2013, the source code for DroidBox 4.1 was published

by hispasec1 employees. We decided to take advantage of the synergy effect by using

it as a basis for further modifications. Therefore, proving the correctness of their work

(cf. Section 3.2) is mandatory. A supplementary goal is to contribute with an answer

to the question whether it is feasible to automate and generalize the porting process or

not. On that account, DroidBox 4.1 is ported to 4.4 additionally, in case the correctness

can be evaluated successfully. As far as we are concerned it is even the more challenging

part, because all transformations primarily conducted by TaintDroid are also subject of

such a port. However, Section 3.3 elaborates the porting by exemplifying meaningful

code samples.

As outlined in Section 2.3.5, the dynamic analysis sandbox DroidBox leverages the An-

droid emulator. Hence, the original Android source code needs to be obtained, modified,

and built in order to run either TaintDroid or DroidBox within the emulator.

Porting security extensions of an OS are rather a practical task than of interest for

the research community. Thus, a limited body of research is accessible. However, the

feasibility of automation is a similar problem as the one Android smartphone vendors are

facing. With any new release their customized OS extensions are subject to a comparable

question: How to adapt changes to the new Android version as efficient as possible in

order to provide an update for customers. A recent review of the situation suggests that

no satisfactory solution was found yet [43]. Another Master’s Thesis, examining the

porting of a DroidBox version leaves it unanswered [12].

Enck et al. presented their work on TaintDroid in ”TaintDroid: An Information-Flow

Tracking System for Realtime Privacy Monitoring on Smartphones.” [20]. Its essence is

previously covered by the Subsections 2.3.3 and 2.3.4.

3.2 Correctness of DroidBox 4.1

Android 4.1 alias Jelly Bean has been released in June 2012. Just six month later a

new version of TaintDroid was announced. It finally got integrated into DroidBox in

October 2013. As aforementioned, the port was performed by employees of hispasec and

the source code patch files are provided online2.

In order to run DroidBox 4.1, a custom build is required. First, the original Android

1 hispasec is a Spanish IT security and security information provider (www.hispasec.com/).
2 DroidBox download at Google Code (code.google.com/p/droidbox/downloads/list).

www.hispasec.com/
code.google.com/p/droidbox/downloads/list
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code needs to be obtained. Google maintains a tool called repo3 which is based on the

distributed revision control system git4 to manage all Android source code repositories

and deliver it to the developers.

Second, the patches must be applied to the downloaded Android code. After setting

up the build environment the build process can be initiated. A detailed step-by-step

instruction manual is given in Appendix A. Since such a build process is not trivial and

some prerequisites are obligated to meet, we uploaded a ready-to-use emulator image

file to the publicly available DroidBox Google Code repository.

To ensure an accurate analysis outcome it is crucial to evaluate the new version prior

to its integration into an existing sandbox framework. By proving the correctness we

mean that malicious actions performed only appear in the analysis result, if and only if

the related action was indeed performed by the analyzed app. Furthermore, we expect

the implemented extensions not to influence the stability of the OS in any manner.

We assume the correctness of DroidBox 2.3 as well as Android 4.1. DroidBox 2.3 has

been deployed in several sandboxes all over the security community so that potential

misbehavior would have been identified and eliminated meanwhile. The same holds true

for the Android OS, but even on a larger scale since the number of users and developers

is significantly higher. Our test methodology consists of three independent approaches

with which we seek to assure the correctness of DroidBox 4.1 as follows:

• The Android build environment holds a set of automated basic tests which are

executed by default right after the build terminates.

• In the context of this Thesis we developed a Python-based test environment that

runs an arbitrary collection of apps in DroidBox 2.3 and 4.1 consecutively. The

result would unfold potential anomalies.

• A manual inspection of a meaningful sample set yields the correctness of detected

suspicious actions which are monitored by DroidBox.

Automated smoke test5 are widely deployed in practice to identify critical bugs as soon

as the build process finishes. The build tests of Android verify that all crucial system

components work as expected. All components which are part of the application frame-

work and the application layer are tested with JUnit6 test cases. Since all tests are

3 Repo, an extension of git to manage multiple repositories at the same time (code.google.com/p/
git-repo/).

4 Git, an open source distributed revision control system (http://git-scm.com/).
5 Smoke test refers to tests of systems intended to determine readiness for more complex testing.
6 JUnit is a unit testing framework for Java (junit.org/).

code.google.com/p/git-repo/
code.google.com/p/git-repo/
http://git-scm.com/
junit.org/


Chapter 3. Porting DroidBox 35

executed by default after the build operation there is no need for customizing it. Droid-

Box 4.1 passed all test cases. Ergo, we are confident that it does not contain critical

bugs which endanger our automated analysis environment.

In order to compare the analysis results of a unique app, we developed an automated test

environment. First, it performs the analysis with DroidBox 2.3 followed by DroidBox

4.1. Each sample residing in a specified directory is installed into the emulator and

executed for 60 seconds. The result is stored into a database and written into a human

readable log file.

Both environments are identical except for the OS instance running within the emulator.

We adapted the sandbox control scripts of 4.1 to operate with the legacy version. The

scripts utilize the Android Debug Bridge (ADB)7 to install and run the app inward the

emulator. Besides, ADB serves as a communication channel between the emulator and

the host by transmitting log output in real time. Security violations and suspicious

activities are logged and stored within an eligible data structure. After expiration of

the execution time the emulator is shut down. Any change made to the emulator is

discarded by deleting the file containing user-data. For each sample a new instance of

the emulator is spawned to guarantee independent results. User input is generated by

the monkeyrunner8 tool.

To verify the correctness of DroidBox 4.1, we chose 20 samples randomly from a set of

confirmed malicious applications originating from Andrubis [93]. The results of the two

different environments can be easily compared manually because we designed the log file

representation exclusively for that purpose. As outcome we found that 18 of the 20 sam-

ples (90%) yield an identical result. However, the results of two samples diverged from

each other. Thus, we manually inspected both with the bottom line that we could not

observe any differences. Hence, we can just speculate about the reasons. Occasionally,

unreproducible ADB connection errors or invalid monkeyrunner inputs were observed in

the past.

Nevertheless, we state that the tests successfully evidenced the correct working of Droid-

Box 4.1 for the used test set since the minor deviations are irreproducible.

Finally, we seek to validate the correctness of monitored behavior. A set of malware

samples is selected and listed in Table 3.1. Each sample performs a distinct suspicious

operation about which we are aware of in advance. Hence, it is contrivable to evaluate

if the ported version of DroidBox correctly detects those actions.

7 The Android Debug Bridge is a tool to communicate with an emulator instance.
8 The monkeyrunner tool provides an API for controlling an Android device or emulator.
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Name Checked Feature SHA Hash

Simhosy A, B 73589c7a4044bd3ea9403f62c6afd54fe1bd90dc
Fakemart A, C b45d969a8fd1d3fb2a787cab8460b54088d89770
Lien D f04dff1859c9cf43260020b1e4dbbe979fe1bcc1
FakeAV.D E, F 616b37d70819d99e53c007ca00d4d599099a9cd6
Wooboo.A G d0e2799bacc9a59e91ec80bec81f1d24d856664b
MouaBad.P H 5ad4a348381bbfeafd71661e2ccda63c2ef960e7

Table 3.1: Malware used to evaluate DroidBox 4.1 (A = network operations, B =
started services, C = send SMS, D = registered broadcast receivers, E = file operations,

F = taint tracking, G = cryptography usage, H = phone calls).

The contemporary validation collection accommodates six instances of different malware

families. They emerged in the wild in 2013 and either innovated new features or they

are representative for a certain kind of malware. All pieces are confirmed malicious by

VirusTotal’s9 analysis results.

Fakemart (cf. Figure 3.1a), for instance, sends SMS messages to premium numbers

on the user’s expense. It poses as a third-party market but does not provide any of

its advertised services. At first the malware sample sends client information to a web

server and as soon as it receives the response premium SMS messages are sent. Likewise,

FakeAV.D tries to trick the user by pretending to offer an AV service as illustrated in

Figure 3.1b. In reality, user information and device identifiers are sent right after the

application is started.

The mobile malware Mouabad.P is noteworthy because it can initiate a call without

user intervention to premium numbers. Thus, it is the first instance with such capabili-

ties and acts stealthy. In order to perform phone calls it waits until the screen turns off

and ends them as soon as the user interacts with the smartphone again.

Analogous to the detection features of DroidBox (cf. Section 2.3.5), the verified opera-

tions are abridged in the following:

• File operations are tested by FakeAV.D. The malware comes with its own database

which is stored in the apps private data folder. The database file creation oper-

ation is recognized by DroidBox 2.3 and 4.1. App specific settings are stored in

preference Extensible Markup Language (XML) files in the private data folder.

Each modification is realized respectively and assumed to work correctly.

• Network transaction monitoring’s correctness is demonstrated by the malware sam-

ples Simhosy and Fakemart. Both send device specific information to a web

9 VirusTotal provides access to up to 48 anti virus (AV) solutions simultaneously (virustotal.com).

virustotal.com
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server. In both cases each version of DroidBox correctly recorded the transmitted

data. However, the destination Internet Protocol (IP) address differs. The mal-

ware uses URLs (e.g. mathissarox.myartsonline.com) which are mapped to a

range of IP addresses. Finally, we could yet show the accuracy.

• Cryptography API usage detection is inspected through the Wooboo.A malware

sample. It transmits encrypted data over the network. Both analysis results list

the identical key. Note that we did not attempt to decrypt the sent data with the

extracted key.

• Send SMS message detection is evaluated by Fakemart. As outlined above, Fake-

mart sends SMS messages to premium rate phone numbers. DroidBox 4.1 suc-

cessfully detected the same message body (AP) and destination number (81238)

as DroidBox 2.3.

• Outgoing phone calls are observed with MouaBad.P. The called premium num-

bers are correctly noticed by DroiBox 2.3 and DroidBox 4.1 likewise.

• Started system services are verified by Simhosy and Wooboo.A. The service

.DownLoadService is started by Simhosy and .CompatibilityServiceX by Woo-

boo.A. Both were detected on the new DroidBox version and can thereby be

considered as correct.

• Broadcast receiver monitoring’s verification is performed by instrumenting the

Lien sample. The correct detection of two registered broadcast receivers states

that this part of DroidBox 4.1 works as expected.

Consequently, we could not observe any relevant anomalies in any of the applied test

scenarios. The realized deviations could be explained doubtless. Hence, we consider the

ported DroidBox 4.1 as successfully evaluated.

3.3 Porting DroidBox to Android 4.4

Despite the fact that DroidBox 4.1 is fully functional, as demonstrated in the previous

section, a port to the latest Android version is a valuable contribution for the community.

Android 4.4 is a major release and offers new features for application developers as well

as end-users. Thus, it is expected to gain a relevant market share over time, as new

devices are sold and old ones updated by the manufactures.

mathissarox.myartsonline.com
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(a) Fakemart. (b) FakeAV.D.

Figure 3.1: Graphical user interfaces of two malware samples.

In the future, developed apps will target the new platform since the new features can

only be accessed by the updated API. The downside caused by this innovation process

is the lack of backward compatibility. New apps do not necessarily run on outdated

OS versions. Although malware authors aspire to target a preferably high number of

devices and commonly do not employ latest features, an up-to-date analysis environment

is desirable. DroidBox deployments which are disposable online through websites for end

users will be faced cutting-edge apps nevertheless. Users may want to verify if a new

application is truly benign.

Additionally ART, a new Android runtime environment has been introduced with the

update. It is designed to accelerate app execution performance and system stability. The

DalvikVM supports Just In Time (JIT) compiling. Each time an application is launched,

and therefore loaded into the DVM, its bytecode is compiled into the targets platform

machine code (e.g. ARM or x86). This procedure is inevitable because bytecode is

platform independently. In contrast, ART introduces the approach to compile apps

at the time of installation once and not at each launch again [68]. This modification is

suspected to reduce the start-up time noticeable and improve the preformance in general.

The machine code is saved as OAT file for future use. Google announced its plan to

replace the DalvikVM in an upcoming release by the ART [61]. Hence, TaintDroid



Chapter 3. Porting DroidBox 39

cannot be used as basis for DroidBox anymore. A new taint tracking system has to be

designed from scratch.

The port of DroidBox 4.1 to Android 4.4 is a more complex task than simply porting

TaintDroid to DroidBox. All extensions applied to Android by TaintDroid have to be

ported in addition. This is mainly the taint tracking system with all its taint sources,

propagation tracking, and the taint sinks. In order to estimate the workload, the relevant

modifications had to be identified. They are outlined for each version subsequently.

Android 4.2 [58]:

• Global systems settings were stored in Settings.System to date. Some are defined

as read-only now. Besides, device identifiers are moved to Settings.Global.

These changes have impact on taint sources for the device identifiers.

• Android introduced multiple user spaces, mostly for tablet devices. Therefore the

API to access the private user storage is modified. These changes affect the taint

sources for files.

Android 4.3 [59]:

• Two new rotation sensors allow access to raw data instead of preprocessed esti-

mated bias values. If the sensor’s data is considered as sensitive information new

taint sources must be defined.

• A new contacts provider interface demands adaption of the taint source for the

contacts.

• Android 4.3 offers a custom provider in the key store facility for app-private keys.

In order to encrypt communication or data of malware an interface to track the

usage might be of value.

Android 4.4 [60]:

• The previous SMS provider API allowed apps SMS messages. The updated provider

specifies an default SMS app and regulates the access more strict. This modifica-

tion impacts the SMS tracking capabilities of DroidBox.

• External storage access API was extended by an method to retrieve data from

shared storage. Adjustments for the taint tracking system are required to be

undertaken.
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• A step detector and a step counter sensor interface which supports built-in sensor

hardware. In order to keep track of queried information they have to be defined

as taint source.

Considering the list of changes we comprehend the Android modifications on a top level

layer. In the next step, the porting procedure on the source code file level is presented.

The assumption is that OS files which are not extended by DroidBox nor touched by

the Android update to version 4.4 can be ignored. On that account all files whether

extended by DroidBox or updated by 4.4 need to be identified. The applied changes of

DroidBox need to be merged in the corresponding Android 4.4 files. Also, files which

are altered by DroidBox and are not element of the Android source tree anymore are

subject to further investigation in order to appraise its impact.

In practice, a list of all source code files with their associated Secure Hash Algorithm

(SHA) hash is generated for all three source code repositories: Android 4.1, DroidBox

4.1, and Android 4.4. The SHA is a cryptographic hash function which maps data of

arbitrary length to a result sum of a fixed length. If only one bit of the input is altered

the resulting hash deviates significantly. Hence, the generated file lists with the hashes

are utilized to distinguish whether a file is changed between two different source code

repositories or not. At first, a change list for Android 4.1 and DroidBox 4.1 is created.

It enlists all files which were extended by DroidBox. At second, a list of changes between

4.1 and 4.4 is generated which indicates the updated files. Finally, the intersection set

of both lists contains all files which are relevant for DroidBox and were touched during

the update process. Moreover, all source code files which are not part of Android 4.4

anymore are included. This proceeding is depicted in Figure 3.2.

In total, the resulting list consists of 116 source code files, more specifically, 40 C/C++,

35 Java, 5 Assembler, and some Hyper Text Markup Language (HTML) files. The

changed lines of code within a file vary from one line of code to almost the entire file. In

some cases the file does not exist in the newer Android version anymore. For a better

understanding of the port, modifications are exemplified in Subsection 3.3.1.

We developed a toolchain to automate the process of creating the list of files which

need to be examined manually due to changes of the OS. A shell script (genhashlists.sh)

first generates all hashes for all files of each repository. These lists are compared by

another shell script (gendiffs.sh) to identify all deviating files. Therefore, we utilize

the Unix program diff10. Its output is cleaned by the Python program clean diff.py to

filter the relevant entries. As a result, a list containing all paths and files mandatory

10 diff is an Unix program for text file comparison that outputs the differences between two files.
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for the porting process is generated. All scripts and programs can be found on the

accompanying DVD (cf. Appendix D).

Figure 3.2: Illustration of the DroidBox porting procedure.

After the port is completed the adjustments are provided as git patch files. Thence we

instrumented the repo tool once again. The resulting patches can be applied together

with the DroidBox 4.1 patches on top of an untouched Android 4.4 repository.

Eventually, we drafted the procedure of identifying the modifications required for a port.

The general system changes which influence DroidBox on the one hand, as well as the file

level modifications on the other hand. After conducting the adjustments we described

how patch files are extracted and applied to the clean Android 4.4 repository. The last

open issue about how the porting is performed is addressed in the following subsection.

Additionally, we discuss the feasibility of automating the entire porting process.
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3.3.1 Modifications

Within this paragraph we seek to utter insight into the actually course of porting. Thus,

some meaningful practical examples are presented.

Generally, the TaintDroid authors employed a clean coding style for their OS extension.

The Android build system supports a build specification file buildspec.mk which defines

build parameters and properties. It allows to include or exclude the taint tracking sys-

tem from the compile process depending on the value of the flag WITH TAINT TRACKING.

Within the C/C++ source code files all TaintDroid related modifications are enclosed

with the preprocessor directive #ifdef to deploy conditional compilation as depicted in

Listing 3.1.

#ifdef WITH_TAINT_TRACKING

The modified or extended portion of C/C++ taint tracking code goes here.

#endif

Listing 3.1: A preprocessor directive to enable/disable taint tracking at compile time.

In addition, every single modification in Java is enclosed in comments as exemplified in

Listing 3.2. In contrast to the C/C++ preprocessor directives this does not yield in a

conditional compilation. It allows to gain a prompt overview of changes within a source

code file by a text editor search. Deplorably, DroidBox modifications are not clearly

indicated.

// begin WITH_TAINT_TRACKING

The modified or extended portion of Java taint tracking code goes here.

// end WITH_TAINT_TRACKING

Listing 3.2: Enclosed comment for TaintDroid modifications.

The general approach is to work through the list from top to bottom and inspect each

file manually. Ergo, each file is compared with a suitable graphical text editor which

displays the Android 4.4 and DroidBox 4.1 file version at a glance. The TaintDroid

modifications are easily identifiable due to the comment notation. The differences and

the necessary steps are straight forward for an expert with programming experience in

most cases. Nevertheless, it is a decision on a by-case basis and a universal course of

action cannot be given in an useful manner. For that reason, some concrete examples

are itemized afterwards.
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The library core file MemoryBlock.java11 for managing memory blocks is modified by

DroidBox as well as Android 4.4. The data type MemoryBlock offers methods to store

different variables of common data types within a memory block at a defined offset.

The taint tracking system is compelled to keep track of such variables. Android 4.4 is

adapted to support 64 bit memory addresses. On that account, the word width of the

address variable is extended from integer to long. The modifications are in the same file

and method but not in the same line.

The Portable Operating System Interface (POSIX) standard has been introduced by the

Institute of Electrical and Electronics Engineers (IEEE) for maintaining interoperability

between OSs. Android provides a POSIX API with Posix.java12. Between Android 4.1

and 4.4 it was extended. Due to its data exchange methods a lot of taint tracking

related functionality is accommodated. Android 4.4 introduces a new exception: The

SocketException is a reason why several method signatures are altered and therefore

DroidBox and Android changes affect the same lines of code.

In accordance with the postulated changes in the SMS messaging system the default

SMS managing instance SmsManager.java13 was removed. For continuous tracking of

incoming and outgoing SMS the modified API is extended.

There are also source code files which merely contain very few lines of DroidBox specific

code. If such a file is altered by an OS update the porting effort is marginal. The

DVM C/C++ header file for interpreter definitions InterpDefs.h14 was extended with

4.4 slightly. Since the DroidBox code is in another method and line the required adaption

are rather obvious.

Another kind of alteration is the rearrangement of source code subtrees. The binder.c

was moved from ”./frameworks/base/cmds/servicemanager/” to ”./frameworks/native

/cmds/servicemanager”. Source code related modifications are not needed.

As already outlined there is a variety of factors for OS source code modifications. At

first, new features for developers and end-users breed new software components. De-

pending on the relevance for malicious appliance the developed code demands extension

for the sandbox. This is achieved by reviewing the Android change logs.

Moreover, frequent changes to improve features, the internal structure of the OS, or fix

bugs are constantly undertaken. Hence, it comes to unpredictable modifications which

have to been taken in consideration for a port of DroidBox. It is crucial to identify all OS

files which are adapted by the Android update and DroidBox likewise. The generated

11 Android repository path: ./libcore/luni/src/main/java/java/nio/MemoryBlock.java
12 Android repository path: ./libcore/luni/src/main/java/libcore/io/Posix.java
13 Android repository path: ./frameworks/base/telephony/java/android/telephony/SmsManager.java
14 Android repository path: ./dalvik/vm/interp/InterpDefs.h
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list is processed file by file and the differences are compared manually. As demonstrated

above, the adjustments regarding the source code are a decision on a by-case basis that

requires a developer aware of the environment. Furthermore, in rare cases OS com-

ponents are removed and a replacement is added within an other component, which

necessitates context awareness as well.

Terminally, the question of automating the port process remains. As we have shown,

it is practicable to generate a list of files which need to be examined automatically.

This inevitable procedure facilitates the work already significant. Certainly, the other

essential part requires at least some manual work depending on the category of modi-

fication. Assuming the DroidBox related code is clearly labeled and the affected lines

are not subject to the Android update it might be practicable to merge both code files

automatically. Nevertheless, it is still expedient to verify the result by a human expert.

An expanded API might require further changes concerning the sandbox which are too

complex to be practically implemented in an reasonable way. Structural environment

adjustments are hard to detect and transform automated. An adequate example is the

64-bit architecture extension. It is not challenging for a human programmer to recog-

nize the change of a data type even if it is within the scope of a DroidBox enhancement.

Thus, this cannot be mapped by software and is beyond practical utility.

Ultimately, porting DroidBox to the latest Android version can only be semi-automated

because of introduced or modified components which require context awareness. This

complexity cannot be represented with justifiable effort in a practically applicable model.

3.3.2 Shortcomings

Despite the general limitations of dynamic taint analysis detailed in Section 2.3.3, further

drawbacks are identified within the current implementation.

As mentioned in Section 2.3.4, browser intents can be instrumented to bypass the socket

taint sink and leak information to an arbitrary server. This holds true for the port of

DroidBox to Android 4.4 comparably.

On grounds of the SMS message handling component modifications the DroidBox 4.4

lacks a fully functional implementation. The standard SMS application is able to handle

messages indeed, though the new design which allows several event receivers is not

supported yet.

Another internal adaption affects the DVM string processing. Since the string data type

is widely used within the OS itself and other applications, errors have a particularly
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negative impact. Without the application of these changes the unrestrained operation

is questionable yet.

As initially depicted, Android 4.4 introduced a new runtime environment. The taint

tracking system is not compatible with the ART. For the moment this fact is neglectable

since the OS decides which runtime is used. As soon as ART is the default environment

this will be a considerably drawback for upcoming releases.

After all, a meaningful test to proof the correctness of the ported DroidBox following

the procedure of Section 3.2 is still pending. Hence, DroidBox 4.4 cannot be considered

fully functional yet.

3.4 Summary

This chapter intensively dealt with aspects of porting DroidBox to a more recent version

of Android. As we could demonstrate there is a strong demand for a dynamic analysis

environment in order to examine up-to-date Android applications and malware.

We tuned in to two independent approaches. The already available version of DroidBox

4.1 was proved to be correct by three independent test scenarios. First, the Android

build tests as smoke test. At second, we verified the correctness with an automated

analysis framework. Finally, malware with known malicious behavior was utilized to

investigate defined functionality of DroidBox. All tests results are positive, thus we

consider the DroidBox 4.1 as fully functional.

Furthermore, we sought to port the successfully verified version of DroidBox 4.1 to the

latest version of Android 4.4. This can be considered as a even more complex task than

porting TaintDroid 4.1 to DroidBox 4.1 which originally was planned (cf. Section 1.2).

The thereby developed toolchain semi-automates the process of identifying the relevant

files for a further manual investigation. However, we conclude that a fully automated

environment for porting DroidBox to further Android versions cannot be applied with

reasonable effort. Anyhow, insight in the manual process is given. A final review to

assure the correctness is still pending. The created git patch files are provided at the

accompanying DVD.

Consecutively, we utilized DroidBox 4.1 as basis for further modifications. In the next

chapter an overview of emulator detection strategies and implemented countermeasures

is given.



Chapter 4
Android Sandbox Detection

As outlined in Chapter 1, the Internet has turned into an economic factor which also

appeals to miscreants. Thus, the total number of malware increases notably, for PCs

and since a decade for mobile devices likewise.

Chapter 2 clarifies the need for dynamic analysis environments, imposes the sandbox

concept, and explains the foundations of DroidBox. When unknown malware appears

in the wild, researches as well as security vendors, attempt to analyze its properties. At

the one hand, in order to devise detection capabilities and at the other hand, to estimate

its impact.

Static code analysis is one facility to examine malware without actually running it. The

major challenge is a growing number of malware that employs obfuscation techniques.

Thereby, they aim to disguise the malicious portions of source code from the analysts.

Dynamic analysis is able to overcome code obfuscation by executing it within an isolated

environment. Sandboxes originally targeted x86 applications [5, 99], but with the rise

of smartphones mobile sandboxes have been introduced.

The primal concept of sandboxing is to execute untrusted or malignant code within a

controlled, safe, and realistic environment. Sandboxes generally utilize virtualized and

emulated environments such as VMware [94], VirtualBox [64], or QEMU [7]. As defined

by Popek and Goldberg [67], ”A virtual environment is taken to be an efficient, isolated

duplicate of the real machine”. Commonly, it is distinguished between two types of

virtual environments. Virtual Machine Monitor (VMM) refers to an environment which

is identical to the host machine’s architecture for any executed application. A significant

number of instructions is executed on the real underlaying hardware without interception

of the VMM. The only exceptions are differences caused by timing dependencies and the

46
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availability of system resources. However, the VMM is in total control of all provided

resources at any time. In contrast, emulators simulate the hardware behavior completely

in software and do not run code directly on the host. Machine instructions are handled

by the emulated environment and translated into the corresponding instruction set suited

for the real hardware. This allows an emulation of systems with an architecture different

than the host’s. A notable drawback is the performance penalty due to the fact that

each instruction has to be interpreted at runtime. Nevertheless, the general belief is

that system emulators are superior to VMs for the purpose of dynamic malware analysis

[69]. A general advantage of virtual environments is that they are tightly controlled.

The analyst can pause, revert, or restart the system at any point of time. It prevents

from time-consuming reinstalls for each investigation. Yet, another benefit results from

the isolation: Malware can only affect the virtual instead of the real underlying system.

The Android emulator is leveraged as sandbox for dynamic malware analysis. It uses

the open source QEMU solution which supports full system emulation for the ARM

architecture. For web-based analysis environments it is embedded into a framework

which enables an automated injection of suspicious apps into the system via a web

front-end. Several of such web-based analysis services have been deployed within the

last years. In particular, TraceDroid [92], SandDroid [10], Mobile-Sandbox [79, 81], and

Andrubis [93]. As basis for all these environments serves DroidBox (cf. Section 2.3.5)

with its underlaying QEMU.

The sample under analysis is supposed to behave exactly as it would onto a real device.

Therefore, it is desirable to grant no opportunity for malicious code to detect the pres-

ence of a virtual environment. Unfortunately, malware can indeed determine that it is

running within a sandbox. In order to thwart the examination and cover its vicious in-

tention from the analyst, it simply adapts the own behavior to be considered as benign.

Even though this behavior is not commonly observable at the moment, we suspect a

profound mutation in the future as seen on the Windows platform [18].

However, before going into details, related work in the field of sandbox detection is elab-

orated in Section 4.1. In the following paragraph (cf. Section 4.2), we identify a wide

range of methods to reveal sandboxes for Android and organize them according to our

developed taxonomy. Therefore, we consider different system layers and leverage mobile

environment specific characteristics.

Thereafter, we present countermeasures to mitigate evasion on Android in Section 4.3.
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To this end, we supplement DroidBox with extensions to become undetectable by mali-

cious code. The preceding chapter introduced and verified DroidBox 4.1 as fully func-

tional and serves as basis for our implementations.

Finally, we recapitulate the found sandbox detection methods and the implemented

preventive OS adjustments in Section 4.4.

4.1 Related Work

This monograph reviews the current state of research in the field of sandbox detection.

Foremost, publications on general VM and emulator detection are briefly discussed,

followed by Android sandbox related work.

Upon the rise of VM technologies in various areas of computer science it was also consid-

ered for secure computing soon. Robin and Irvine [70], evaluate the security of virtual-

ization techniques and identify methods to detect the presence of a virtual environment.

After VMs became common for dynamic malware analysis Ferrie [26], a Symantec Re-

searcher, observes the permanent growth of malware samples that are intentionally sen-

sitive to their presence. Consequently, he presents a multiplicity of detection techniques

for all major x86 products, including QEMU. The bottom line of his conclusion is that

software virtual machine emulators can be implemented, at least in theory, to reach the

point where VM detection is unreliable.

Raffetseder et al. [69] seek to verify if the general assumption that system emulators

are more difficult to detect than VMs is justified. They state, as Ferrie, that it is in fact

feasible to adapt system emulators to mitigate specific detection methods.

The first taxonomy of evasion techniques for the x86 environment is presented by Chen

et al. [15]. Detection methods are clustered by layers of the computer systems with

varying levels of difficulty to be performed and the reliability of the outcome. However,

the question for improvements to mitigate detection remains unanswered.

One of the first publications addressing detection approaches for Android simply re-

trieves hardware identification strings which deviate from those of real devices [84].

Along the release of the DroidBox system, the accompanying publication sketches the

issue and unveils that the emulator’s phone number, among other identifiers, remains

equal for each deployment [42].

More sophisticated and general attempts for sandbox detection rely on QEMU’s architec-

ture in general. Matenaar and Schulz [48], developed timing measurement of scheduling

behavior leveraging the binary translation between real devices and QEMU. In almost
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the same manner Schulz [73] observers low-level caching behavior to determine the exe-

cution environment to be virtual or not.

In 2012, Google released Bouncer in order to protect the Play Store from malware by

performing automated dynamic analysis before distributing new apps [44]. Short after

the release, Oberheide and Miller [56], as well as Percoco and Schulte [65], demonstrated

how to circumvent sandbox analysis techniques of Google’s Play Store.

In the following two sections, novel Android sandbox detection strategies as well as

detection countermeasures are introduced. Moreover, already undertaken research will

be considered for developing a comprehensive taxonomy.

4.2 Sandbox Detection Approaches

Within the consecutive section we provide an overview of different mechanisms for An-

droid applications to determine the presence of a sandbox. A variety of approaches have

been published and are recapitulated in the previous paragraph. However, all existing

detection approaches have one in common: The assumption that there are always prop-

erties which distinguish sandboxes from real devices.

While a great deal of attention has been given to detect virtualized or emulated environ-

ments, almost no research focuses on general system environment related characteristics

or user-data. In accordance with Locard’s principle, Kirk [39] expressed that ”Physical

evidence cannot be wrong, it cannot perjure itself, it cannot be wholly absent. Only hu-

man failure to find it, study and understand it, can diminish its value.”. Consequently,

we argue that in any analysis system component meaningful evidence can be found,

especially in the context of mobile devices.

Smartphones, as opposed to ordinary computer systems, come with unique features,

which permit a more detailed context awareness. Due to the peculiarities of small

portable computational devices they are continuously in motion. This is constantly

encompassed by a multiplicity of sensory microchips such as acceleration, device orien-

tation, or step counter sensors. Additionally, devices are aware of the current absolute

global position. Smartphones are connected to at least one communication interface

most of the time. Generally speaking, the device is aware of the current state of each

communication interface and receives updates on changes frequently. Many context in-

formation accrue as a result of the numerous user interactions. Not only state changes

such as unlocking the screen, touch and scroll events, or modified audibility, also gener-

ated user-data in applications or arbitrary preferences.
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We stress that the absence or deviation of the described features which allow context

awareness can be exploited to detect Android sandboxes. As concrete sandbox imple-

mentation we utilize the DroidBox version verified in Section 3.2. Our approach com-

pares a range of DroidBox properties to real devices with the aim to identify differences.

In order to obtain meaningful results two Android phones are chosen: A Nexus S and

a Nexus 5 which both run Vanilla Android1. Hence, the Android version of DroidBox

and the devices are identical, except of the sandbox extensions. Furthermore, both de-

vices have been effectively in use on a daily basis to assure realistic reference data. The

detection vectors found will be discussed in the next subsections successively.

Since none of the related publications groups or generalizes their findings so that it would

match our complete system contemplation, we present a taxonomy suitable for mobile

OSs. In our taxonomy, we classify the techniques by the system abstraction at which

they target to detect the sandbox as follows: Emulator Related Detection, Environment

Related Detection, and User Input Related Detection. A more detailed definition for each

group is provided within the corresponding paragraph.

4.2.1 Emulator Related Detection

According to the definition of an emulator, any piece of code, whether executed in the

emulator or on a real device, should lead to the same results. Yet, even the intermediate

results are expected to be identical. If any difference is observable the presence of a

sandbox is assumed. Hence, this group is called Emulator Related Detection. Initially

we list some general examples [15, 69], followed by two Android specific techniques

[48, 73].

A side-effect of modern microchip’s complexity is the containment of errors. Needless

to say that bugs are not transfered into the implementations of emulators. Thus, they

can be used to discover the emulated environment. Furthermore, real devices have

machine-dependent registers for meta states. Those are not commonly implemented for

emulators either. One of the general drawbacks of emulators is its performance. The

absolute execution time is significantly higher than on comparable hardware. Hence, it

can also be facilitated to recognize system emulation, although it has to be stated that

it is an unreliable method.

Another possible way to distinguish between an emulator and a real smartphone is to

retrieve and compare hardware specific values. Emulated hardware components such

1 Vanilla Android is the default android OS without any device manufacturer or provider related
modifications.
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as microchips, controllers, or graphic cards, as well as real hardware, contains such

identifier strings. Notwithstanding the fact that these identifiers are emulator related,

we discuss them in the next section because the accessibility is guaranteed by high level

OS APIs.

Matenaar and Schulz [48] introduced a technique to detect if an application is executed

in a QEMU ARM emulator on the x86 host system. Therefore they take advantage of the

binary translation optimization of QEMU. During execution, sequences of instructions

without jumps or branches are translated into x86 instruction blocks. While executed on

the underlaying real hardware, there is no possibility for the simulated QEMU Central

Processing Unit (CPU) to interrupt such a block. For that reason, emulated processor

interrupts can only occur in between atomic blocks and as a consequence some registers

such as the program counter are not restored correctly. In order to demonstrate the

practicality Matenaar and Schulz implemented a proof of concept2.

Another method presented by Schulz [73], bases on unequal caching concepts. The ARM

architecture is designed with a dedicated data and instruction Level-1 (L1) cache which

is not synchronized. If a value at a certain address in one cache is updated it is not

necessarily updated within the other simultaneously. In contrast, the x86 architecture

has only one L1 cache for both. The QEMU emulator does not consider this kind

of caching peculiarity. It is exploited by executing a specific instruction. Hence, it

forces the CPU to cache it. Next, data at the given address is modified. If the same

instruction is re-executed on a real device it yields to the same result as before, whereat

the emulator provides a result corresponding to the altered data. Note that it is a

probabilistic approach, thus it does not work invariably.

For countering Emulation Related Detection we present conversions in Section 4.3. In

the following, detection strategies which focus on the environment layer are given.

4.2.2 Environment Related Detection

Environment Related Detection denotes the exposure of OS characteristics or associated

properties, which can be exploited to identify sandboxes.

This taxonomy group is particularly important due to the already outlined higher con-

text awareness of mobile devices. Concrete techniques for the Android platform are

2 Proof of concept for binary translation detection on ARM www.dexlabs.org/files/detect_bt_

arm.c.

www.dexlabs.org/files/detect_bt_arm.c
www.dexlabs.org/files/detect_bt_arm.c
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discussed consecutively. Note that we do not list all found prospects for identification,

but rather select a representative for each class. For a full list please refer to Appendix

B.

To obtain the information which possibly indicate the presence of a sandbox environ-

ment, we developed an Android application as part of this Thesis. It queries the data

from two Samsung Nexus devices and additionally from the DroidBox version 4.1. The

values and properties of DroidBox are compared to the smartphone data. All significant

deviations are further investigated to be consistent and resilient.

As aforesaid, real hardware contains device specific identifier strings. Moreover, Android

provides an entire class which serves as interface to fetch those static values. Such values

include hardware strings for cards and boards, manufacturer’s names, and numeric ver-

sion identifiers. Additionally, values which are utilized to identify the build environment

like the build time, the version, and tags can be viewed. An overview of representative

identifier strings is given in Table 4.1.

In case of non-existent device identifiers the emulation software returns null values.

The OS API handles this situation by translating them into predefined strings such

as unknown or generic. The build constants are automatically gathered by the build

environment.

Identifier Value DroidBox 4.1 Nexus 5 Nexus S

HARDWARE goldfish hammerhead herring
ID MASTER KOT49H JZO54K
MANUFACTURER unknown LGE samsung
MODEL sdk Nexus 5 Nexus S
TAGS test-keys release-keys release-keys
TIME 1349813031000 1386201169000 1349214417000
VERSION 495790 937116 485486

Table 4.1: Constants accessible through the Build interface.

Android contains a dedicated storage space (Settings.Secure) for preferences that

applications can read but are not allowed to alter directly. The only way to modify

these settings is through the system UI or specialized APIs. The ADB ENABLED value

indicates whether the device is connected to the ADB or not. The emulator always

returns null. The key DEFAULT INPUT METHOD reveals the default keyboard. Table 4.2

shows a brief synopsis of similar values.

The System.Settings interface contains miscellaneous system preferences (cf. Table

4.3). In contrast, these values are alterable by apps. As an illustration we choose

NOTIFICATION SOUND and RINGTONE that define the file paths for alarm tones. The
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Settings Value DroidBox 4.1 Nexus 5 Nexus S

ADB ENABLED null 0 0
ANDROID ID aa5d2dfec7725811 acb568bc17a9a502 20c141a489fa6847
DEFAULT INPUT METHOD [...]latin/.LatinIME [...]latin.LatinIME [...]latin.LatinIME
WIFI WATCH[...]LIST null GoogleGuest GoogleGuest

Table 4.2: Settings accessible through the Settings.Secure interface.

default values for DroidBox are null. Therefore, it is always different compared to a

real device, no matter which sound is explicitly chosen by an user. The same holds for

the other two values depicted in Table 4.3. Generally, only values are considered which

deviate independently from the user’s concrete settings.

Settings Value DroidBox 4.1 Nexus 5 Nexus S

NOTIFICATION SOUND null content://[path] content://[path]
RINGTONE null content://[path] content://[path]
WAIT FOR DEBUGGER null 0 1
WIFI SLEEP POLICY null 2 2

Table 4.3: Settings accessible through the Settings.System interface.

In order to communicate with cellular networks mobile phones are equipped with Sub-

scriber Identity Module (SIM) cards. The integrated circuit stores the IMEI, IMSI,

and authentication keys. The TelephonyManager serves as interface and enables other

applications to query these information. Apps can also register listeners for receiving

notifications of telephony state changes. A selection of methods and their return values

are listed in Table 4.4.

DroidBox replaced the emulator’s default IMEI, IMSI, and phone number. However, the

deployed values are well-known and can be preyed to identify the sandbox. The same

applies to the network operator name or its identifier especially because the default val-

ues clearly state the presence of the Android emulator.

Mobile networks manage their communication services through fixed base stations. Since

mobile phones communicate with a distinct station, mostly the geographically closest,

they are aware of its unique cell identifier and the cell location. Whether the device

location changes considerably, registered listeners are notified. The Android emulator

generally does not return any cell location value except of null. From this constella-

tion two detection approaches can be derived: The absence of cell location information

(getCellLocation()) reveals DroidBox and a state not changing over time indicates a

sandboxed environment.
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Method DroidBox 4.1 Nexus 5 Nexus S

getCellLocation() null [21474647,...,280] [51509,...,-1]
getDeviceId() 000[...]000 358[...]793 355[...]913
getDeviceSoftwareVersion() null 05 01
getLine1Number() 15555215554 +4917688778911 +4917688778911
getNetworkOperatorName() Android o2 - de o2 - de
getSimOperator() 310260 26207 26207
getSimSerialNumber() 890[...]720 894[...]507 894[...]413

Table 4.4: Values accessible through methods of TelephonyManager.

As most other computer devices Android manages a range of timing values. The class

SystemClock offers methods to obtain time related values which can be leveraged to

determine if the execution environment is emulated or not. The by uptimeMillis()

returned long value is counted in milliseconds since the system was booted and excludes

device inactivity. Hence, the time periods whereat the CPU is off, the display is dark,

or the device waits for external input is subtracted from the total uptime. In contrast,

elapsedRealtime() gives access to the time since the system was booted including deep

sleep. In practice, smartphones are not regularly turned off and usually run for days.

Based on the following three statements the detection of a sandbox may be performed:

• The uptime is very low. Most sandboxes run only a few minutes until they are

reset. According to our survey a threshold of 10 minutes leads to meaningful

results.

• The values of uptimeMillis() and elapsedRealtime() are inconsistent. For

example the value returned by elapsedRealtime() is the lower one or any of the

two is zero.

• The difference of uptimeMillis() and elapsedRealtime() is not significant.

Mostly a smartphone is switched on the entire day but is only actively used tem-

porarily. Thus, a similar value strongly indicates that the code is not executed

onto a real device.

All major Android device manufactures ship their devices with a preinstalled Play Store

application. Neither DroidBox, nor the Android emulator is featured with the Play Store

or any other Google application. Owing to technical restrictions it is even impeded to

install it belated. As recently disclosed, Google contracts obligate them to install all

Google apps, even if they just want a single application such as the Play Store or Google

Maps [17]. Thereby, the tie contracts render the opportunity to analyze the installed
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Google apps for our purposes.

The absence of the Play Store is considered as an evidence for an artificial environment.

In addition, a list of all installed apps can easily be retrieved and compared with an

enumeration of expected Google apps. Eventually, the available software versions and

signatures are verified and tested for anomalies.

The steady changes of geo locations of smartphones exhibit more distinctive features

compared to DroidBox. Each device maintains a list of ever connected WLAN access

points. Obviously, the list of the emulator and thence DroidBox is empty by default.

Another notable characteristic of real devices is the continuous alteration of the wireless

signal strength or battery level. DroidBox always possesses the absolute identical merits.

We conclude that a huge amount of Environment Related Detection features could be

discovered and implemented. The following subsection focuses on the exploiting of a

lack of user driven events which permanently occur on real mobile devices.

4.2.3 User Input Related Detection

The users of smartphones permanently interact with their devices. This triggers numer-

ous events and a variety of data is created, updated, retrieved, and deleted. Unusual or

missing state changes can be traced and advantaged to unfold sandboxes. The taxon-

omy’s class User Input Related Detection unites such detection measures.

An outstanding asset of modern mobile OSs is the capability to install apps throughout

centralized application market places. Users commonly take advantage of this feature

and download numerous apps and games. Hence, the absence of third party apps seems

on account of that unusual. Android generally allows to obtain a full enumeration of

installed apps without dedicated permission. Simple rule based detection, such as ”All

installed app’s package names conform the namespace com.android.*” is encountered

as effective already.

Not only missing apps are a strong indicator for the app execution within a sandbox,

also missing user-data is believed to be suspicious. Due to the user’s interaction with

various apps a large amount of contextual data is generated, including system as well

as third-party apps. The address book has to contain contacts, the list of outgoing

or incoming calls may not be empty, and the SMS app shall hold received and send

messages. Third-party applications such as Twitter [91] or WhatsApp [97] cannot be

searched directly for communication data but state changes are announced by the global
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notifications API. In this way new appearing notifications can be monitored.

Finally, even the presence of user-data must not necessarily lead to the conclusion that

an app runs on a real smartphone. For instance, outdated e-mail messages could be

considered odd. Since apps commonly store data within databases the last modified

timestamp can be checked.

4.2.4 Limitations

The developed taxonomy is by no means a complete listing of all existing Android

sandbox detection approaches. As already clarified in Section 1.3, we omit rootkits

since they have unlimited access to all OS components and resources. Due to their

nature, there is no need for the application of the intended OS APIs. Thus, effective

detection mitigation (cf. Section 4.3) cannot be applied in this case.

4.3 Sandbox Detection Mitigation

As already demonstrated within the preceding sections, several detection techniques

which address different properties of sandboxed environments could be contrived. The

goal of this monograph is to elaborate effective detection mitigation based on the in-

troduced taxonomy. Therefore, we seek to revise DroidBox in a manner that it is

indistinguishable from real devices.

Consequently, we seize our taxonomy and propose associated evasion measures to counter

detection, followed by the in practice applied extension of DroidBox. To begin with, we

examine countermeasures for Emulator Related Detection briefly. Afterwards, Environ-

ment Related Detection mitigation is covered more in depth. We close the discussion

with some final thoughts on how to encounter User Input Related Detection.

4.3.1 Emulator Related Detection Mitigation

When considering Emulator Related Detection the underlaying issue of virtualization

comes into play. VMMs and emulators are not designed with malware analysis and

detection mitigation in mind. For general purposes it is enough to be adequate close to

real systems but there is no need to behave absolute identical. Thus, it is theoretical

feasible to remedy each emulation detection approach by adapting the system accord-

ingly. Admittedly this is too costly on a large scale.
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For evading the exposure of DroidBox’s system emulation profound changes have to be

accomplished. Since the first explained concept targets binary translation and the other

ARM’s caching architecture, QEMU’s core design needs to be altered. Unfortunately,

this is not the primary goal of the emulator developers because it is actually utilized

to support development and testing of Android applications. However, two procedures

remain for hardening the emulated environment: First, the sandbox could be compiled

and deployed on the x86 architecture which is generally supported by Android but not

by TaintDroid. Secondly, hardware assisted acceleration such as implemented for x86

has already been announced for ARM and enables analysis environments to be deployed

on native hardware [3].

Nevertheless, circumventing emulation or virtualization detection in general remains a

subject of ongoing research and is considered for future work in Section 6.2.

4.3.2 Environment Related Detection Mitigation

This passage groups all anti-detection measures to thwart identification of environment

related properties. Therefore, we do not only suggest theoretical ideas but implement

our findings in DroidBox. To this end, the in Chapter 3 examined and faultless attested

operation of DroidBox in version 4.1 serves as basis. Since the OS itself just as the

DroidBox add-on, is publicly available it appears easily expandable. In oppose to OSs

compiled for specific devices our implementation targets the more flexible Android em-

ulator. Thus, we do not have to satisfy hardware or driver related constraints. In order

to avoid difficulties with generic emulator drivers our advancements are performed on

the two upper layers of the Android architecture (cf. Section 2.1).

The device identifiers which are leveraged for detection are necessarily traceable within

the environment’s software. Thus, it is applicable to either change the values at the

place whereat they are stored or the concerning API to retrieve it. For the DroidBox

we modified the internal API as illustrated in Listing 4.1.

private static String getString(String property) {

if (property.equals("ro.bootloader"))

return "I9020XXLC2";

[...]

return SystemProperties.get(property , UNKNOWN );

}

Listing 4.1: Interception of getString() calls for certain strings.
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Within the getString() method the intended control flow is intercepted if the re-

quested string is of interest. With several sequential if statements, values identical to

the Nexus S are returned. Note that we could not simply alter the constant strings in

SystemProperties because the Android build environment checks external APIs and

constants for modification and aborts the build in case of deviations.

The procedure for patching the Android preferences is analogous to the device identi-

fiers. Values are stored in the system and can be retrieved by an API. The settings

databases might be adjusted at any startup again. Thus, the modification of the API is

more generic and therefore preferred (cf. Listing 4.2). A lot of work needs to be spent on

adjusting all single setting related detection features. The settings API solely provides

a centralized interface and delegates the request to subclasses.

public synchronized static String getString(ContentResolver resolver ,String name){

if (name.equals(Secure.ADB_ENABLED ))

return "0";

if (name.equals(Secure.WIFI_WATCHDOG_WATCH_LIST ))

return "GoogleGuest";

[...]

Listing 4.2: Interception of getString() calls for certain settings.

The TelephonyManager serves as interface to query cellular network relevant informa-

tion. Data is not accessed key-based using a single method but trough a set of special

purpose functions. On account of this, all traitorous methods are changed and return

values equal to a Nexus S. Particularly, the adjustments of the Exception handling and

the transition of the taint sources have to be carried out carefully.

An example in Listing 4.3 demonstrates the modification of the getSimSerialNumber()

method which returns the SIM serial number. For that number as well as for IMEI and

IMSI the replacement value has to be consistent with validation criteria and satisfy a

standardized format.

The cell location which is retrievable via getCellLocation() passes the location value

as an array. Unlike the static identifiers or settings, these values depend on the cur-

rent geo location on real hardware. Thus, it is not a static but rather continuous. In

order to thwart blacklisting predefined locations a random value in a realistic range is

employed. All other methods of the TelephonyManager are adapted in a similar manner.

public String getSimSerialNumber () {

String simSerialNumber = "8949228121903158413";
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try {

Taint.addTaintString(simSerialNumber , Taint.TAINT_ICCID );

return simSerialNumber;

} catch (NullPointerException ex) {

return null;

}

}

Listing 4.3: Anti-detection adjustment for the SIM serial number.

The detection based on the uptime is eliminated by the extension of SystemClock. We

define an initialization for elapsedRealtime() value which varies slightly and express a

timespan of approximately one day whereby uptimeMillis() is initialized with 30 minutes.

Hence, non of the three statements to encounter the presence of a sandbox based on

timing is satisfied (cf. Subsection 4.2.2).

According to Google, the Play Services Framework including the Play Store cannot

be installed on the emulator and thereat not on DroidBox either. For testing pur-

pose on the Android emulator they provide a Play Services SDK as plugin for com-

mon IDEs. However, it is still feasible to get Google apps and the Play Store running

on DroidBox. Therefore, ADB is utilized to download the needed APK files from a

real device. The inevitably required files, GoogleLoginService.apk, GoogleServicesFrame-

work.apk, and Phonesky.apk are stored at /system/app/ on each physical Android de-

vices. The retrieved files have to be copied in the same folder on the user-data image file.

When the DroidBox system is booted with the modified user-data image file the Play

Store is present and can be used to download other apps. Accordingly, any proprietary

Google App can be installed into DroidBox.

The frequently changing signal strength and a decreasing battery level is simulated by the

standard emulator framework. It allows to alter the concerned values with automated

scripts from outside the emulator instance. The same holds for geo positions. The

Android SDK contains a program which generates synthetic location data for the device.

It only needs to be set up properly and does not require any further modification.

In essence, all introduced environment related detection measures of Section 4.2 could

be annulled theoretically. For this reason we evaluate the practical value of our findings

in Chapter 5. The presented additions and improvements can be found as patch file on

the enclosed DVD.
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4.3.3 User Input Related Detection Mitigation

In order to mitigate detection through the absence of user-triggered events or a lack

of user-data both conditions must be simulated. Thus the goal of this subsection is to

equip DroidBox with realistic user-data.

Installing a certain number third-party apps circumvents the uncovering of sandbox

environments. The detection vector, enabled by missing third-party applications, is

addressable by simply installing an arbitrary amount of programs. Google’s Play store

devotes a dedicated interface for communicating with Android devices and enables them

to download apps. It is facilitated in the not intended manner to download application

packages, which in terms can be transfered onto DroidBox. Therefore ADB is employed,

as well as for the final installation. This entails the advantage that the entire process

of downloading and deploying can be automated and repeated on a daily basis. Thus,

even the app versions are in a large part up-to-date.

In order to not appear suspicious all installed apps are filled with user-data. For the

Google powered apps such as Mail, Contacts, Keep, and Calendar the active sync tech-

nology is applied. It syncs all enumerated apps continuously. For the other applications,

it is not quite as simple since they have to be filled manually with consistent data. Calls

or incoming messages are events which can also be triggered by the Android SDK during

an analysis. The applied modifications are included in the user-data image of DroidBox

which can be reset to the initial state before each analysis. Especially the desire to

automated the time consuming procedure is only prototypical implemented yet.

User Input Related Detection is, in contrast to the taxonomy’s two other groups, not

as precise. The accruement of user-data is a very complex process and an accurate

detection based on such information is challenging. In a practical use case the number

of false positives would be unjustifiable high. For this reason we doubt a large-scale

deployment in the near future. On the other hand, it will always remain at least a

probabilistic detection approach because the imitation in order to mitigate detection is

exceedingly complicated.

4.4 Summary

Considering the huge amount of malware that strongly facilitates code obfuscation tech-

niques to prohibit static analysis already, it becomes clear that a vast number of samples
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will employ techniques to evade dynamic analysis in the near future.

This chapter aimed at structuring methods to reveal sandbox environments for An-

droid and introduced a taxonomy of detection vectors. Hence, we clustered measures

in three groups: Emulator Related Detection, Environment Related Detection and User

Input Related Detection. According to this taxonomy we evidenced with concrete im-

plementations that there are plenty of properties which can be exploited to determine

the presence of DroidBox. Our findings are evaluated by means of web-based analysis

systems in Chapter 5.

In addition, we feature anti-detection measures aligned with the developed taxonomy.

The advancements were implemented on the basis of the discussed version of DroidBox

in Chapter 3. Thereby, all introduced Environment Related and User Input Related

detection measures were warded off successfully. Finally, the hardened DroidBox is

integrated in the Mobile Sandbox analysis system and evaluated in the next Chapter.

Clearly, not only a wide range of practical sandbox detection measures were found and

categorized, but also countermeasures implemented for DroidBox could be put in place.
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Evaluation

After describing sandbox detection techniques, followed by mitigation approaches and

their implementation in DroidBox (cf. Chapter 4), we finally evaluate our contributions.

Therefore, the identified detection vectors are investigated by means of online sandbox

systems and our extension of DroidBox, which is integrated into the Mobile-Sandbox

NG. This evaluation will be discussed in the upcoming sections, the proceeding will be

as follows: At first, the test setting is explained and the results are illustrated in Section

5.1. Afterwards, we briefly regard the integration of the extended DroidBox into the

Mobile-Sandbox NG. Finally the chapter closes with a short summary.

5.1 Testing: Detection and Mitigation

In Section 4.2, we demonstrated a variety of methods that uncover dynamic malware

analysis environments for Android. Thus, we seek to demonstrate the effectiveness of

our findings within this monograph.

Security vendors and researchers deployed several dynamic analysis environments for

Android applications allowing submissions via a web-interface. Thus, even inexperienced

users can verify with little effort if apps are harmless. In addition, the systems serve as

source for yet unknown samples. We used a set of such online sandboxes to evaluate our

detection techniques in a real-world scenario.

Our testing environment consists of an Android application and a server connected to

the Internet. The app is uploaded to a sandbox web-service and upon execution the

required data is retrieved. The app comes with a GUI and solely sends the queried
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information through a Transmission Control Protocol (TCP) socket to the server. The

software running at the server is build to receive and store the data into a log file (cf.

Appendix B). Each submitted sample contains an unique identifier to be related to a

distinct service and in order to track redistribution. The source code for both programs

can be found on the attached DVD (cf. Appendix D).

In total, we found 14 online sandboxes for Android (cf. Appendix C). Upon closer exam-

ination, however, eight were not longer considered: App-Ray, Aurasium, CopperDroid,

and Sandroid were not available anymore or outdated and thus not compatible with our

app. Other analysis services did not send any results to our server or do not perform

a dynamic analysis, namely AndroTotal and VisualThreat. The two app stores, Google

Play and Yandex Store, were expected to perform a dynamic analysis as security measure

to prevent malware from redistribution, but we did not receive any data. Additionally,

we noticed that some sandboxes forward the provided app to other unidentified sandbox

systems. Those are excluded from our evaluation.

Eventually, we analyze a set of six Android sandboxes by means of the following features

(or functions) which are explained in Section 4.2 extensively:

• Identifier Strings - Considers a set of identifier strings, for instance BOOT, BRAND,

DEVICE, and DISPLAY. Only if all strings are unsuspicious the detection has failed.

• ADB Enable - Most sandbox emulators communicate with their environment

through ADB. This flag indicates the current connectivity status.

• Default Input Method - Interprets the package name of the default on-screen key-

board.

• WiFi Watch List - A list of WLAN access points. This value is on real devices

not null.

• Sounds - Evaluates if for the alarm, messages, and call notification sounds are

defined.

• Cell Locations - Validates the cell location, must not be null on physical devices.

• Device ID - Checks if the IMEI is different from DroidBox or not 0000000000.

• Phone Number - Checks if the phone number is different from DroidBox and the

emulator.

• Uptime - Approves the in Subsection 4.2.2 defined rules for the uptime.
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• Play Store - Determines whether the Play Store is installed or not.

• Third Party Apps - Searches for third-party applications such as Twitter or What-

sApp.

• Messages - Reads email and SMS messages.

The results are summarized in Table 5.1. If one of the above described detection vectors

could identify a sandbox with certainty it is denoted as 3. In case the outcome is not

explicit or identical with real devices it is labeled with 7.
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Andrubis 3 3 3 3 3 3 7 3 3 3 3 3

ApkScan 3 3 3 3 7 3 7 3 3 3 3 3

Foresafe 3 3 3 3 3 3 3 3 3 3 3 3

JoeSandbox 3 3 7 3 7 3 7 7 3 3 3 7

TraceDroid 3 3 3 3 3 3 3 7 3 3 3 3

Mobile-Sandbox 3 3 3 3 3 3 7 7 3 3 3 3

Mobile-Sandbox NG 7 7 7 7 7 7 7 7 7 7 7 7

DroidBox 4.1 3 3 3 3 3 3 3 3 3 3 3 3

Table 5.1: List of evaluated sandboxes and detection vectors (Legend: Identified the
sandbox = 3, not or not clearly identified = 7).

The overview depicts clearly that our detection methods work remarkably for the eval-

uated sandboxes. However, some features are countered successfully. The most sophis-

ticated camouflage is established by JoeSandbox, but most systems fail to even conceal

the most trivial identification properties. We conclude that all tested sandbox systems

can successfully be detected with absolute certainty, in a fraction of a second with only

few lines of code. Even if the vendors act on our suggestions we are confident to still

determine the presence of their systems at least by combining a set of features.

In Section 4.3, we introduced countermeasures to prevent a detection by evasive mal-

ware. The verified version of DroidBox is extended by these anti-detection techniques.

Afterwards, it is integrated into the online analysis environment Mobile-Sandbox. Ta-

ble 5.1 enlists two different versions, the term Mobile-Sandbox denotes the old version

which utilized a customized DroidBox 2.3 as basis, whereat Mobile-Sandbox NG (Next
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Generation) refers to an updated facility.

The primarily Mobile-Sandbox is prone to be detected by malware, merely the IMEI

and the phone number are altered by default. In contrast, the Mobile-Sandbox NG over-

comes these limitations and is featured with our extensions to ward even sophisticated

malware off. Details on the integration are outlined in the following section.

5.2 Mobile-Sandbox Integration

Within this paragraph we briefly introduce the Mobile-Sandbox (cf. Figure 5.1), fol-

lowed by a reflection of the the integration process of the extended DroidBox into the

environment.

Figure 5.1: Mobile-Sandbox workflow [79].

The Mobile-Sandbox consists of a web-interface, a database server, and an emulated

DroidBox to perform the analysis. The user or analyst initiates the workflow by sub-

mitting a sample. Prior to the analysis, meta data is extracted and the APK file is

stored on the database server. A corresponding unique identifier is added to a queue,

which supplies the DroidBox analysis bots with new samples. After completion of the

examination, a XML report is generated and stored in the database. The initiator is

notified about the result and receives the generated unique identifier to demand the

report. Since the Mobile-Sandbox utilizes the Android emulator running DroidBox 2.3

we could simply replace the emulator images for integration. Furthermore, the system

is equipped with realistic user-data by adding a prepared user-data image file. Upon

each performed analysis the environment is reset to provide an equal, well defined envi-

ronment for every examination.

At the time of writing the updated Mobile-Sandbox NG analyzed already about 5,000



Chapter 5. Evaluation 66

uploaded malware samples. Random analysis results were inspected manually and com-

pared to reports of other sandbox systems on the Internet. The resulting action se-

quences correlated to behaviors that were described in the other analysis reports. These

insights gave us confidence that the DroidBox extension is working correctly.

5.3 Summary

This chapter aimed at evaluating the proposed sandbox detection methods and the

effectiveness of the elaborate countermeasures. For this, an app was developed and

submitted to several online sandbox environments. They could be clearly flagged as

analysis systems, unless we put our anti-detection strategy in place. We improved the

Mobile-Sandbox in a manner that it overcomes all proposed detection strategies.
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Conclusion

This final chapter closes the Thesis with a summary and discussion in Section 6.1, which

also outlines our contributions. Finally, Section 6.2 elaborates on possible future work.

6.1 Summary and Discussion

At the end of Section 1.2 we summarized the objectives of this work as follows: The goal

is to build an Android sandbox that is notably harder to detect by malware in comparison

to DroidBox. Additionally, it is supposed to be compatible with up-to-date Android apps.

Thus, we basically aim to answer two not directly related key questions:

First, we attempt to eliminate the shortcoming of the DroidBox version 2.3. Since it

is based on an outdated version of Android only a subset of existing applications can

be analyzed. To this end, the obvious solution is to port DroidBox to a more recent

version of Android. In order to achieve this goal we do not extend the original Android

OS but leverage the Android extending taint tracking system TaintDroid. Due to the

fact that during our work it emerged that a third-party ported version of DroidBox 4.1

occurred, we supplementary verify its accurate operation. Therefore, we developed a

test strategy that proves the correctness by applying three independent test scenarios,

briefly exemplified in the following.

The Android build tests are adducted to demonstrate the absence of critical errors.

Besides, we develop an automated framework to compare results of dynamic malware

analyses between DroidBox 2.3 and 4.1. The last test setting employs malware with

known malicious behavior to examine defined functionality of DroidBox. The outcomes
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of all tests are positive, thus we prove DroidBox 4.1 is fully functional. Moreover, the

established and conducted testing strategy is universally valid and can also be engaged

by future ports.

In principle, porting DroidBox to a newer version of Android is a recurring task which

has to be fulfilled with each update. To aid this process by means of automation, we port

DroidBox 4.1 to Android 4.4 and aspire to identify a generalized approach. The porting

itself is a notably more complex task than extending TaintDroid 4.1 to DroidBox 4.1,

which originally was planned (cf. Section 1.2) because the TaintDroid modifications must

be considered as well. Thereby, we developed a toolchain to semi-automate the process

of identifying the modified files for further manual investigation. However, we conclude

that a fully automated environment for porting DroidBox to further Android versions

cannot be applied with reasonable effort. The complexity of an OS in combination

with the sophisticated taint tracking system requires expert judgment of an experienced

developer, which can hardly be transformed into a model.

Secondly, we address defense strategies employed by malware to thwart analysis by sand-

boxes. Code obfuscation is applied in order to prohibit static code analysis, whereas

sandbox detection seeks to circumvent automated dynamic analysis. If an instance be-

comes aware of being executed within an analysis environment it may adapt its behavior

to appear benign. Unfortunately, this prevents conclusions on the threat and an esti-

mations on the impact effectively.

Our work is the first to present a meaningful taxonomy which clusters sandbox detection

measures into three groups: Emulator Related Detection, Environment Related Detec-

tion, and User Input Related Detection. Accordingly, we developed a set of reliable

detection features targeting the discussed version of DroidBox. Within the evaluation

(cf. Chapter 5) the identified groups are appraised by means of different web-based

analysis environments.

Besides the wide range of practical sandbox evasion techniques found and categorized,

countermeasures were also established. We feature anti-detection measures in align-

ment with the developed taxonomy and successfully combat all introduced approaches.

From malware’s point of view, our extension of DroidBox is indistinguishable from a

real device.

Our work was not solely a theoretical experiment, but in addition integrated into the

real world solution Mobile-Sandbox. As the basis for the web-based analysis system, it

was used to analyze over 5,000 samples at the time of writing. Furthermore, we state

that our findings can be applied to a wide range of Android sandboxes since we are going
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to give public access to the research community.

We believe our work makes important contributions to assist analysts in combating the

emerging threats of evasive mobile malware through an improved version of DroidBox

and putting the defenders a step ahead. Moreover, we are aware of the ongoing arms race.

Yet, to our knowledge there are no distinct detection features. Other approaches relying

mainly on probabilistic methods that lead to a significant number of false positives. This

is clearly not in the interest of attackers because they aim to affect as many devices as

possible. Thus, we finally claim anti-detection needs not to be perfect. It is enough to

raise the bar sufficiently high so that attackers run the risk of omitting too many real

devices and thereby loose profit.

6.2 Future Work

The field of dynamic analysis of mobile malware was not subject to extensive research

yet. Especially sandbox detection and mitigation strategies have been omitted. Based

on the conducted results within this Thesis, we propose to initiate the following subjects

for future research:

• As soon as the DVM becomes obsolete, a new taint tracking system for the ART is

required. It is advisable to implement it in a more generic way to alleviate future

porting intentions.

• To date, neither DroidBox, nor any other taint tracking system is capable of track-

ing implicit flows [13, 30, 72]. This is a significant drawback and should be con-

sidered for future research.

• As stated in Chapter 3, the extensions of DroidBox are not adequately labeled

within the source code. It complicates porting unnecessarily and can be avoided

by low expenditure on subsequent adjustments.

• The question of emulator related detection mitigation remains largely unanswered.

Thus, an investigation of this field of study is desirable.

• Dynamic analysis detection is employed by malware to adjust the behavior ac-

cording to the outcome. Thus, the program code, which is required to expose

sandboxes, is available inevitably. It seems to be a promising approach that may

yield to the determination of sandbox detection code by means of static analysis.
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• There is a strong need for a procedure that challenges emulator detection in gen-

eral. An auspicious approach, which seems to eliminate most outlined environment

related detection methods and all emulation-based techniques, is to deploy the

analysis environment onto a real device. Hence, the feasibility is still completely

open.

• Finally, an important question is how to generate meaningful reports to summarize

analysis results. This is a general issue of IT security and defined as semantic gap

by Sommer and Paxson [77].
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Android Build Instruction Manual

Build instructions for Android on Ubuntu x64 12.04 LTS

Install Java

• sudo apt-get purge openjdk*

• sudo add-apt-repository ppa:webupd8team/java

• sudo apt-get update

• sudo apt-get install oracle-java6-installer

Install libs and stuff

• sudo apt-get install git gnupg flex bison gperf build-essential zip \

curl libc6-dev libncurses5-dev:i386 x11proto-core-dev libx11-dev \

:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 libgl1-mesa-dev \

g++-multilib mingw32 tofrodos python-markdown libxml2-utils \

xsltproc zlib1g-dev:i386

• sudo ln -s /usr/lib/i386-linux-gnu/mesa/libGL.so.1 /usr/ \

lib/i386-linux-gnu/libGL.so

Install curl

• sudo apt-get install curl
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Install and setup repo-tool

• mkdir /bin

• PATH= /bin:$PATH

• curl http://commondatastorage.googleapis.com/git-repo-downloads \

/repo > /bin/repo

• chmod a+x /bin/repo

Download the source

• mkdir WORKING DIRECTORY

• cd WORKING DIRECTORY

• repo init -u https://android.googlesource.com/platform/manifest -b \

android-4.1.1 r6

• repo sync

Prepare the build env

• source build/envsetup.sh

• lunch //and choose traget (interactive)

Build

• make -jX //(whereat X defines the number of processes)

• Good luck!



Appendix B
List of Detection App Output

All evaluated detection features received by our server, sent from our app while it is

analysed within an online sandbox.

Wed Mar 05 10:26:10 CET 2014 Waiting for a new Client ...

Wed Mar 05 10:26:10 CET 2014 /128.68.25.241:56540 has joined.

ID_19241_13 [...]22 > ID_19241_1388187349922

ID_19241_13 [...]22 > TelephonyManager.getCallState (): 0

ID_19241_13 [...]22 > TelephonyManager.getCellLocation (): null

ID_19241_13 [...]22 > TelephonyManager.getDataActivity (): 0

ID_19241_13 [...]22 > TelephonyManager.getDataState (): 2

ID_19241_13 [...]22 > TelephonyManager.getDeviceId (): 354314058663839

ID_19241_13 [...]22 > TelephonyManager.getDeviceSoftwareVersion (): 78

ID_19241_13 [...]22 > TelephonyManager.getLine1Number (): +79264567184

ID_19241_13 [...]22 > TelephonyManager.getNeighboringCellInfo (): []

ID_19241_13 [...]22 > TelephonyManager.getNetworkCountryIso (): ru

ID_19241_13 [...]22 > TelephonyManager.getNetworkOperator (): 25002

ID_19241_13 [...]22 > TelephonyManager.getNetworkOperatorName (): Beeline

ID_19241_13 [...]22 > TelephonyManager.getNetworkType (): 2

ID_19241_13 [...]22 > TelephonyManager.getPhoneType (): 1

ID_19241_13 [...]22 > TelephonyManager.getSimCountryIso (): ru

ID_19241_13 [...]22 > TelephonyManager.getSimOperator (): 25001

ID_19241_13 [...]22 > TelephonyManager.getSimOperatorName (): MTS

ID_19241_13 [...]22 > TelephonyManager.getSimSerialNumber (): 8940195201326570

ID_19241_13 [...]22 > TelephonyManager.getSimState (): 5

ID_19241_13 [...]22 > TelephonyManager.getSubscriberId (): 250017103105458

ID_19241_13 [...]22 > TelephonyManager.getVoiceMailAlphaTag (): Voicemail

ID_19241_13 [...]22 > TelephonyManager.getVoiceMailNumber (): initLog0600

ID_19241_13 [...]22 > TelephonyManager.hasIccCard (): true

ID_19241_13 [...]22 > TelephonyManager.isNetworkRoaming (): false

ID_19241_13 [...]22 > Build.BOARD: smdk4x12

ID_19241_13 [...]22 > Build.BOOT: unknown

ID_19241_13 [...]22 > Build.BRAND: samsung
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ID_19241_13 [...]22 > Build.CPU_ABI: armeabi -v7a

ID_19241_13 [...]22 > Build.CPU_ABI2: armeabi

ID_19241_13 [...]22 > Build.DEVICE: m0

ID_19241_13 [...]22 > Build.DISPLAY: JZO54K.I9300XXEMG4

ID_19241_13 [...]22 > Build.FINGERPRINT: samsung/m0xx /[...]: user/release -keys

ID_19241_13 [...]22 > Build.HARDWARE: goldfish

ID_19241_13 [...]22 > Build.HOST: SEP -108

ID_19241_13 [...]22 > Build.ID: JZ054

ID_19241_13 [...]22 > Build.MANUFACTURER: samsung

ID_19241_13 [...]22 > Build.MODEL: GT-I9300

ID_19241_13 [...]22 > Build.PRODUCT: m0xx

ID_19241_13 [...]22 > Build.RADIO: unknown

ID_19241_13 [...]22 > Build.SERIAL: unknown

ID_19241_13 [...]22 > Build.TAGS: release -keys

ID_19241_13 [...]22 > Build.TIME: 1373974353000

ID_19241_13 [...]22 > Build.TYPE: user

ID_19241_13 [...]22 > Build.USER: se.infra

ID_19241_13 [...]22 > Build.getRadioVersion ():

ID_19241_13 [...]22 > Build.VERSION.CODENAME: REL

ID_19241_13 [...]22 > Build.VERSION.INCREMENTAL: I9300XXEMG4

ID_19241_13 [...]22 > Build.VERSION.RELEASE: 4.1.2

ID_19241_13 [...]22 > Build.VERSION.SDK: 16

ID_19241_13 [...]22 > Build.VERSION.SDK_INT: 16

ID_19241_13 [...]22 > Debug.isDebuggerConnected: false

ID_19241_13 [...]22 > Secure.ACCESSIBILITY_ENABLED: null

ID_19241_13 [...]22 > Secure.ACCESSIBILITY_SPEAK_PASSWORD: 0

ID_19241_13 [...]22 > Secure.ADB_ENABLED: null

ID_19241_13 [...]22 > Secure.ALLOWED_GEOLOCATION_ORIGINS: null

ID_19241_13 [...]22 > Secure.ALLOW_MOCK_LOCATION: 1

ID_19241_13 [...]22 > Secure.ANDROID_ID: 6e9967cca4921743

ID_19241_13 [...]22 > Secure.BLUETOOTH_ON: 0

ID_19241_13 [...]22 > Secure.DATA_ROAMING: 1

ID_19241_13 [...]22 > Secure.DEFAULT_INPUT_METHOD: com.android.inputmethod .[...]

ID_19241_13 [...]22 > Secure.DEVELOPMENT_SETTINGS_ENABLED: null

ID_19241_13 [...]22 > Secure.DEVICE_PROVISIONED: 1

ID_19241_13 [...]22 > Secure.ENABLED_ACCESSIBILITY_SERVICES: null

ID_19241_13 [...]22 > Secure.ENABLED_INPUT_METHODS: com.android.inputmethod .[...]

ID_19241_13 [...]22 > Secure.HTTP_PROXY: null

ID_19241_13 [...]22 > Secure.INPUT_METHOD_SELECTOR_VISIBILITY: null

ID_19241_13 [...]22 > Secure.INSTALL_NON_MARKET_APPS: 0

ID_19241_13 [...]22 > Secure.LOCATION_PROVIDERS_ALLOWED: gps

ID_19241_13 [...]22 > Secure.LOCK_PATTERN_ENABLED: 0

ID_19241_13 [...]22 > Secure.LOCK_PATTERN_TACTILE_FEEDBACK_ENABLED: 0

ID_19241_13 [...]22 > Secure.LOCK_PATTERN_VISIBLE: 0

ID_19241_13 [...]22 > Secure.NETWORK_PREFERENCE: 1

ID_19241_13 [...]22 > Secure.SELECTED_INPUT_METHOD_SUBTYPE: -1

ID_19241_13 [...]22 > Secure.SETTINGS_CLASSNAME: null

ID_19241_13 [...]22 > Secure.SYS_PROP_SETTING_VERSION: null

ID_19241_13 [...]22 > Secure.TOUCH_EXPLORATION_ENABLED: 0

ID_19241_13 [...]22 > Secure.TTS_DEFAULT_PITCH: null

ID_19241_13 [...]22 > TTS_DEFAULT_RATE: null
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ID_19241_13 [...]22 > Secure.TTS_DEFAULT_SYNTH: null

ID_19241_13 [...]22 > Secure.ACCESSIBILITY_TTS_ENABLED_PLUGINS: null

ID_19241_13 [...]22 > Secure.USB_MASS_STORAGE_ENABLED: 1

ID_19241_13 [...]22 > Secure.USE_GOOGLE_MAIL: null

ID_19241_13 [...]22 > Secure.WIFI_MAX_DHCP_RETRY_COUNT: 9

ID_19241_13 [...]22 > Secure.WIFI_MOBILE_DATA_TRANS_WAKELOCK_TIMEOUT_MS: null

ID_19241_13 [...]22 > Secure.WIFI_NETWORKS_AVAILABLE_NOTIFICATION_ON: 1

ID_19241_13 [...]22 > Secure.WIFI_NETWORKS_AVAILABLE_REPEAT_DELAY: null

ID_19241_13 [...]22 > Secure.WIFI_NUM_OPEN_NETWORKS_KEPT: null

ID_19241_13 [...]22 > Secure.WIFI_ON: 0

ID_19241_13 [...]22 > Secure.WIFI_WATCHDOG_ON: 1

ID_19241_13 [...]22 > Secure.WIFI_WATCHDOG_WATCH_LIST: null

ID_19241_13 [...]22 > System.ACCELEROMETER_ROTATION: 1

ID_19241_13 [...]22 > System.AIRPLANE_MODE_ON: 0

ID_19241_13 [...]22 > System.AIRPLANE_MODE_RADIOS: cell ,bluetooth ,wifi ,nfc ,wimax

ID_19241_13 [...]22 > System.ALARM_ALERT: content://media/internal/audio/media/5

ID_19241_13 [...]22 > System.ALWAYS_FINISH_ACTIVITIES: null

ID_19241_13 [...]22 > System.ANIMATOR_DURATION_SCALE: null

ID_19241_13 [...]22 > System.APPEND_FOR_LAST_AUDIBLE: null

ID_19241_13 [...]22 > System.AUTO_TIME: 1

ID_19241_13 [...]22 > System.AUTO_TIME_ZONE: 1

ID_19241_13 [...]22 > System.BLUETOOTH_DISCOVERABILITY: null

ID_19241_13 [...]22 > System.BLUETOOTH_DISCOVERABILITY_TIMEOUT: null

ID_19241_13 [...]22 > System.DATE_FORMAT: null

ID_19241_13 [...]22 > System.DEBUG_APP: null

ID_19241_13 [...]22 > System.DIM_SCREEN: 1

ID_19241_13 [...]22 > System.DTMF_TONE_WHEN_DIALING: 1

ID_19241_13 [...]22 > System.END_BUTTON_BEHAVIOR: null

ID_19241_13 [...]22 > System.FONT_SCALE: null

ID_19241_13 [...]22 > System.HAPTIC_FEEDBACK_ENABLED: 1

ID_19241_13 [...]22 > System.MODE_RINGER: 2

ID_19241_13 [...]22 > System.MODE_RINGER_STREAMS_AFFECTED: 166

ID_19241_13 [...]22 > System.MUTE_STREAMS_AFFECTED: 46

ID_19241_13 [...]22 > System.NEXT_ALARM_FORMATTED:

ID_19241_13 [...]22 > System.NOTIFICATION_SOUND: content:// media /[...]/ media/9

ID_19241_13 [...]22 > System.RADIO_BLUETOOTH: null

ID_19241_13 [...]22 > System.RADIO_CELL: null

ID_19241_13 [...]22 > System.RADIO_NFC: null

ID_19241_13 [...]22 > System.RADIO_WIFI: null

ID_19241_13 [...]22 > System.RINGTONE: content://media/internal/audio/media/7

ID_19241_13 [...]22 > System.SCREEN_BRIGHTNESS: 102

ID_19241_13 [...]22 > System.SCREEN_BRIGHTNESS_MODE: 0

ID_19241_13 [...]22 > System.SCREEN_OFF_TIMEOUT: 60000

ID_19241_13 [...]22 > System.SETUP_WIZARD_HAS_RUN: null

ID_19241_13 [...]22 > System.SHOW_GTALK_SERVICE_STATUS: null

ID_19241_13 [...]22 > System.SHOW_PROCESSES: null

ID_19241_13 [...]22 > System.SOUND_EFFECTS_ENABLED: 1

ID_19241_13 [...]22 > System.STAY_ON_WHILE_PLUGGED_IN: 1

ID_19241_13 [...]22 > System.SYS_PROP_SETTING_VERSION: null

ID_19241_13 [...]22 > System.TEXT_AUTO_CAPS: null

ID_19241_13 [...]22 > System.TEXT_AUTO_PUNCTUATE: null
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ID_19241_13 [...]22 > System.TEXT_AUTO_REPLACE: null

ID_19241_13 [...]22 > System.TEXT_SHOW_PASSWORD: null

ID_19241_13 [...]22 > System.TIME_12_24: null

ID_19241_13 [...]22 > System.TRANSITION_ANIMATION_SCALE: 1.0

ID_19241_13 [...]22 > System.VIBRATE_ON: null

ID_19241_13 [...]22 > System.VOLUME_ALARM: 6

ID_19241_13 [...]22 > System.VOLUME_BLUETOOTH_SCO: 7

ID_19241_13 [...]22 > System.VOLUME_MUSIC: 11

ID_19241_13 [...]22 > System.VOLUME_NOTIFICATION: 5

ID_19241_13 [...]22 > System.VOLUME_RING: 5

ID_19241_13 [...]22 > System.VOLUME_SYSTEM: 7

ID_19241_13 [...]22 > System.VOLUME_VOICE: 4

ID_19241_13 [...]22 > System.WAIT_FOR_DEBUGGER: null

ID_19241_13 [...]22 > System.WALLPAPER_ACTIVITY: null

ID_19241_13 [...]22 > System.WIFI_SLEEP_POLICY: null

ID_19241_13 [...]22 > System.WIFI_STATIC_DNS1: null

ID_19241_13 [...]22 > System.WIFI_STATIC_DNS2: null

ID_19241_13 [...]22 > System.WIFI_STATIC_GATEWAY: null

ID_19241_13 [...]22 > System.WIFI_STATIC_IP: null

ID_19241_13 [...]22 > System.WIFI_STATIC_NETMASK: null

ID_19241_13 [...]22 > System.WIFI_USE_STATIC_IP: null

ID_19241_13 [...]22 > System.WINDOW_ANIMATION_SCALE: 1.0

ID_19241_13 [...]22 > SystemClock.elapsedRealtime (): 544213

ID_19241_13 [...]22 > SystemClock.uptimeMillis: 544214

ID_19241_13 [...]22 > GoogleServicesUtil.isGooglePlayServicesAvailable (): FAILED

ID_19241_13 [...]22 > PackageManager.pm.getInstalledPackages () BEGIN_LIST:

ID_19241_13 [...]22 > 0: PackageInfo {41057618 android}

ID_19241_13 [...]22 > 1: PackageInfo {41057 b00 com.android.backupconfirm}

[...] (Enumeration of installed apps)

ID_19241_13 [...]22 > 56: PackageInfo {410349 e0 jp.co.omronsoft.openwnn}

ID_19241_13 [...]22 > PackageManager.pm.getInstalledPackages () END_LIST:

ID_19241_13 [...]22 > CALLBACK_SignalStrength: 99 -1 -1 -1 -1 -1 -1 -1 -1 -1

-> 2147483647 -1 gsm|lte

ID_19241_13 [...]22 > DONE



Appendix C
Online Sandboxes for Android

List of all online sandboxes with the corresponding link.

Sandbox URL Analyzed

Andrubis http://anubis.iseclab.org/ 3

ApkScan http://apkscan.nviso.be/ 3

Foresafe http://www.foresafe.com/scan 3

JoeSandbox http://www.apk-analyzer.net/ 3

Mobile-Sandbox (NG) http://mobilesandbox.org/ 3

TraceDroid http://tracedroid.few.vu.nl/ 3

AndroTotal http://andrototal.org/ 7

App-Ray http://www.app-ray.de/ 7

Aurasium http://www.aurasium.com/ 7

CopperDroid http://copperdroid.isg.rhul.ac.uk/ 7

Google Play Store https://play.google.com/ 7

Sandroid Not available 7

VisualThreat http://www.visualthreat.com/ 7

Yandex Store http://store.yandex.com/ 7
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Appendix D
Contents of the DVD

The DVD accompanying this thesis contains the following directories and data:

detection mitigation contains the DroidBox patches to mitigate its detection.

droidbox contains the DroidBox images for different versions.

porting patches contains the patches for DroidBox 4.4.

scripts contains developed scripts and small programs.

thesis contains the thesis as PDF document.
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