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Abstract—In this work adaptive Bloom filter-based transforms
are applied in order to mix binary iris biometric templates
at feature level, where iris-codes are obtained from both eyes
of a single subject. The irreversible mixing transform, which
generates alignment-free templates, obscures information present
in different iris-codes. In addition, the transform is parameterized
in order to achieve unlinkability, implementing cancelable multi-
biometrics. Experiments which are carried out on the IITD Iris
Database version 1.0 confirm the soundness of the proposed
approach, (1) maintaining biometric performance at equal error
rates below 0.5% for different feature extraction methods and
fusion scenarios and (2) achieving a compression of mixed
templates down to 10% of original size.

I. INTRODUCTION

Research confirms an extraordinarily high level of statistical
reliability for iris recognition systems [1], [2]. Daugman’s
algorithm [3], which forms the basis of the vast majority of
today’s iris recognition systems comprises four stages: (1)
image acquisition, in which an image of a subject’s eye is
captured; (2) pre-processing, which involves the detection of
the iris and un-rolling of the iris to a normalized texture (3)
feature extraction, in which binary feature vectors, i.e. iris-
codes, are generated; and (4) feature comparison, where iris-
codes are aligned applying circular bit shifts, and dis-similarity
scores are estimated based on the fractional Hamming dis-
tance. Biometric recognition represents the strongest form
of personal identification, however, physiological biometric
characteristics are not secret and cannot be revoked or reissued
causing several vulnerabilities that violate individuals’ privacy,
e.g. tracking subjects without consent. In addition, it has been
demonstrated that spoofed iris images can be re-constructed
from stored iris-codes [4].

Biometric template protection schemes [5] which are cate-
gorized as biometric cryptosystems [6] and cancelable bio-
metrics [7] offer solutions to privacy preserving biometric
authentication. Cancelable biometrics consist of intentional,
repeatable distortions of biometric signals based on transforms
that provide a comparison of biometric templates in the
transformed domain, i.e. biometric templates are permanently
protected. In accordance with the ISO/IEC IS 24745 [8] on
biometric information protection, technologies of cancelable
biometrics meet the two major requirements of irreversibility
and unlinkability. On the one hand knowledge of the protected
template can not be used to determine any information about

the original biometric sample, while it should be easy to
generate the protected template (irreversibility). On the other
hand different versions of protected biometric templates can be
generated based on the same biometric data, while protected
templates should not allow cross-matching (unlinkability).
The majority of existing approaches to cancelable biometrics
report a significant decrease in biometric performance which
is caused by two issues: (1) local neighborhoods of feature
elements are obscured and (2) transformed enrollment tem-
plates are not “seen”, i.e. alignment can not be performed
properly at the time of comparison [5]. This implies, that low
intra-class variability at high inter-class variability is consid-
ered a fundamental premise for biometric template protection
schemes which can only be achieved in case biometric traits
are acquired under favorable environmental conditions. In
order to overcome this restriction, multi-biometric template
protection schemes [9], [10] have been introduced, since a
combination of different biometric characteristics generally
leads to higher accuracy [11]. Within a conventional biometric
system a fusion of different biometric information can be per-
formed at various stages yielding feature level, score level, and
decision level fusion [12], as defined in the ISO/IEC TR 24722
[13] on multimodal and other multi-biometric fusion. While
preliminary scores are not available within the vast majority of
biometric cryptosystems, cancelable multi-biometric systems
based on score level fusion can be constructed analogue to
conventional biometric systems. For both technologies biomet-
ric fusion based on decision level can easily be implemented
combining final decisions. However, score and decision level
fusion require a separate storage of protected templates, i.e.,
with respect to template protection, feature level has been
identified as the only suitable level of fusion [14]. Performing
multi-biometric template protection at feature level represents
a great challenge since it requires a generic framework in order
to establish a common representation of biometric features [9].
In addition, feature alignment turns out to be a critical issue
since protected templates, which comprise information of more
than one biometric instance, are expected to require a complex
alignment process. So far, hardly any alignment-free (multi-
biometric) template protection schemes have been proposed.

A. Contribution of Work

The proposed work builds upon the approach we proposed
in [15] and the concept of mixing multiple instances of a



single biometric characteristic, which has been introduced in
[16] for fingerprints. In [15] the basic concept of Bloom filter-
based cancelable iris biometrics has been introduced, however,
within the presented work emphasis is put on cancelable multi-
biometrics which represents a more challenging task [10], i.e.
we significantly exented existing work according to several
aspects, tackling the aforementioned issues. We demonstrate
the feasibility of multi-biometric Bloom filter-based template
protection by introducing the recently proposed concept of
mixing biometric features, which originate from different bio-
metric characteristics, into a single protected template, to iris
biometrics. For this purpose we asses multi-instance single-
algorithm and multi-instance multi-algorithm fusion scenarios
in order to obtain alignment-free mixed templates. Binary iris-
biometric feature vectors extracted from both eyes of a subject
are mixed to a single protected template at feature level, which
highly increases security while at the same time biometric per-
formance is maintained. Implementing cancelable biometrics
the proposed technique exhibits the properties of irreversibility
and unlinkability [8].

B. Organization of Article

The remainder of this article is organized as follows: re-
lated work with respect cancelable iris biometrics and multi-
biometric template protection is briefly summarized in Sect
II. In Sect. III the proposed mixing approach is described in
detail. Experimental results are presented in Sect. IV. Finally,
conclusions are drawn in Sect. V.

II. RELATED WORK

Biometric template protection schemes [5] are commonly
classified as biometric cryptosystems and cancelable biomet-
rics. Since the presented approach represents an instance of
cancelable multi-biometrics, in this section we will merely
focus on these technologies. Ratha et al. [7] were the first to
introduced the concept of cancelable biometrics. In their work
the authors apply image-based block permutations and surface-
folding in order to obtain revocable biometric templates. In
further work [17] the authors propose different techniques
to generate cancelable iris biometrics based on non-invertible
transforms and biometric salting, which are applied in image
and feature domain. In order to preserve a computational
efficient alignment of resulting iris-codes based on circular
bit-shifting, iris textures and iris-codes are obscured in a
row-wise manner, which means adjacency of pixels and bits
is maintained along x-axis in image and feature domain,
respectively. In [18] block re-mapping and image wraping
have been applied to normalized iris textures. For both types
of transforms a proper alignment of resulting iris-codes is
infeasible causing a significant decrease of biometric perfor-
mance. In [19] several enrollment templates are processed to
obtain a vector of consistent bits. Revocability is provided by
encoding the iris-code according to a subject-specific random
seed. In case subject-specific transforms are applied in order
to achieve cancelable biometrics, these transforms have to be
considered compromised during inter-class comparisons [20].

Subject-specific secrets, be it transform parameters, random
numbers, or any kind of passwords are easily compromised,
i.e. performance evaluations have to be performed under the
“stolen-secret scenario”, where each impostor is in possession
of valid secrets. In [21] cancelable iris templates are achieved
by applying sector random projection to iris images. Again,
recognition performance is only maintained if subject-specific
random matrices are applied. In [22] non-invertible iris-codes
are computed by thresholding inner products of the feature
vector with randomly generated vectors. The random vectors
are created by using a per-subject secret and a pseudo ran-
dom number generator. Several normalized iris textures are
multiplied with a random kernel in [23] to create concealed
feature vectors. In [15] we proposed cancelable iris biometrics
based on adaptive Bloom filters. The application of Bloom
filter-based transforms is shown to be irreversible and achieves
an alignment-free representation of features, at the same
time biometric performance is maintained for different feature
extraction algorithms.

Focusing on multi-biometric template protection [10] the
vast majority of approaches implement biometric cryptosys-
tems. A multi-biometric cryptosystem based on the fuzzy
commitment scheme [24] was proposed in [25], in which
binary fingerprint and face features are combined. In [14] two
different feature extraction algorithms are applied to 3D face
data yielding a single sensor scenario. The authors provide
results for feature level, score level and decision level fusion.
In order to obtain a comparison score the number of errors cor-
rected by the error correction code are estimated. Best results
are obtained for the multi-algorithm fusion at feature level. In
[26] a fuzzy vault scheme [27] based on fingerprint and iris is
presented. The authors demonstrate that a combination of bio-
metric modalities leads to increased accuracy of the template
protection scheme. In [28] two different feature extraction
methods are combined to achieve cancelable face biometrics.
PCA (principal component analysis) and ICA (independent
component analysis) coefficients are extracted and both feature
vectors are randomly scrambled and added in order to create
a transformed template. A sensible rearrangement of bits in
iris-codes in order to provide a uniform distribution of error
probabilities within a fuzzy commitment scheme is introduced
in [29]. The rearrangement allows a more efficient execution
of error correction codes combining the most reliable bits
generated by different feature extraction algorithms. In rather
recent work [9] results on multi-biometric fuzzy commitment
schemes and fuzzy vault schemes based on fingerprint, face
and iris are reported. In order to obtain a common feature
representation for each type of template protection scheme
the authors propose different embedding algorithms, e.g. for
mapping a binary string to a point set. In [30] a multi-biometric
template protection system employing decision level fusion of
multiple protected fingerprint templates is proposed.
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Fig. 1. Insertion of an element x ∈ S into a generalized Bloom filter b of
length n where k different hash functions are applied.

III. BLOOM FILTER-BASED MIXING OF BINARY
BIOMETRIC TEMPLATES

A Bloom filter [31] is a space-efficient probabilistic data
structure representing a set in order to support membership
queries. In addition to an efficient storage and rapid processing
of queries, Bloom filters convince by their wide field of appli-
cations, e.g. database applications [32] or network applications
[33]. Basically, a Bloom filter b is a bit array of length n,
where initially all bits are set to 0. In order to represent a
set S a Bloom filter traditionally utilizes k independent hash
functions h1, h2, ..., hk with range [0, n−1]. For each element
x ∈ S, bits at positions hi(x) of Bloom filter b are set to 1, for
1 ≤ i ≤ k, as shown in Fig. 1. A bit can be set to 1 multiple
times, but only the first change has an effect. In order to test
whether an element y is in S, it has to be checked whether
all position of hi(y) in b are set to 1. If this is the case, it
is assumed that y is in S with a certain probability of false
positive. If not, clearly y is not a member of S.

We adapt the original concept of a Bloom filter in two ways:
1) One trivial transform h is applied to each element

x ∈ S instead of multiple hash functions. We exploit the
transform h to incorporate an application and potentially
also subject-specific auxiliary data AD , which are
XORed with the element. In the context of biometric
template protection hash functions would not be resistant
to brute force attacks since feature elements are expected
to be small, consisting only of a few bits;

2) Given a Bloom filter b of length n we restrict to inserting
l elements, where l ≤ n. In case of uniformly distributed
data, for inserting a total of l elements 1−(1−1/n)l bits
are expected to be set to 1. In order to meet this require-
ment parts of feature elements are mapped to different
Bloom filters, i.e. a set of Bloom filters represents the
protected template. Since we focus on a multi-biometric
scenario, l represents the sum of elements generated
by at least one biometric feature extractor, which is
applied to multiple biometric characteristics (e.g. two
eye instances). In the proposed approach, iris-biometric
feature vectors of two different eyes are extracted, i.e.
l = l1+ l2. In case the same feature extractor is applied
to both eyes of a subject it is expected that l1 = l2. The
approach can be generalized, incorporating M different
feature vectors where l =

∑M
i=1 li. In order to avoid an

inbalanced distribution of features, binary feature vectors
of similar size are recommended.

The proposed mixing approach comprises three major steps
which are depicted as part of Fig. 2: (1) the extraction of
feature vectors from both eyes of a subject; (2) the proposed
Bloom filter-based mixing transform which is utilized to merge
two given feature vectors into a single protected template; (3)
the storage and comparison of cancelable mixed templates. In
the following subsections the Bloom filter-based mixing trans-
form, according multi-biometric template protection, compar-
ison of protected templates, and biometric data compression
are described in detail.

A. Bloom Filter-based Mixing Transform

In the proposed system Bloom filters are utilized in order to
achieve an alignment-free representation of iris-codes. Generic
iris recognition systems [2] extract binary feature vectors
based on a row-wise analysis of normalized iris textures, i.e.
iris-codes typically represent two-dimensional binary feature
vectors of width W and height H (see Fig. 5 (e)-(f)). In the
proposed scheme iris-codes are divided into K blocks of equal
size, where each column consists of w ≤ H bits. In case
w < H , columns consist of the w upper most bits, i.e. features
originating from outer iris bands, which are expected to con-
tain less discriminative information, are ignored. Subsequently,
the entire sequence of columns of each block is successively
transformed to corresponding locations within Bloom filters,
that is, a total number of K separate Bloom filters of length
n = 2w form the template of size K · 2w. The transform h
is implemented by mapping columns within 2D iris- codes
to the indexes of their decimal value, which is shown for
two different codewords (=columns stemming from left and
right eye) as part of Fig. 2, for each column x ∈ {0, 1}w, the
mapping is defined as,

b[h(x)⊕AD] = 1, with h(x) =
w−1∑
j=0

xj · 2j , (1)

where AD represents an application-specific secret which is
incorporated in order to provide unlinkability. As shown in Fig.
2 codewords of different iris-codes which originate from equal
parts in the iris texture are mapped to identical Bloom filters,
implementing the concept of mixing biometric characteristics
at feature level [16].

One major advantage of the proposed transform is that it
is alignment-free to a certain degree, i.e. generated templates
(=sets of Bloom filters) do not need to be aligned at the
time of comparison. Equal columns within certain blocks
(=codewords) are mapped to identical indexes within Bloom
filters, i.e. self-propagating errors caused by an inappropriate
alignment of iris-codes are eliminated (radial neighborhoods
persist). The rotation-compensating property of the proposed
system comes at the cost of location information of iris-
code columns. At block boundaries miss-alignment of iris-
codes will distribute a certain amount of potentially matching
codewords among different blocks, which would be mapped
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Fig. 2. The Bloom filter-based transform which mixes codewords of different biometric feature vectors in according Bloom filters. The highlighted codewords
of different iris-codes are transformed to 21 and 26, XORed with AD and mixed in Bloom filter b2, changing element at index 39 and also index 40 to 1.

to neighbored Bloom filters. In experiments where ±8 bit
shifts are required to align iris-codes properly, miss-alignment
did not affect biometric performance. In case larger rotation
angles need to be anticipated, multiple columns of right and
left neighbor-block can be mapped to the Bloom filter under
construction in order to overcome this drawback.

The proposed Bloom filter-based mixing transform is de-
signed to fulfill the two major requirements of biometric
information protection [8], irreversibility and unlinkability.
Protected biometric templates, for which no formal model
exists, are considered secure in case these requirements are
achieved.

1) Irreversibility: original positions of codewords within
iris-codes are concealed, i.e. given a Bloom filter b it is not
clear from which column a distinct 1-bit in the protected
template originated. By mixing codewords of different biomet-
ric feature vectors, it is not even clear which feature vector
a distinct 1-bit in the protected template originated from.
In addition, high correlation between codewords, especially
neighboring ones, is expected. Consequently, a significant
amount of codewords are mapped to identical positions in
Bloom filters even for small values of l. Assume |b| bits are
set to 1 within a Bloom filter after inserting l codewords,
i.e. |b| different codewords occur in the concatenation of l1
and 2 columns of bits. Hence, the probability of re-mapping
a bit to a certain position is 1− |b|/l. For a potential attacker
the reconstruction of the original iris-code part involves an
arranging of |b| codewords to l positions. For |b| ≤ l the
theoretical amount of possible sequences is recursively defined
by f(|b|, l) where each of the |b| codewords have to appear at

least once within l columns,

f(|b|, l) =


1, if |b| = 1,

|b|l −
|b|−1∑
i=1

(|b|
i

)
· f(i, l) otherwise.

(2)

In other words, all sequences where less than |b| codewords ap-
pear are subtracted from the number of all possible sequences,
|b|l. With respect to the nature of a given biometric input
Fig. 3 theoretically indicates the security based on Eq. (2),
which is formally proven in Appendix A, for diverse system
configurations. Note the rapid increase of possible sequences
even for small values of |b| (logarithmic scales of both axis).
Peaks are located around 3l/4, in case of l = |b| we get
f(l, l) = l! and f(1, l) = 1. For instance, for l = 4 and
|b| = 2 we get f(2, 4) = 24 −

(
2
1

)
· f(1, 4) = 16− 2 · 1 = 14

possible sequences, for l = 4 and |b| = 3 we get f(3, 4) =
34−

(
3
1

)
·f(1, 4)−

(
3
2

)
·f(2, 4) = 81−3·1−3·14 = 36 possible

sequences and for l = 4 and |b| = 4 we get f(4, 4) = 4! = 24
possible sequences and so forth.

2) Unlinkability: unlinkability is provided by incorporating
an application and subject specific bit vector, denoted by
AD ∈ {0, 1}w, which is XORed with a processed codeword x
prior to mapping it to a Bloom filter b, b[h(x)⊕AD] = 1. Al-
ternatively, different types of hash functions could be applied
in different applications, or a single hash function could be
applied based on an application specific seed. In experiments
it will be demonstrated that for randomly generated bit vectors
it is infeasible for potential attackers, that have access to the
reference database of two or more protected systems, to cross-
match pairs of protected templates extracted from a single
subject.
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B. Multi-biometric Template Protection

In accordance with ISO/IEC TR 24722 [13] multi-biometric
fusion is yielded where we consider two scenarios:

• Multi-instance single-algorithm mixing: a single feature
extraction algorithm is applied to different instances (i.e.,
eyes). Since feature extraction is applied to normalized
iris textures of fixed size in this scenario the number
of codewords per block (of both iris-codes), which are
mixed in a distinct Bloom filter, is l, where l1 = l2 = l/2.

• Multi-instance multi-algorithm mixing: different feature
extraction algorithms are applied to different instances,
which is expected to cause fewer collision within Bloom
filters in case constitutions of feature vectors significantly
differ. Again, feature extraction algorithms are applied to
normalized iris textures of fixed size, while the size of
resulting iris-codes and, thus, the number of codewords
per block, may differ, l1 6= l2. Still codeword which
originate from the same area within the iris texture are
mixed in distinct Bloom filters.

In case iris-codes exhibit a significantly different amount
of bits weights are automatically assigned to according fea-
ture vectors since more codewords of a single algorithm are
mapped to all Bloom filters. In order to avoid an automatic
assignment of weights the amount of mixed codewords can be
balanced by reducing the amount of transformed codewords of
the iris-code of greater size, e.g. by incorporating only most
reliable columns. In experiments different feature extraction
algorithms are utilized, which are applied after performing
the same segmentation process to both eyes and extract the
same amount of bits, i.e. l1 = l2 = l/2 holds for conducted
evaluations. The choice of different feature extraction algo-
rithms which generate iris-codes of same size maximizes the
security of the proposed scheme. Since, in the proposed multi-
algorithm fusion scenario, information of two iris-codes is
obscure within a single protected template the reconstruction
of one of these iris-codes is lower-bounded by the number of
codewords within blocks of the shorter iris-code, which are

mapped to according Bloom filters.

C. Comparison of Protected Templates

Typically, comparisons between binary biometric feature
vectors are implemented by the simple XOR operator applied
to a pair of binary biometric feature vectors. The sum of all
detected disagreements between any corresponding pairs of
bits divided by the amount of compared bits yields the frac-
tional Hamming distance (HD) as a measure of dissimilarity
between pairs of binary biometric feature vectors [3]. Let |b|
denote the amount of bits within a Bloom filter b, which are
set to 1. Then the dissimilarity DS between two Bloom filters
bi and bj is defined as,

DS (bi, bj) =
HD(bi, bj)

|bi|+ |bj |
|bi|, |bj | 6= 0. (3)

If pairs of Bloom filters would be compared by merely esti-
mating Hamming distances between these, mis-matching bits
between Bloom filters in which fewer bits are set to 1 would
be weighted less and vice versa. Obviously, DS is computed
as efficient as HD while DS does not have to be computed at
numerous shifting positions. In order to incorporate masking
bits obtained at the time of pre-processing, columns of iris-
codes which are mostly affected by occlusions must not be
mapped to Bloom filters, i.e. a separate storage of bit masks
is not required.

D. Biometric Data Compression

The original template sizes are W1×H1 and W2×H2 bits.
In the proposed scheme the template is divided into W1/l1 =
W2/l2 = K blocks of length l1 and l2 resulting in a template
size of 2w ·K = 2w ·W1/l1 = 2w ·W2/l2 where w ≤ H1 and
w ≤ H2. A compression is achieved if,

K · 2w < W1 ·H1 +W2 ·H2 (4)

applies. In case l1 = l2 = l/2 and we set l = 2q we get,

K · 2w < 2W ·H ⇔ 2w−q+1/H < 1, (5)

which is most likely the case as we will demonstrate in
experiments. For instance, for two given iris-codes of size
2048 with W1 = W2 = 256 and H1 = H2 = 8, and the
setting l = 128 and w = 8 we get 256/64 ·28 = 1024 < 2048,
i.e. a compression down to 50% of the original size is
achieved (28−7+1/8 = 0.5). Sizes of transformed templates
are operated by setting parameters l and w. Both, increasing
l and decreasing w reduces the overall size of the resulting
template, see Eq. 5. Again the major advantage of the proposed
transform is that compared to existing approaches to biometric
template compression, e.g. [34], a comparison of compressed
templates does not require an optimal alignment within the
presented scheme. It is important to note that algorithms may
extract binary templates where distinct parts comprise features
which should not be arranged in single columns, e.g. in [35]
different parts of iris-codes represent real and complex values
or in [36] different parts of iris-codes represent minima and
maxima extracted from different wavelet subbands.
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Fig. 4. Sample pairs of left and right 320× 240 pixel NIR eye images of
the IITD Iris Database version 1.0, numbers in captions refer to identifiers.

IV. EXPERIMENTS

Performance is estimated in terms of false non-match rate
(FNMR) at a targeted false match rate (FMR) and equal error
rate (EER). The FNMR of a biometric system defines the
proportion of genuine attempt samples falsely declared not
to match the template of the same characteristic from the
same user supplying the sample. By analogy, the FMR defines
the proportion of zero-effort impostor attempt samples falsely
declared to match the compared non-self template. As score
distributions overlap EERs are obtained, i.e the system error
rate where FNMR = FMR.

A. Experimental Setup

Experiments are carried out using the IITD Iris Database
version 1.01 which comprises 2 240 320×240 NIR images
from 224 different subjects where for each subject the first
five iris images were acquired from the left eye while the
rest five images were acquired from the right eye. For each
subject five pairs of eye images are formed for genuine
comparisons, and one pair of eye images is applied within

1IITD Iris Database version 1.0,
http://www4.comp.polyu.edu.hk/∼csajaykr/IITD/Database Iris.htm

imposter comparisons leading to a total number of 5· 4/2
· 224 =2 240 genuine comparisons and 224·223/2=24 976
imposter comparisons. Sample images of left and right eyes
of three different subjects are shown in Fig. 4. It is important
to note that images of left and right eyes are not acquired
using the JIRIS camera where only single eyes are captured,
i.e. optimal alignments between pairs of left and right eyes
must not be expected to be achieved at identical shifting
positions. At pre-processing the iris of a given sample image
is detected, un-wrapped to an enhanced rectangular texture of
512× 64 pixel, shown in Fig. 5 (a)-(d) applying the weighted
adaptive Hough algorithm proposed in [37]. The two-stage
segmentation algorithm employs a weighted adaptive Hough
transform iteratively refining a region of interest to find an
initial center point, which is utilized to polar transform the
image and extract polar and limbic boundary curves one after
another from an (ellipso-) polar representation.

In the feature extraction stage custom implementations2 of
two different iris recognition algorithms are employed where
normalized iris textures are divided into stripes to obtain 10
one-dimensional signals, each one averaged from the pixels of
5 adjacent rows (the upper 512× 50 rows are analyzed). The
first feature extraction method follows an implementation by
Masek [35] in which filters obtained from a LogGabor function
are applied. Within this approach the texture is divided into 10
stripes to obtain 5 one-dimensional signals, each one averaged
from the pixels of 5 adjacent rows, hence, the upper 512× 50
pixel of preprocessed iris textures are analyzed. A row-wise
convolution with a complex LogGabor filter is performed on
the texture pixels. The phase angle of the resulting complex
value for each pixel is discretized into 2 bits. The 2 bits of
phase information are used to generate a binary code, which
therefore is 512×20 = 10 240 bit. This algorithm is somewhat
similar to Daugman’s use of LogGabor filters, but it works
only on rows as opposed to the 2-dimensional filters used
by Daugman. The second feature extraction algorithm was
proposed by Ma et al. [36]. Within this algorithm a dyadic
wavelet transform is performed on 10 signals obtained from
the according texture stripes, and two fixed subbands are
selected from each transform resulting in a total number of 20
subbands. In each subband all local minima and maxima above
an adequate threshold are located, and a bit-code alternating
between 0 and 1 at each extreme point is extracted. Using
512 bits per signal, the final code is again 512 × 20 = 10
240 bit. Sample iris-codes generate by both feature extraction
methods are shown in Fig. 5 (e)-(f). For the choice of feature
extraction algorithms W1 =W2 and H1 = H2, which implies
that l1 = l2 = l/2 applies.

B. Performance Evaluation
The performance rates of the original systems are sum-

marized in Table I. Without a doubt a combination of both
eyes, where we applied a simple sum-rule fusion at score-
level, significantly improves the biometric performance of the

2USIT – University of Salzburg Iris Toolkit v1.0,
http://www.wavelab.at/sources/

http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Iris.htm
http://www.wavelab.at/sources/


(a) Acquisition (b) Detection

(c) Iris texture

(d) Enhanced iris texture

(e) Iris-code 1-D Log-Gabor filter

(f) Iris-code Ma et al.

Fig. 5. Iris detection, pre-processing, and applied feature extraction for image
001-02 of the IITD Iris Database version 1.0.

TABLE I
ORIGINAL SYSTEMS: NATIVE PERFORMANCE RATES (IN %) FOR SINGLE-

AND MULTI-INSTANCE SCENARIOS FOR BOTH FEATURE EXTRACTORS
(FNMRS ARE OBTAINED AT FMR=0.01%).

Scenario Left/ right eye ø Both eyes
1-FNMR EER 1-FNMR EER

Single-algorithm 95.448 1.746 99.239 0.4511D LogGabor

Single-algorithm 94.587 1.875 98.703 0.495Ma et al.

Multi-algorithm 95.053 1.793 99.016 0.477

system leading to EERs of ≈0.5%. While the 1D LogGabor
feature extraction slightly outperforms the algorithm of Ma et
al. a fusion of both algorithms does not improve the overall
biometric performance.

A common way to estimate the average entropy (' amount
of mutually independent bits) of biometric feature vectors
is to measure the provided “degrees-of-freedom” which are
defined by d = p(1− p)/σ2, where p is the mean HD and σ2

the corresponding variance between comparisons of different
pairs of binary feature vectors. In case all bits of each binary
feature vector of length z would be mutually independent,
comparisons of pairs of different feature vectors would yield
a binomial distribution, B(z, k) =

(
z
k

)
pk(1−p)z−k =

(
z
k

)
0.5z

and the expectation of the Hamming distance would be
1/z · E(X ⊕ Y ) = zp · 1/z = p = 0.5, where X and Y

TABLE II
1-FNMRS (IN %) AT FMR=0.01% FOR DIFFERENT CONFIGURATIONS OF

THE BLOOM FILTER-BASED MIXING TRANSFORM.

Fusion Scenario: Word size Block size l/2 (bits)
Multi-instance- w (bits) 25 26 27 28 29

Single-algorithm 10 98.97 98.47 97.45 95.66 81.48

1D Log Gabor 9 99.28 98.43 97.31 88.64 –
8 99.28 98.34 93.69 – –

Single-algorithm 10 98.38 97.31 96.24 92.62 62.34

Ma et al. 9 98.74 96.51 95.21 74.46 –
8 98.74 95.84 82.06 – –

10 99.28 98.12 96.01 95.25 73.47
Multi-algorithm 9 98.97 97.89 94.05 78.44 –

8 98.83 97.45 88.72 – –

TABLE III
EERS (IN %) FOR DIFFERENT CONFIGURATIONS OF THE BLOOM

FILTER-BASED MIXING TRANSFORM.

Fusion Scenario: Word size Block size l/2 (bits)
Multi-instance- w (bits) 25 26 27 28 29

Single-algorithm 10 0.430 0.455 0.495 0.969 4.744

1D Log Gabor 9 0.495 0.499 0.733 3.257 –
8 0.493 0.560 2.514 – –

Single-algorithm 10 0.477 0.497 0.499 1.478 7.930

Ma et al. 9 0.483 0.499 1.332 6.447 –
8 0.495 0.731 4.130 – –

10 0.428 0.453 0.521 1.663 6.678
Multi-algorithm 9 0.430 0.453 0.975 5.499 –

8 0.453 0.743 3.870 – –

are two independent random variables in {0, 1}. In reality
p decreases to 0.5 − ε while Hamming distances remain
binomially distributed with a reduction in z in particular,
B(d, 0.5) [38]. The 1D Log-Gabor feature extractor achieves
a total of 592 degrees of freedom for a mean of 0.493 and an
according standard deviation of 0.021. The algorithm of Ma
et al. yields 1291 degrees of freedom for a mean of 0.498 and
a standard deviation of 0.013. From the estimated degrees-
of-freedom an average iris-code extracted by the algorithm of
Ma et al. exhibits an average length of '8 (10240/1291) bit.
By analogy, for the 1D LogGabor feature extractor according
sequences exhibit an average length of '17 (10240/592) bit
(cf. Fig. 5(e)-(f)).

Focusing on the Bloom filter-based mixing approach we
merely focus on multi-instance fusion scenarios. For the
proposed system extracted iris-codes are divided in an upper
512×10 bit half and a lower 512×10 bit half as these represent
real and complex values or minima and maxima extracted from
different wavelet subbands, respectively. Table II and Table III
summarize obtained 1-FNMRs and EERs for different word
sizes w and block sizes l/2 for all fusion scenarios. Clearly,
rotations of± 8 bits are compensated. Throughout experiments
best result were achieved for the maximum word size of 10
bits, i.e. K = 10240/(32 · 10) = 32 blocks of l = 64
codewords which are mapped to 32 Bloom filters of size n =
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(c) Fusion, w = 10

Fig. 6. ROC curves in the multi-instance fusion scenario for (a) 1D LogGabor feature extractor (b) algorithm of Ma et al., and (c) a fusion of both algorithms.
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Fig. 7. Proportion of re-mapped codewords, 1-|b|/l, for different block sizes l/2 and word sizes w and different multi-instance fusion scenarios.

2w = 210. The receiver operation characteristic (ROC) curves
for w = 10 are depicted in Fig. 6. Biometric performance is
maintained (or improved) for small block sizes, in contrast to
the original systems the combination of different algorithms
improves biometric performance, e.g. for the setting w = 10
and l/2 = 25. Biometric performance is also maintained for a
single-instance scenarios as we have shown in [15] based on a
different dataset. Obviously, the applied DS metric represents
an improved biometric comparator. For greater block sizes
(e.g. l/2 = 28) biometric performance decreases. While an
increase of block sizes provides a higher degree of rotation-
invariance, it increases the chance that identical codewords
occur within blocks, i.e. local information is lost leading to a
greater overlap of intra- and inter-class score distributions.

C. Privacy Threats and Adversary Model

Since biometric data is considered as personally identifiable
information, privacy threats, for which the predefined proper-
ties of irreversibility and unlinkability represent appropriate
countermeasures, comprise: (1) retrieval or analysis of prop-
erties of the data subject that are not required or intended
for biometric identification and verification; (2) the linkage of
biometric references to subjects across different applications in

the same database or across different databases [8]. Focusing
on the proposed system, the former requires a reconstruction
of the original biometric feature vector.

In accordance with [39] and [8] we assume that a potential
impostor has full knowledge of the algorithm (Kerckhoffs’
principle) and has access to the database in which protected
templates are stored, which corresponds to a union of advanced
model and collision model. That is, we investigate whether
it is possible for an impostor to re-construct the original
biometric templates from the mixed protected template and to
link protected templates which have been obscured applying
different ADs.

D. Multi-biometric Template Protection

The security of the mixing approach relies on the non-
invertible mapping of codewords to a Bloom filter. W.l.o.g.
this transform obscures the original position of the codeword,
the number a codeword occurs, as well as from which iris-
code a 1-bit in the Bloom filter originates from. For different
configurations certain amounts of codewords are mapped to
an identical position within according Bloom filters. Fig.
7 depicts the average percentage of re-mapped codewords
and according standard deviations for all fusion scenarios
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Fig. 8. Score distributions for inter-class comparisons and according unlinkability test for different multi-instance fusion scenarios.
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Fig. 9. EERs according to resulting sizes of protected templates compared to the original systems for different multi-instance fusion scenarios.

and applied configurations, according to Fig. 3 remapping
1 − |b|/l ' 1 − 3/4 = 25% would be optimal in terms
of security. As expected, more codewords are re-mapped for
larger block sizes, i.e. for all configurations of w, the amount
of re-mapped codewords increases with the block size l. In
addition, the amount of re-mapped codewords increases with
smaller word sizes w, i.e. more information is lost compared
to larger values of w. As a result, in general, biometric
performance decreases with the word size w (see Table II and
Table III).

For best performing configurations (w.r.t. accuracy), map-
ping l = 64 codewords of length w = 10 to a n = 210

bit Bloom filters, for the 1D LogGabor feature extraction ∼
48% of codewords are re-mapped, 1 − |b|/l ' 0.48 (see Fig.
7(a)). By analogy, for the algorithm of Ma et al. on average
∼35% of codewords are re-mapped (see Fig. 7(b)), while in
the multi-instance multi-algorithm scenario on average ∼41%
of codewords are re-mapped (see Fig. 7(c)). Focusing on the
1D LogGabor feature extractor, according to the previously
estimated amount of possible sequences (see Fig. 3, l = 64)
a potential attacker would have to try ∼ 2314 different se-
quences, |b| = 64 ·(1−0.48) = 33.28, for each pair of blocks.
For the algorithm of Ma et al. the average amount of re-

mapped codewords is even lower resulting in ∼ 2324 different
sequences for |b| = 64 ·(1−0.35) = 41.6. For a fusion of both
algorithms we get |b| = 64 · (1 − 0.41) = 37.76 resulting in
∼ 2320 possible sequences. By increasing block sizes security
is significantly increased, e.g. for the 1D LogGabor feature
extractor a total number of ∼ 2753 possible sequences have
to be tried for each pair of blocks in order to guess the
two original iris-code parts for w = 10 and l = 128, with
|b| = 128 · (1−0.49) = 65.28, while the system still reveals a
practical EER of 0.455%. Obviously, the presented cancelable
biometric mixing approach is operated through a natural trade-
off between security and biometric performance. In addition,
it is important to note that an adversary has no criteria for the
correctness of inverse iris-codes, even in case he gains access
to the system.

Unlinkability, i.e. the infeasibility of cross-matching dif-
ferent protected templates of a single subject, represents a
major issue of biometric template protection, however, exper-
imental studies on unlinkability are commonly ignored [40].
In the proposed cancelable scheme unlinkability is achieved
by incorporating an application-specific bit vector AD, which
is XORed with iris-code columns prior to transforms. In
order to investigate the unlinkability of the presented approach



we focus on the best performing configuration in terms of
accuracy, i.e. l = 64 columns comprising w = 10 bits of
two different iris-codes are successively mapped to according
Bloom filters of size n = 210. Subsequently, obtained inter-
class distributions (where a single bit vector is applied) are
compared to distributions yielded by comparing Bloom filters
originating from a single iris-code which are obscured by
different bit vectors. Obtained score distributions are depicted
in Fig. 8 for all multi-instance fusion scenarios, where un-
linkability studies have been obtained from more than 10 000
genuine comparison with randomly chosen bit vectors. The
comparison of different mixed templates generated from pairs
of iris-codes does not allow cross-matching since resulting
dissimilarity scores are generally higher than that of impostor
comparisons within a single application. That is, an adversary
will not be able to cross-match protected templates of a single
subject if these are generated employing different auxiliary
data.

E. Compressed Templates

Regarding resulting template sizes, for the majority of
configurations K · 2w < 2 ·W ·H = 10 · 211 applies, which
means a compression w.r.t. the original pair of templates is
achieved. Again, a trade-off is observed, between template
size and biometric performance. Obtained EERs and resulting
template sizes are plotted in Fig. 9 for all multi-instance
fusion scenarios. Smallest template sizes (10% of original
size), e.g. for the configuration of w = 9 and l = 29,
result in rather unpractical performance rates of EERs ∼5%,
while compressions down to 20% or 40% of the original size
almost maintain accuracy. Extracted codes which represent
mixed protected templates which enables an alignment-free
comparison and a highly compact storage of iris-codes, e.g.
2D barcodes, smart cards of magnetic stripes [34].

V. CONCLUSIONS

In this work a multi-biometric template protection scheme
based on multiple instances of iris images is proposed. Based
on the concept of mixing biometric information [16], iris-
codes obtained from different eyes are mixed in an alignment-
free protected template based on adaptive Bloom filters [15],
i.e. the scheme represents an instance of cancelable multi-
biometrics. In experiments the muti-biometric template protec-
tion scheme is evaluated in an multi-instance single-algorithm
and multi-instance multi-algorithm configuration where bio-
metric performance is maintained (or even improved) for
all scenarios, yielding EERs below 0.5%. At the same time
protected templates are highly compressed down to ∼20% of
the original size of mixed iris-codes. In addition, the proposed
scheme provides a fast comparison of protected templates
suitable for biometric recognition in identification mode.
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APPENDIX

Proof (by induction): for all |b|, l ∈ N, l ≥ |b| > 1,
the theoretical amount of possible sequences is defined by
f(|b|, l), where each of the |b| codewords have to appear at
least once within l columns,

f(|b|, l) = |b|l −
|b|−1∑
i=1

(|b|
i

)
· f(i, l). (6)

Base case: f(1, l) = 1, and for |b| = 2, the number of
possible sequences is 2l− 2, i.e. all possible sequences minus
the two sequences where only one codeword occurs,

f(2, l) = 2l −
1∑

i=1

(
2

i

)
· f(i, l) = 2l −

(
2

1

)
· f(1, l) = 2l − 2.

(6) is true for the base case, |b| = 2.
Induction step: |b| → |b|+1, suppose (6) is true for |b|. For

|b|+ 1 the number of all possible sequences is (|b|+ 1)l, the
subtracted number of possible i-element subsets are now of a
set containing |b|+ 1 elements, and sequences comprising |b|
codewords are subtracted. We get,

f(|b|+ 1, l) = (|b|+ 1)l −
(|b|+ 1

|b|

)
· f(|b|, l)

−
|b|−1∑
i=1

(|b|+ 1

i

)
· f(i, l)

= (|b|+ 1)l −
( |b|+ 1

|b|+ 1− |b|

)
· f(|b|, l)

−
|b|−1∑
i=1

(|b|+ 1

i

)
· f(i, l)

= (|b|+ 1)l − (|b|+ 1) · f(|b|, l)

−
|b|−1∑
i=1

(|b|+ 1

i

)
· f(i, l)

= (|b|+ 1)l −
|b|∑
i=1

(|b|+ 1

i

)
· f(i, l)

Conclusion: by the principle of induction, (6) is true for all
|b|, l ∈ N, l ≥ |b| > 1.
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