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Abstract

The outer ear has been established as a stable and
unique biometric characteristic, especially in the field of
forensic image analysis. In the last decade, increasing ef-
forts have been made for building automated authentication
systems utilizing the outer ear. One essential processing
step in these systems is the detection of the ear region.

Automated ear detection faces a number of challenges,
such as invariant processing of both left and right ears, as
well as the handling of occlusion and pose variations. We
propose a new approach for the detection of ears, which
uses features from texture and depth images, as well as con-
text information. With a detection rate of 99% on profile
images, our approach is highly reliable. Moreover, it is in-
variant to rotations and it can detect left and right ears. We
also show, that our method is working under realistic condi-
tions by providing simulation results on a more challenging
dataset, which contains images of occluded ears from vari-
ous poses.

1. Introduction
The observation of the outer ear, which is frequently re-

ferred to as auricle, is an emerging biometric method, which

has drawn the attention of research during the last years. In

forensic investigation, ear prints on doors and windows can

be collected and are used as a means for identifying perpe-

trators [1].

The outer ear is believed to be just as unique as the face.

An extensive study of Iannarelli [6] and a more recent study

from India [12] show, that the outer ear possesses numerous

characteristics, which make each ear unique. In Fig.1, we

have annotated a number of features, which are used by the

German Criminal Police Office for identifying a subject.

Forensic investigators do not only value the uniqueness

of the outer ear, but also its permanence. In contrast to the

face, the structure of the outer ear remains stable after the

6th month of life [6]. A recent study by Ibrahim et al. [7]

confirms that the recognition rate of a biometric system is

Figure 1. Selected features of the outer ear.

not affected considerably over eleven months.

Due to the proximity of the observed physiological char-

acteristics, ear recognition may be considered as a valuable

extension to face recognition systems. Ear and face images

can be collected with the same hardware. Especially in un-

constrained scenarios, such as video surveillance, the outer

ear can contribute additional features, which increases the

chance of identifying a person in off-pose images.

The contribution of this paper is a novel ear detection al-

gorithm, which uses texture and depth images for localizing

the ear in full profile as well as in off-pose images. We uti-

lize the rich details on the ear surface and of edge images for

determining the ear outline in an image. We present a set of

flexible rules, which allow us to distinguish between the ear

outline and other objects in the image. These rules describe

an abstract ear model and include context information. Our

algorithm is invariant to rotations and it can detect left and

right ears with the same parameter set. Moreover it is ro-

bust to pose variations and occlusion. The feasibility of the

proposed ear detection system is shown by providing simu-

lation results on the UND-J2 database [13] as well as UND-

NDOff-2007 [5]. A detection rate of 99% on the UND-J2

dataset shows that our approach is outperforming other re-

cent work. Moreover, we also show that our method has the

ability to detect ears under realistic conditions, where it has

to handle occlusions and pose variation.

In the upcoming section, we describe the state of the art

in ear detection in 3D images and describe related work.



Subsequently, we introduce the proposed algorithm. In sec-

tion 4 we point out the experimental setup and present sim-

ulation results using the previously mentioned datasets. Fi-

nally, conclusions are drawn and an outlook on future work

is given in Sec. 5.

2. Related Work
In contrast to 3D meshes, depth images have a matrix-

like data structure and they can be acquired along with the

texture image with a single capture process. If depth im-

ages are recorded under controlled conditions, they are co-

registered with the texture image, which makes it easy to

combine texture and depth information. This fact has in-

spired a number of researchers to come up with different

approaches, which use depth and texture information for ear

detection and recognition. Many of these early methods are

developed and tested on the public dataset collected by the

University of Notre Dame, such as the collections F and G,

and especially collection UND-J2 [13] which is the largest

publicly available database for ear recognition. It consists of

texture and depth images of left profiles. In Tab. 1, we com-

pare the detection rates of recent ear detection algorithms,

which were tested on the UND-J2 dataset.

Yan and Bowyer [13] propose a full biometric ear recog-

nition system based on the profile images of the UND-J2

collection. They first locate the nose tip and then use skin

color from the texture image for narrowing the search space

for the ear region. Subsequently the lower concha is de-

tected by using curvature information from the correspond-

ing depth image. The final ear region contour is fixed by

using an active contour approach.

Chen and Bhanu [4] also combine texture and depth im-

ages in their detection approach. First, they create different

image masks from skin color and depth information. Then

this mask is used for selecting edges from the depth and the

texture image. The ear detection is completed by clustering

these edges and selecting the largest cluster of edges in the

superimposed image.

In the ear recognition system proposed in [8], Islam et
al. use Haar-like features for building an ear classifier for

2D images. Because the texture and the depth images are

co-registered, the detected ear region in the texture image

and in the depth image have the same position.

More recently, several ear detection approaches were

proposed, which are exploiting the properties of the detailed

surface structure of the auricle. Zhou et al. [14] extract lo-

cal histograms of categorized shapes from a sliding window

and use a SVM for deciding whether a local histogram rep-

resents an ear or not. Subsequently the largest cluster of

positive detections is selected as the ear region. In their pa-

per, Zhou et al. only provide results on a subset of UND

collection F, where this algorithm achieved a detection rate

of 100%. However, the detection rate drops significantly,

when when the ear is rotated by more than 10 degrees [9].

Another class of ear detection algorithms are ap-

proaches, which use specific line-like patterns for localizing

the outer ear. Prakash et al. [11] define edges in the 3D im-

age as regions with maximum depth variation. Based on his

assumption, an edge map is created from the depth image.

Subsequently, the local orientations of the edges are approx-

imated with vectors. These vectors serve as the edges of an

edge connectivity graph. Subsequently their algorithm gen-

erates potential ear candidates from these graphs and then

selects the final ear region by comparing the each candidate

with a reference template.

In [10] ears are detected using the specific distribution of

surface curvatures in the ear region. This results into con-

vex and concave edges, which are then processed in a num-

ber of subsequent steps for combining the multiple neigh-

boured edges to ear candidates. According to its proportion,

size, redundancy and cumulated slope, a score is assigned

to each candidate. The final ear region is defined by the

circumference of the ear candidate with the highest score.

This approach, however, has some limitations if the depth

image is noisy or if the ear contour is on the verge of the

depth image. In these cases, no meaningful curvature in-

formation can be extracted from the depth image and the

detection fails. In Tab.1, the reported detection accuracy of

the cited previous work is summarized and compared to the

proposed detection method. With a detection accuracy of

almost 99% on the UND-J2 dataset, the proposed ear de-

tection approach is not only competitive to the graph based

approach by Prakash et al. with respect to the detection per-

formance - moreover the proposed method has no need to

exclude challenging samples from the evaluation as it was

done in [11].

3. Ear Detection System
The proposed ear detection algorithm utilizes the fact,

that the surface of the outer ear has a delicate structure with

high local curvature values. In some depth images, how-

ever, some parts of the ear are missing, because curvature

can only be measures between neighbouring points. How-

ever, many depth images have holes next to the outer he-

lix, which results in missing curvature values [10] (see Fig.

2 for an example). We solve this problem by fusing co-

registered edge and depth images.

Our ear detection approach consists of four different

steps, which are illustrated in Fig.2. We start with a prepro-

cessing step, where edges and shapes are extracted from the

texture and the depth image. Subsequently, the edges and

shapes are fused in the image domain. In the next step, the

components are combined with each other to ear candidates

and a score for each ear candidate is computed. Finally, the

enclosing rectangle of the best ear candidate is returned as

the ear region.



Table 1. Comparison between the proposed method and previously achieved results on UND-datasets.

Author Performace Remarks
Yan and Bowyer[13] 97.38% rank-1 UND-J2 collection, depth and color images, no details about detection accuracy

Chen and Bhanu [4] 87.11% UND collection F and subset of collection G, depth and color images

Prakash et al. [11] 99.38% Subset of UND-J2 collection, depth images only, 10% of images excluded

Zhou et al. [14] 98.22% Results on UND-J2 based on re-implementation in [9], depth images only

Islam et al. [8] 100% 203 profile images from UND-J2 database, 2D images only

Pflug et al. [10] 95.65% UND-J2 collection, depth images only

Proposed method 99% UND-J2 collection, depth and color images

best ear
candidate

ear with
components

texture image

mean curvature
after threshold

shapes

selected edges ear componentsedge image

depth image

Figure 2. Illustration of the processing steps of the proposed ear detection system (database images taken from [13]).

3.1. Preprocessing

The outcome of the preprocessing step is an edge image

from the texture, which is created using a Canny edge de-

tector [3]. Furthermore, we determine a number of shapes

from the depth image, which serve as the basis for the sub-

sequent fusion step.

We first calculate the mean curvature [2] of the depth im-

age. The key points on the ear surface have large convex an

concave curvature values. Therefore, we apply a threshold

to the mean curvature image in order to keep only large con-

vex and concave curvature values. We now delete all con-

nected components from the image, which are smaller than

3 pixels. As a result, we get a number of blobs, which are

mainly located in the ear region. These blobs are thinned

to a width of 1 pixel and subsequently re-connected using

the method proposed in [10]. After the reconnecting step, a

limited number of lines is left from the mean curvature im-

age. For the remainder of this paper, these lines are referred

to as shapes.

3.2. Fusion of Texture and Depth Information

In the fusion step, we select a number of edges from the

edge image, based on the vicinity to the position of the most

prominent shapes and other criteria. First, we select the ten

longest shapes from the mean curvature image.

If the sign of the local orientation of one of the se-

lected shapes changes, the shape is divided into two shorter

shapes. Shapes can also be split up if they contain a corner.

The two resulting shapes may be declined, if there exists

another shape in the curvature image, which is longer than

any of the two divided shapes. The result of this procedure

is a set of the longest shapes, which are smoothly curved.

Each shape in the set is dilated with a circular structuring

element. After the dilation, each shape represents a region,

which is not used for selecting appropriate edges from the

edge image. As shown in Fig.3, we select all edges, that

exceed a predefined threshold with their intersecting points

in the dilated region. For edges, which have an endpoint

inside the dilated region, the minimum number of intersect-

ing pixels should be smaller than for other edges. This is



Figure 3. Fusion of 2D and 3D data. Shapes from the depth image

are dilated and intersecting edges are selected.

due to the fact, that edges with intersecting endpoints play a

special role in the upcoming combination step and also lead

to better results in the scoring step.

All intersecting edges are added to the set of compo-

nents. In case, an intersecting edge has a corner or if the

sign of the local orientation changes, it is divided into to

smaller edges. A divided edge, that does not have an inter-

secting point with the dilated region, is removed from the

set of components.

3.3. Combination of Components

In the combination step, all components are combined

with each other or smaller shapes nearby in order to obtain

complete ear outlines. In a first combination round, we only

combine components with each other. In a second round,

we also allow other shapes and edges, that were not selected

as components to be combined with ear candidates. This

is done by picking a component and then combine it with

other components. A component, that has been combined

with other components is considered an ear candidate. Thus

we create a new ear candidate, each time a component is

linked with one of the existing ear candidates.

During the creation of new ear candidates, a component

can be adapted to the ear candidate in a number of ways.

The component can either be translated, pruned or interpo-

lated in order to fit to the ear candidates. In Fig. 4, an

example for the combination of an ear candidate and two

components is shown. When comp1 is combined with the

ear candidate, we have to translate the contributing com-

ponent comp1 and fill remaining gaps. In the second step,

comp2 is translated and pruned.

Each time, a new ear candidate is created, we compute

a score, that describes the fitness of this candidate (see Sec.

3.4.3 for more details on the scoring system). However,

without any additional constraints, we would have to com-

bine all components with each other. Many of the created

ear candidates would be redundant and the detection would

Figure 4. Iterative creation of an ear candidate though stepwise

combination and adaptation of components.

be inefficient. Therefore, we introduce a terminating crite-

rion, which prevents the algorithm from doing an exhaus-

tive search through all possible combinations between ear

candidates and components.

Let maxScore be the best score, that has been achieved

by any ear candidate for all components. A newly cre-

ated candidate will only be used in subsequent combina-

tion steps, if its score is higher than 0.7 ∗ maxScore. An

ear candidates with a lower score will be discarded and is

not used in subsequent iterations. In the first iteration, it is

very likely that an ear candidate will satisfy this condition

and a large number of new candidates will be creates. How-

ever, as the combination step proceeds further, an increasing

number of new candidates will be discarded. The more iter-

ations have been completed, the higher the probability, that

an ear candidate with a high score has been created and the

more candidates are dropped.

3.4. Scoring system for ear candidates

Each time an ear candidate and a component are com-

bined, we assign a fitness score to the newly created ear

candidate. The score reflects the similarity of the ear can-

didate with an idealized ear outline. This similarity is ex-

pressed through a number of criteria, a good ear candidate

has to comply with. The fitness score is composed of three

different components, which reflect different properties. We

distinguish between the individual score, that is computed

for each ear candidate, a relative score and a context score.

After the combination step, we select the ear candidate

with the highest score return its bounding box as the de-

tected ear region. If we cannot find an ear candidate with

a larger score than 0.5, we consider the ear to be occluded

and do not return an ear region.

Let Ii be the individual score of the ith ear candidate, Ri

the relative sore and Ci the context score. Furthermore, let

ω1, ω2 and ω3 be weighting factors for each of the scores.

The total fitness score of the ith ear candidate, denoted by

Si can be expressed as follows:

Si = ω1Ii + ω2Ri + ω3Ci (1)

The values for ω should be adapted according to the vari-

ance of each partial score I , R and C. The larger the vari-



Figure 5. Calculation of the sum of local orientations using the

convex full of an ear candidate.

ance between single ear candidates, the higher the weight

of the according partial score.

3.4.1 Individual Score

The individual scores consists of three components, which

measure the cumulated sum of local orientations, the con-

tribution to the sum of local orientations in corners and the

proportion.

The sum of local orientations reflects the expectation,

that an ear candidate should be convex and it should have

a gap (connecting line between p1 and p2 in Fig. 5). We

first compute the convex hull of an ear candidate and define

two points p1 and p2. The points p1 and p2 are the points in

A∪B with the maximal distance, such that all pixels on the

connecting line p1p2 between them are on the convex hull

but not in A ∪B.

As shown in Fig. 5, p1 and p2 are on the opposite side

of the outer helix. We can define a third point p3, which

divides the ear candidate pixels on the convex hull into two

equally sized subsets A and B. Finally, we distinguish be-

tween those pixels of the ear candidate, that are on the con-

vex hull and those that are not. The set of pixels, that are

not on the convex hull is denoted as C.

Let sumhull be the sum of all local orientations in A∪B.

If we have a good ear candidate, this sum is expected to be

larger than 1.5π.

onHull =

{
sumhull

1.5π sumhull ≤ 1.5π

1 otherwise
(2)

We also expect a good and complete ear candidate to be

symmetric. This can be expressed by comparing the sum of

local orientations in A, denoted as sumA and B, denoted as

sumB , with each other. The division by π is necessary for

getting a normalized result between 0 and 1.

ratio =

{ |sumA−sumB |
π |sumA − sumB | ≤ π

1 otherwise
(3)

Based on the curvature sum of all pixels in A ∪ B, we

also calculate a weighting factor, denoted as λ, for the score

contribution of onHull and ratio.

λ =

{
1

onHull onHull ≤ 1
3

1 otherwise
(4)

The outer helix score Io, that measures the fitness of an

ear candidate with respect to its cumulated sum of local ori-

entations is composed of the previously defined coefficients

onHull and ratio, the weighting factor λ and a fourth com-

ponent, which is a penalty score. For a good ear candidate,

the sum of local orientations in C, denoted as sumC , should

be as small an possible. We hence subtract sumC

20 from the

total fitness score. The value of the denominator has been

obtained empirically.

Io = (1− λ) ∗ onHull + λ ∗ ratio− sumC

20
(5)

The larger the different between sumA and sumB , the

higher higher the influence of ratio and the lower the in-

fluence of onHull. This reflects the fact, that incomplete

ear candidates with a small sum of local orientations should

get a better score than those with sum of local orientations

close to 2π. The algorithm will hence be less strict with

incomplete ear candidates than with complete ones.

In addition to the measure of the distribution of local ori-

entations on the ear candidate, we also require, that a good

ear candidate should have as few corners as possible. Cor-

ners are an indication for jagged components or failures dur-

ing the combination step. We hence compare the ratio be-

tween the sum of local orientations in A ∪ B ∪ C, denoted

as sumABC , and the sum of local orientations at all cor-

ners of the component θ. For a good ear candidate, θ should

be as small as possible. In order to increase the impact of

this criterion in cases where θ is large, we use the quadric

function.

Ic = 1−
(

θ

sumABC

)2

(6)

In the last criterion for the individual score, we assure

that the ratio between the major and the minor axis of a

surrounding ellipse should be between 2 : 1 and 3 : 1. Let

ρ be the ratio between the major and the minor axis of an

ear candidate. The proportion score Ip decreases faster with

larger deviations from the ideal ratio.

Ip =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− (ρ−2)2

4 0 < ρ < 2

1 2 ≤ ρ ≤ 3

1− (ρ−3)2

4 3 < ρ < 5

0 otherwise

(7)



All components of the individual score are normalized

values between 0 and 1, whereas higher scores represent

better ear candidates. The individual score for the ith ear

candidate Ii is the mean value of the three components for

this candidate Ioi , Ici and Ipi
.

3.4.2 Relative Score

The relative score compares different ear candidates with

each other and is calculated in two steps. This score rewards

ear candidates, if they are composed of long neighboured

components. First, we calculate a base score, called η. The

base sore s based on the total length of the ear candidate in

pixels l. Because this candidate was built by reconstruction

the ear outline, we subtract the number of pixels that had to

be filled in during the combination step g and the sum of all

distances between all components the current ear candidate

is composed of. This sum is denotes as m.

η = l − g −m (8)

Subsequently, we normalize this score by dividing it by

the maximum value of η for all the ear candidates in the

image. The usage of the quadric function ensures, that ear

candidates, that only have a slightly smaller score η than the

maximum η are rejected. The relative score for the ith ear

candidate Ri in the fused image is defined as follows:

Ri =

{
( ηi

max(η) )
2 ηi > 0

0 otherwise
(9)

3.4.3 Context Score

The scoring system is completed with an estimation of the

ear candidate’s size in relation to the size of the silhouette

of the head in the depth image. We assume that a good

ear candidate is located in the head region of the image and

that the ratio between the height of the ear and the diameter

of the face should be within fixed bounds. These bounds

depend on the image scale and should be set individually

for each capture device. We denote the lower bound for

the ratio between h and d as τ and the upper bound as υ,

respectively.

Moreover, let h be the largest distance between any two

points of the ear candidate. Furthermore, d is the distance

between the edge of the silhouette and the point in the mid-

dle of line segment p1p2 (see Sec.3.4.1). As shown in Fig.6,

the face diameter d is measured orthogonally to the line seg-

ment p1p2. For all yaw poses, the outer ear is located at the

back of the head and d should be pointing towards the nose.

We hence assume that for a good ear candidate, di should

be among the longest diameters for all ear candidates, de-

noted by D. If di is smaller than the mean value of the larger

Figure 6. Estimation of optimal size using context information

from the silhouette (Depth image taken from [13]).

half on D, the ear candidate is rejected. If not, we compute

the ratio between hi and di.

cri =
hi

mean({di ∈ D | di > 0.5max(D)}) (10)

Dependent on cri, we can now compute the context score

Ci according to equation 11. Note that the context score de-

creases faster if cri is too small. This reflects that the outer

ear can be relatively large, compared to the face diameter.

We hence prefer to keep large ear candidates. If the ear can-

didate is too small, however, it should receive a low score.

Ci =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 τ ≤ cri ≤ υ

1− 2(τ − cri)
2 cri > τ − 1

2

1−√
cri − υ cri < υ + 1

0 otherwise

(11)

4. Experimental Setup and Results
For obtaining the detection performance of our approach,

we conducted two experiments on two different datasets. In

the first experiment, we evaluate the impact of the image

domain fusion. This experiment is conducted on the UND-

J2 dataset [13] and on the UND-NDOff-2007 dataset [5].

In the second experiment, we show the robustness of our

approach to rotation and flip.

The UND-J2 collection contains 1776 unique left profile

images from 404 different subjects (-90 degrees yaw pose).

Four images had to be removed from the database, because

their texture and the associated depth images did not be-

long to the same subject. The UND-J2 dataset also contains

some images, which are off pose. However, we did not ex-

clude these images from our test set.

The UND-NDOff dataset was originally collected for the

purpose of face recognition research. For an ear detection
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Figure 7. Subfigures (a)-(e) show examples for successful detections for left and right ears in images with pose variation, partial occlusion,

missing depth data and rotation. Subfigure (f) shows an example, of an ear candidate with missing components and subfigure (g) shows a

detection failure (Original images were taken from[13] and [5])

.

system, it represents a more realistic, but also more chal-

lenging scenario, than the profile views of UND-J2. We se-

lected 2785 images with yaw poses between ±90 and ± 30

degrees, whereas yaw poses of ±90 are profile images and

yaw poses of ±30 are half profiles. In some cases the data

collection contains different combinations between yaw and

pitch poses. If different pitch poses are available for a given

yaw pose, all pitch poses were included to the test set. The

UND-NDOff-2007 dataset contains images where the ear is

partly or fully occluded by hair and some subjects are wear-

ing earrings. There is also a small number of images, were

the subject has moved during the acquisition, which results

in poor image quality.

The detection rates are calculated on the basis of manu-

ally created ground truth data. For creating the ground truth,

we marked the ear region with a surrounding rectangle, and

stored the coordinates of the upper left and the lower right

corner. A detection for a given image pair is considered

to be successful, if the overlap O between the ground truth

pixels G and the pixels in the detected region R is at least

50%.

O =
2|G ∩ E|
|G|+ |E| (12)

4.1. Impact of Image Domain Fusion

In the first experiment, we show the impact of the image

domain fusion and the context score on the detection results.

In Fig.7(a) - 7(c), some examples for detected ears with par-

tial occlusion and different poses are shown. The detection

rates in Tab. 2 show, that the proposed ear detection algo-

rithm is robust to pose variation. Although the detection rate

drops, with increasing deviation from ±90 degrees, it still

detects more than 75% of the ears correctly, if the yaw pose

is ±45 degrees. This also includes images, where the ear is

partially occluded, as shown in Fig.7(b) and images, where

the algorithm correctly recognizes, that the ear is occluded.

Image domain fusion and the usage of context informa-

tion generally improve the detection rate of the proposed

method. The improvement gets more significant with larger

deviations from ±90 degrees yaw pose. We can extract

Table 2. Comparison between the detection rates with and without

image domain fusion on UND-J2 [13] and UND-NDOff-2007 [5].

dataset yaw pose depth only,
no context

fused with
context

UND-J2

-90 92,9% 99%

UND-NDOff-2007

-90 86,9% 96,5%

-60 70,9% 83,5%

-45 50,5% 76,5%

-30 23,7% 58,9%

30 19,8% 42,7%

45 49,4% 76%

60 86,1% 85%

90 91,8% 93,5%

good ear candidates form profile images, even without im-

age domain fusion. Moreover, the number of ear candidates,

that get rejected though the context score is small. With

larger pose variations, the probability increases, that the 3D

data in the ear region is of low quality and hence that many

shapes from other image regions are selected. Further, we

get an increasing number of false ear candidates from the

depth image. By using image domain fusion an context in-

formation, we can give preference to the correct ear candi-

date. From this we an conclude, that the usage of context

information substantially contributes to the algorithm’s ro-

bustness to pose variation.

In some cases, the detected ear region is too small (see

Fig.7(f)), because the algorithm fails to find all necessary

ear components. This happens, when the number of shapes

from the depth image is not sufficient or if the edges in the

texture images are interrupted. This issue, however, can be

addressed by allowing the algorithm to choose more shapes

from the depth image before starting the image domain fu-

sion.

Especially for images of yaw poses ±30 degrees, there



Table 3. Results on rotated and flipped images from UND-J2 [13].

image orientation detection rate
No rotation 99%

180 degrees 98,6%

Mirrored 99%

90 degrees clockwise 99%

90 degrees anticlockwise 98,8%

is another common type of error. Fig.7(g) illustrates an ex-

ample. This error is mainly responsible for the drop in the

detection rate at ±30 and occurs if the ear is not visible in

the image. In these cases, the algorithm selects shape from

the nose or the eye region and creates ear candidates from

them. Often, these ear candidates are rejected because of

their low context score, but it happens that they are good

enough for not being rejected. If there is no better ear can-

didate available, the algorithm will then mark it as the ear

region.

4.2. Rotation Invariance

For evaluating the rotation invariance, we rotated the im-

ages from the UND-J2 dataset by 90 degrees clockwise and

anticlockwise. Furthermore, we have run simulations on

images rotated by 180 degrees and on images, that have

been mirrored (also referred to as vertical flip). As it can be

seen in Tab.3, the detection rate stays stable for all rotations.

Two examples for successfully detected ears in rotated im-

ages are shown in Fig.7(d) and 7(e).

The detection rates for left and right profiles (yaw pose

±90 degrees) in Tab.2 in connection with the results on the

mirrored images, stresses, that the proposed method can be

used for left and right ears, without changes in the parameter

set.

5. Conclusion

In this paper, we have presented a new approach to ear

detection, which proposes a scoring system for ear compo-

nents, that are derived from co-registered texture and depth

images. The proposed method utilizes the distribution of

local orientations, the length of components and context in-

formation for detection of the outer ear in images from mul-

tiple poses and for left and right ears. Moreover, we have

shown that our algorithm is invariant to rotation and robust

to partial occlusion, while maintaining the same detection

accuracy than previous work.

Our algorithm does not only localize ears, but also esti-

mates their orientation, which is important for normaliza-

tion. In the future, we plan to use the ear outlines, which

are a side-product of the localization approach as a basis for

normalization and feature extraction. At the same time, we

are planning to improve the robustness to pose variation, by

conducting more experiments on context information. Ad-

ditionally, we plan to improve the throughput by exploiting

the fact, that the combination step can easily be parallelized.
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