
COFFEE: a Concept based on OpenFlow to Filter and
Erase Events of botnet activity at high-speed nodes

Lisa Schehlmann and Harald Baier

da/sec - Biometrics and Internet Security Research Group
Hochschule Darmstadt, Darmstadt, Germany
{lisa.schehlmann, harald.baier}@h-da.de

Lisa Schehlmann and Harald Baier: COFFEE: a Concept based on OpenFlow to Filter and Erase
Events of botnet activity at high-speed nodes. In INFORMATIK 2013: 43. Jahrestagung der
Gesellschaft für Informatik, September 16-20, 2013, Koblenz, Germany, Vol. P-220 of Lecture
Notes in Informatics (LNI) - Proceedings, pp. 2225-2239. Gesellschaft für Informatik (GI), 2013.
c©Gesellschaft für Informatik (GI). The copyright for this contribution is held by Gesellschaft für

Informatik (GI).

Abstract: It is a great challenge to tackle the increasing threat of botnets to contem-
porary networks. The community developed a lot of approaches to detect botnets.
Their fundamental idea differs and may be grouped according to the location (e.g.,
host-based, network-based), data sets (e.g., full network packets, packet header infor-
mation), and algorithms (e.g., signature based, anomaly based). However, if applied
to high-speed networks like nodes of an Internet service provider (ISP) currently pro-
posed methods suffer from two drawbacks. First, the false positive rate is too high
to be used in an operational environment. Second, mitigation and reaction is not ad-
dressed.
In this paper we introduce COFFEE, our concept of a botnet detection and mitigation
framework at large-scale networks. The overall goal of COFFEE is to keep operational
costs to a minimum. The detection part of COFFEE comprises two phases: the first
one processes the whole traffic to filter candidates of a command-and-control com-
munication using NetFlow-based detection algorithms. In order to decrease the false
positive rate, suspected network connections are inspected in more detail in the second
phase. The second phase makes use of the concept of Software-Defined Networking
(SDN), which is currently deployed in some networks. If the detection yields an alert,
SDN again is used to react (e.g., to drop suspect connections).

1 Introduction

A botnet is a network of compromised computers, which aims to launch malicious activ-
ities such as distributed denial of service (DDoS) attacks, phishing, click fraud, or send-
ing spam e-mails. Compromised computers communicate with their control servers via
a command-and-control channel [FSR09, SSPS13]. Botnets pose a serious threat to the
security of our networks and are therefore subject to current research in the network se-
curity community. As of today researchers mainly focus on detection and develop dif-
ferent approaches to detect botnets, e.g., by discovering a command-and-control channel
[BBR+12, KS07]. However, these approaches mainly suffer from their lack of scalability,
i.e., they may not be applied to high-speed networks like the nodes of an Internet service
provider (ISP), because of two drawbacks: on the one hand, the data used may not be in-
spected in real time (e.g., deep packet inspection). On the other hand if scalable detection
algorithms like Disclosure ([BBR+12]), BotTrack ([FWSE11]) or BotFinder ([TFVK12])

are used, their false positive rate exceeds the operational limit. A second open issue is
reaction and mitigation of detected botnets at ISP nodes.

Our main contribution in this paper is to develop a concept, which solves these issues.
We call it COFFEE: a Concept based on OpenFlow to Filter and Erase Events of botnet
activity at high-speed nodes. Our approach searches for C&C communications between
bots and C&C servers with the aim to prohibit corresponding traffic. The basic paradigm
of COFFEE is to keep the operational costs of an ISP to a minimum.

Our starting point of COFFEE is to identify ISP related requirements of a detection and
mitigation framework. We derive these demands from two sources: first, the results of a
survey [SSAB13] on anomaly detection and mitigation at Internet scale, and second from
a project requirements document [pro12] of a joint project with a German ISP. In all we
design COFFEE with respect to the following four requirements: (1) The framework has to
be a well-documented open source appliance. (2) The costs in an operational environment
have to be kept to a minimum, e.g., there is no need for a permanent monitoring and
intervention by an operator. (3) The false positive rate is low, e.g., the framework should
not produce more than five false positive alerts per hour. (4) The framework must be able
to handle 10.000 NetFlow records/s without disturbing noticeable the network traffic.

COFFEE provides both detection of C&C traffic and reaction/mitigation. In order to solve
the challenge of processing the huge amount of network traffic at an ISP node, COFFEE
works in two phases of detection. The first phase makes use of a highly scalable detection
algorithm based on NetFlow data, which can be collected efficiently even at rates of several
gigabits/second. Besides this NetFlow provides further conveniences: it is considered to
be privacy-friendly and it may identify encrypted C&C traffic. Initially COFFEE is based
on features based on time, size, and client access patterns similar to the work of Disclosure
[BBR+12], BotTrack [FWSE11], or BotFinder [TFVK12].

COFFEE is innovative as it makes use of the concept of Software-Defined Networking
(SDN) for enhancing accuracy and mitigation. SDN is used in the second detection phase
to decrease the false positive rate. Supposedly C&C traffic of phase 1 is inspected in more
detail to provide more accuracy. In contrast to NetFlow SDN has access to the entire
packet header information and the packet’s payload. If the SDN detection part yields a
suspicious connection, SDN again is used to dynamically reprogram the network device.
In case of a detected C&C channel, SDN instructs the network device to drop the packets
or to redirect them to an analysis environment.

SDN is attractive for a detection and mitigation framework as it seems to be the upcoming
network control standard. Hence COFFEE is only based on data and control devices,
which will be used in networks anyway and thus may be used without any additional
security appliance.

According to [SSAB13] data interchange is a key barrier in botnet detection at Internet
scale. However, detection systems like Disclosure [BBR+12] make use of an external
reputation score to decrease the false positive rate, which seems to be critical from an ISP
point of view. In contrast to that COFFEE does not rely on external reputation scores
due to its SDN based second detection phase. Thus the whole framework may be run
autonomously by one entity and no data exchange is needed, which protects user’s privacy.

Nevertheless COFFEE is open for a distributed detection and mitigation system.

This paper is organized as follows. Section 2 introduces the background of botnets, Net-
Flow and SDN/OpenFlow. Section 3 provides an overview of related work in this research
area. In section 4 the requirements and architecture of our concept, including the phases of
detection and mitigation are introduced. The last section concludes the paper and describes
future work.

2 Background

This section introduces fundamentals of botnet and botnet detection (section 2.1), NetFlow
(section 2.2) and SDN/OpenFlow (section 2.3), which are required for a better understand-
ing of the following sections.

2.1 Botnet and botnet detection

A botnet is a network of compromised computers, so called bots or zombies, which are
controlled by a botmaster to launch malicious activities. Botnets are self-propagating and -
organized and remotely controlled via their command and control (C&C) channel [FSR09,
SSPS13]. The implementations of botnets are classified by [FSR09] according to their
C&C channel infrastructure as IRC-based, HTTP-based, DNS-based and P2P-based.

The approaches to detect botnets are divided by [FSR09] into the following categories:
on the one hand honeypots and on the other hand passive network traffic monitoring and
analysis. A honeypot is a monitored and isolated part of a network aiming to trap attack-
ers. So attacks could be tracked and useful information about botnets could be collected
for a better understanding of them. By the approach of passive network traffic monitoring
and analysis, relevant information to detect botnets is extracted from monitored traffic and
inspected for botnet behavior. The following methods are classified by [FSR09]: (1) The
signature-based detection approach based on patterns of known botnets. Therefore un-
known botnets could not be identified. (2) The anomaly-based detection method searches
for unusual behavior (e.g., high network load) in the network traffic. Thus, also unknown
botnets could be detected. (3) The method of DNS-based detection is aimed to find anoma-
lies in DNS communication, which are sent by bots for initiating a connection to a C&C
server. (4) The mining-based approach aims to differentiate C&C traffic from benign net-
work traffic with the help of data-mining techniques.

2.2 NetFlow

NetFlow [Cis07] is a technology originally developed by Cisco Systems to monitor net-
work flows. A network flow is a unidirectional stream of network packets between a source

Field Description
srcaddr source IP address
dstaddr destination IP address
dPkts number of packets in the flow
dOctets total number of layer 3 bytes in the packets of the flow
first sysUptime at start of flow
last sysUptime at the time the last packet of the flow was received
srcport TCP/UDP source port number or equivalent
dstport TCP/UDP destination port number or equivalent
tcp flags cumulative OR of TCP flags
prot IP protocol type (for example, TCP = 6; UDP = 17)
tos IP type of service (ToS)

Table 1: Relevant fields of a NetFlow version 5 flow record [Cis07]

and a destination host, which is defined by seven key fields: the source and destination IP
address, the source and destination port, the layer 3 protocol type, the ToS bytes, and the
logical input interface.

NetFlow data is collected at line rate by a network device, e.g., a switch or a router, to
build the NetFlow cache. This cache contains the information regarding all active flows. If
a flow expires or after a fixed time interval, the NetFlow cache is sent via UDP datagrams
to a NetFlow collector, which further process the data (see figure 2). The exported UDP
datagrams include a header and several NetFlow records. In the context of our work the
NetFlow version 5 flow record fields depicted in table 1 are relevant.

Thus, NetFlow reduces the amount of data to process compared with deep packet inspec-
tion (DPI), because it does not contain any payload information. However, the information
provided by NetFlow is limited, so detecting botnets probably is a challenge. COFFEE
uses a mining-based approach (see section 2.1) to find C&C communication within the
NetFlow data.

2.3 SDN and OpenFlow

SDN [Ope12] is a concept developed by the Open Networking Foundation (ONF)1, which
decouples the data plane from the control plane of a network device. The control plane’s
intelligence is outsourced to an external controller, which provides a more centralized
view of the network and is responsible for high-level routing decisions. The data plane
is remaining on the network device and still responsible for forwarding network packets.
Further SDN provides the ability for a dynamically network programming.

OpenFlow [MAB+08, Ope11] is a protocol to implement the concept of SDN. OpenFlow
enabled switches are connected by a secure channel to its controller. Packet forwarding
decisions of OpenFlow switches are based on flow tables, which contain flow table entries

1https://www.opennetworking.org/, accessed April 19, 2013.

(see figure 1). The header fields of incoming packets are matched by the switch against
the match fields (see table 2) of the existing flow table entries.
The counter fields maintain counters according to e.g., a table, a flow, or a port. A list of
all counters is available at page 11 in [Ope11]. So for example received packets or the
duration since a flow is installed could be maintained. The controller could request the
counters by initiating a read-state message.
Instructions are operations, which are executed to a network packet in the case of packet
matching. The instructions could affect the packet itself, the packet’s action set, or the
packet’s pipeline processing (i.e., the path of a packet through the different flow tables).
The OpenFlow switch specification version 1.1.0 [Ope11] defines the following five types
of instructions (see figure 1): The Apply-Actions are actions, which are immediately ap-
plied to the packet, for example modifying a packet’s header field even if a further flow
table follows in the pipeline processing. Clear-Actions clear a packet’s action set im-
mediately. The Write-Actions add or overwrite an action within a packet’s action set.
Write-Metadata fills the metadata fields with information. This fields could be filled with
additional values to the header fields, against flows could be match e.g., an output port.
Finally, the Goto-Table instruction forwards the packet to the flow table with the given ID.
If there is no Goto-Action, the pipeline processing ends with the execution of operations
hold in the action set. All defined instructions are described in detail at page 11 in [Ope11].

In
port

counters

· Apply-Actions
· Clear-Actions
· Write-Actions
· Write-Metadata
· Goto-Table

instructions

VLAN
ID

Ethernet

SA DA Type

IP

SA DA Protocol

TCP

Src port Dst port

· received packets per flow
· received bytes per flow
· durations (seconds) per flow
· received packets per port
· ...

match fields

Figure 1: Components of a flow table entry based on [Ope11]

In the case that an incoming packet at the switch does not match against a flow table entry,
the packet is sent by the switch to the controller, which decides the further processing. So
the controller could install a flow table entry or apply actions to these network packets.

Field Description Field Description
in port ingress port nw src IPv4 source address
dl vlan IEEE 802.1q virtual LAN tag nw dst IPv4 destination address
dl vlan pcp IEEE 802.1q VLAN priority nw proto IP protocol type
dl src Ethernet source address nw tos IP ToS/DSCP field
dl dst Ethernet destination address tp src UDP/TCP source port
dl type Ethernet protocol type tp dst UDP/TCP destination port

Table 2: Fields to match packets against flow table entries

3 Related work

The botnet detection part of our concept COFFEE is a mining-based approach as discussed
in section 2.1. It makes use of both NetFlow and OpenFlow datagrams to detect a botnet
C&C channel. In this section we present related work to our approach.

NetFlow-based botnet detection methods are commonly known and discussed e.g., in
[AB12, BBR+12, FWSE11, TFVK12].
[AB12] show their vision of a botnet detection framework based on NetFlow data. A key
point in [AB12] is the absence of a labeled reference data set for training and testing detec-
tion algorithms. For generating such a data set, they implemented a honeypot environment
hosted within the network of an ISP for collecting NetFlow data.
[BBR+12] present Disclosure as a large-scale, wide-area botnet detection system, which
aims at detecting botnet C&C servers. Disclosure extracts three categories of features from
collected NetFlow data: flow sizes, client access patterns, and temporal behavior. To re-
duce the false positive rate, they correlate the results of their framework with the results of
external reputation systems.
In [FWSE11] BotTrack is introduced, which is an approach for detecting P2P-based bot-
nets using NetFlow data for building a host dependency model. Linkage analysis on base
of the PageRank [PBMW98] algorithm is combined with clustering. Hosts with a similar
behavior can be identified, hence if one host from a class is identified by additional infor-
mation as a bot, the other ones in this class are bots, too.
The paper [TFVK12] describes the system BotFinder. For training the models BotFinder
extracts statistical features (e.g., average time, average duration, average number of bytes)
from the network traffic of known malware samples. These models are then applied to in-
vestigate the network traffic and to detect malware infections.

The focus of COFFEE is on the use of SDN in botnet detection. In contrast to NetFlow,
there is only few related work. None of the following papers address the problem of de-
tection C&C channels. [BMP10] introduce an approach to detect DDoS attacks using the
protocol OpenFlow [MAB+08] and the OpenFlow controller NOX2. They request flow
information from flow tables of OpenFlow switches in a periodically interval by the NOX
controller and extract a 6-tuple of features from this information (average packets per
flow, average bytes per flow, average duration per flow, percentage of pair-flows, growth

2http://www.noxrepo.org/, accessed April 19, 2013.

of single-flows, growth of different ports). The features are sent to a Self-Organizing Map
(SOM) classifier, which distinguishes the traffic in normal and attack traffic. They denote
this approach as lightweight compared to approaches, which extract these features from
raw packet data. However, [BMP10] do not compare their approach to NetFlow based
ones. In our opinion and experience NetFlow is more lightweight than using OpenFlow,
because the communication via the OpenFlow channel to collect information consists of
a request and an associated response. NetFlow data, on the other hand, is gathered by the
collector and sent in defined intervals to a NetFlow monitor. Additionally all features of
[BMP10] are available in NetFlow, too.
[MKK11] introduce a concept of using SDN for anomaly detection. They implement four
existing algorithms: (1) TRW-CB [SJB04] to detect scanning worms, (2) Rate-Limiting
[TW03, Wil02] to detect infected host by their network behavior, (3) Maximum Entropy
Estimation [GMT05] to detect network anomalies comparing current traffic against a base-
line distribution, and (4) NETAD [Mah03], a method to classify network traffic as suspi-
cious in the context of SDN. Their hypothesis is the use of programmable home network
routers in small office/home office (SOHO) networks as ideal location for detecting net-
work security problems. [MKK11] discuss the problems of a low detection rate and the
poor scalability of their algorithms at line rate, however, we encounter this drawback by
using our two phase detection approach.

To sum up the approaches of [BMP10] and [MKK11] utilize the concept of SDN to detect
network anomalies. However, SDN is only applied to SOHO or to a dedicated attack.
Our effort is to implement a botnet detection and mitigation framework in the context of
an ISP. As OpenFlow data is more fine grained, but more inefficient to gather compared
to NetFlow, we use first a NetFlow based detection to filter suspicious candidates. In
the second phase an OpenFlow based detection is used to decrease the false positive rate.
Furthermore our approach addresses additionally the aspect of an automated mitigation by
OpenFlow.

4 System overview

This section presents COFFEE, our framework to detect and prohibit C&C traffic. COF-
FEE targets at being deployed at ISP nodes and thus addresses their requirements. We
first derive the needs of an ISP detection and mitigation and present the architecture of our
framework in section 4.1. Then section 4.2 presents our data collection methodology. Next
we describe our two phase detection approach in section 4.3. Finally section 4.4 presents
our OpenFlow based reaction strategy.

We point to the fact that we are currently working on the implementation of COFFEE and
that we will test it in the near future at a cooperating ISP. Although OpenFlow is currently
not as common as NetFlow in the ISP context, we consider it as the future control plane to
operate network devices (e.g., [Goo12]).

4.1 Requirements and architecture

COFFEE aims at being used in ISP environments. When designing its architecture we
therefore consider the requirements of an ISP, which we derive from results of a survey
[SSAB13] and requirements of a joint project with a German ISP [pro12]. Our result
is the following list of requirements for a botnet detection and mitigation framework at
large-scale networks:

1. The framework has to be a well-documented open source appliance. So it is expand-
able and adaptable to special needs and does not cause costs for licenses.

2. Operational costs have to be kept to a minimum. This mainly considers the require-
ment of automation, i.e., there is no need for a permanent monitoring and interven-
tion by an operator.

3. The framework should not produce more than five false positive alerts per hour. We
assume that a low false positive rate is much more important than a high detection
rate in the ISP context, justified by minimizing operational costs.

4. The framework must be able to handle 10.000 NetFlow records/s without disturbing
noticeable the network traffic.

The overall architecture of our botnet detection and reaction framework COFFEE con-
sists of three phases, which will be described in detail in the subsequent sections: data
collection, detection and reaction (see figure 2).

classifier

switchesswitches

NetFlow
monitor

NetFlow
monitor

NetFlow
UDP datagrams

NetFlow

su
sp

ic
io

u
s

NetFlow

feature
extraction

classifier

OpenFlow

reaction

OpenFlow reaction

 C&C

network packets

detectiondata collection

alert +
automated
mitigation

feature
extraction

match
score

alert +
further

inspection

MS ≥ T MS < T,
MS ≈ T

MS << T

information for
detection phase 1

Figure 2: Architecture of COFFEE

4.2 Data collection

As described in section 4.3 COFFEE works in two phases of detection based on two dif-
ferent data sets. Phase 1 uses NetFlow data, which is collected at line rate from switches

within an ISP network. After a fixed time interval, the collected information is sent as
UDP datagram to a NetFlow monitor, which makes this NetFlow data available for the
first detection phase (see figure 2).

Detection phase 2 uses data collected by utilizing OpenFlow. There are two possibilities
to gather such data over the OpenFlow secure channel (the red dashed lines in figure 2).
On the one hand, counters of different flows can be requested by the controller from the
switches. Currently, COFFEE does not make use of these counters to identify C&C traffic.
On the other hand, entire network packets belonging to a suspicious flow of detection phase
1 are sent to the controller to extract the relevant features.

COFFEE attempts to make use of privacy-preserving features. During detection phase 1
NetFlow data is gathered. NetFlow data contains only packet header related information
and no payload, which protects the user’s privacy. In phase 2 we extract only features of
suspicious packets and not of all packets, which is the first step to protect privacy during
phase 2. The second level to protect privacy is to use packet header information per packet.
The features which have to be extracted from the packet’s payload, are only inspected for
known patterns or behavior. Furthermore no payload information is stored anywhere, but
rather processed immediately.

4.3 Detection

The detection process splits into two phases to identify C&C traffic. Each phase of de-
tection is based on its own data set and features. The concept of the detection process is
shown in figure 3.

phase 1 - NetFlow

detection

sus-
picious

phase 2 - OpenFlow

w3

w2

w1

wn

 SYN
 classifier

 DNS query
classifier

 packet size
classifier

...

wb
NetFlow

data

 size based
classifier

 wa

MS < T,
MS ≈ T

MS << T

MS ≥ T

false positive

C&C traffic

further inspection
e.g.IDS

Match
Score

wc

time based
classifier

client access
patterns classifier

Figure 3: Concept of the detection phases

In phase 1 we use NetFlow data to process the huge amount of data at an ISP node. The
NetFlow collector provides the data gathered at the network devices. Similar to the works
of [BBR+12, FWSE11, TFVK12], COFFEE extracts features based on time, size, and
client access patterns. The extracted features are sent to the classifier, which makes use of
a weighted classification fusion to distinguish between benign or suspicious network traffic
based on machine learning techniques (again similar to Disclosure, BotTrack, BotFinder).

Only a suspicious flow is handed to the second detection phase, supposedly benign traffic
is not inspected further. This significantly will reduce the amount of data for the second
phase.

An identifier of the suspicious flows are forwarded from detection phase 1 to the Open-
Flow controller responsible for detection phase 2. The identifier includes the source
and destination IP, the source and destination ports, and finally the layer 3 protocol
type. The controller writes a table entry for each suspicious flow containing the action
packet out=CONTROLLER. Thus, all switches send the whole network packets regarding
this flow to the OpenFlow controller. By the default implementation and if the switch has
the ability to buffer packets, not the whole packet but only the first 128 byte are sent from
the switch to the controller. However, the action packet out=CONTROLLER forwards the
whole packet.

During the OpenFlow controller inspects the suspicious flows, all packets according to
the flows are still forwarded to their dedicated destination. Thus, usability is ensured
because packet forwarding is not affected until the final decision about the suspicious flow
of detection phase 2 is known.

The availability of the whole network packet offers two options to inspect: the inspec-
tion could be based on a DPI regarding the packet’s payload or based on packet header
information regarding different layers.

A DPI endangers user’s privacy. Additionally it may not be successful due to encrypted
payload. We therefore handle it with great care and currently plan to use it only for in-
spection of DNS queries similar to the work of [VSB08]. Similar to this approach is also
the work of [GH07]. They search for unique features, which occur in a bot to commander
communication after a host is infected, e.g., unusual or suspicious nicknames.

Inspecting the header fields looks very similar to the NetFlow based approach in detection
phase 1. But there is a main difference: By the use of OpenFlow no sampled and aggre-
gated view is performed, but rather every packet is inspected in the order the packet occurs
at the controller.

We extract three different features during the second detection phase of COFFEE to detect
C&C communication within the suspicious flows:

1. COFFEE correlates the single packet sizes of flows between a suspicious server and
several hosts. A C&C server distributes his commands to several bots. The packets
containing the same commands should be of a similar size. So if a suspicious server
sends packets to several hosts, the single packet sizes of these communications are
correlated to find similar sized ones, which indicate a C&C communication.

2. Furthermore COFFEE inspects packets containing a DNS request for known C&C
servers. Therefore if a packet of a flow is identified as DNS request, the queries are
extracted and further processed, e.g., scanned for unusual server URLs (i.e., URLs
not accessible by humans).

3. The single packet size of a SYN packet according to a suspicious flow is a further
feature. The size of such packets varies according to the host’s operating system,

which generates the packet, e.g. 48 bytes for Windows 2000 or 60 bytes for Linux
2.43. If a SYN packet belongs to a Linux or Mac OS operating system, the proba-
bility that the source host is a bot is very low.

Detection phase 2 outputs a match score, which we denote as MS. Each OpenFlow classi-
fier is considered with respect to its weight: the packet size classifier is weighted with w1,
the DNS query classifier with w2, the SYN classifier with w3. The OpenFlow detection
may be extended by further classifiers, we simply have to ensure

∑n
i=1 wi = 1. The final

decision of COFFEE depends as usual on a threshold T. We distinguish the following three
cases (see also figure 2):

1. If MS ≥ T the flow is identified as C&C traffic. An alert is triggered, and an
automated mitigation is initiated as described in section 4.4.

2. If the match score is marginally below the threshold, i.e., MS < T and MS ≈
T , then again an alert is released, however, the flow needs further inspection, e.g.,
through an Intrusion Detection System or through a manual inspection by the ISP
operator.

3. If the match score is significantly below the threshold, i.e., MS � T , then the flow
is identified as benign and thus a false positive with respect to detection phase 1.
The controller overwrites the corresponding flow table entry so that further flows
are not forwarded to the controller again, but rather process as normal traffic. Also
an information about the false positive identified traffic regarding the flow is given
to the detection engine of detection phase 1.

4.4 Reaction

Traditional instances to mitigate network-based attacks are firewalls, which allow or deny
network packets based on pre-defined rules. However, firewalls are not able to learn new
rules by themselves or change their rules to mitigate an attack. This distinguishes our
framework from a traditional firewall, because COFFEE does not use pre-defined rules to
mitigate C&C communication, but rather changes packet forwarding rules automatically
with the help of OpenFlow if a C&C communication is detected. So our system acts more
like an Intrusion Prevention System (IPS), which also dynamically reacts to a detected
attack. We point to the convenience of COFFEE that it does not make use of any additional
appliance besides the upcoming network control devices (with the possible exception of a
final inspection by an additional IDS).

If potential C&C traffic is detected during the NetFlow based detection phase, only an
information is given, which could be recognized by an operator on demand. But still no
reaction or mitigation processes are initiated.

By detecting a C&C channel during detection phase 2 there are two levels of escalation
depending on the relation of the match score to the threshold: (1) The default level is

3http://www.ouah.org/incosfingerp.htm, accessed May 2, 2013.

In vlan Eth Eth Eth IP IP IP TCP TCP action
port ID src dst type src dst proto sport dport

* * * * * 2.3.4.5 5.4.3.2 6 80 90 drop

In vlan Eth Eth Eth IP IP IP TCP TCP action
port ID src dst type src dst proto sport dport

* * * * * 5.4.3.2 2.3.4.5 6 90 80 drop

Table 3: Flow table entries to drop packets

IP IP IP TCP TCP action
... src dst proto sport dport
... 2.3.4.5 5.4.3.2 6 80 90 modify: IP dst=1.1.1.1, dport=99

Table 4: Snippet of a flow table entry to redirect packets

an automated mitigation by changing the forwarding rules of OpenFlow. (2) The second
level is to change the OpenFlow forwarding rules after an additional inspection, e.g., by a
human operator. However, this should only propose an additional possibility to an operator
by demand, because COFFEE still aims to reduce operational costs.

A mitigation by COFFEE results in one of the two approaches using OpenFlow instruc-
tions: malicious network packets belonging to a C&C communication can be dropped or
redirected to an analysis environment.

The first reaction strategy is to drop all packets, which belong to a C&C communication.
In this case the controller adds two flow table entries (see table 3). The first entry describes
the direction C&C server to bot, the second one the opposite direction from bot to C&C
server. The entry contains the match fields and an action as explained in section 2.3. We
fill the match fields with the IP protocol, the source and destination IP as well as the source
and destination port. All other fields are wildcarded by a * (i.e., they are ignored by packet
matching). As action the instruction drop is set, to drop all packets regarding this flow.
To reduce the number of flow table entries, there is also the possibility to set only a flow
table entry containing the source IP as well as the source port of a detected C&C server.
So all packets caused by a detected C&C server and addressed to the associated bots are
dropped.

The second case is to redirect packets of the C&C channel to an analysis environment, for
example a honeypot to gather more information about the packets regarding this communi-
cation or to an inspection instance. In this case a table entry is added containing an action
to change the destination IP address and the port to the address and port of the honeypot,
respectively (see figure 4).

5 Conclusion and future work

This paper introduces COFFEE, our concept of a botnet detection and mitigation frame-
work, which uses a two phase model to detect C&C communication. We achieve to reach
an operational manageable false positive rate by the two phases of detection, because we
assume that a low false positive rate is more important than a high detection rate to detect
C&C communication at high-speed nodes. In the first phase of detection, we use NetFlow
for a first efficient filtering regarding the huge amount of traffic. In the second phase we
use OpenFlow for a more detailed inspection of the filtered and as suspicious labeled traf-
fic to eliminate false positives by using as features e.g., the single packet size of suspicious
network packets.

We propose the use of OpenFlow, because it is an emergent technology, which will applied
in contemporary networks increasingly. OpenFlow provides beside our approach a lot of
possibilities to manage networks, such as e.g., QoS settings. Hence, there is only the need
for one approach to program and manage a network in different ways, which saves costs
and operational time. Our detection method is not acting in real-time, because network
traffic is not delayed until the inspection is completed to ensure usability.

Still a remaining problem is the unavailability of a disposable labeled reference data set for
training the models. Such a data set is required, because if every system uses its own data
sets, the accuracy and false positive/negative rates of different botnet detection algorithms
and systems cannot be compared. Gathering such data sets in a real ISP environment is
also a problem because of the user’s privacy and due to that OpenFlow is not as common
as NetFlow.

The next steps are a set up of COFFEE in an ISP environment and to evaluate its runtime
and detection performance.

Acknowledgment. This work was partly supported by the Hesse government under
grant number 306/11-51 (NetFlowBot) and by CASED.

References

[AB12] Sebastian Abt and Harald Baier. Towards Efficient and Privacy-Preserving Network-
Based Botnet Detection Using Netflow Data. In Proceedings of 9th International Net-
work Conference, INC ’12, Port Elizabeth, South Africa, July 2012.

[BBR+12] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and Christopher
Kruegel. DISCLOSURE: Detecting Botnet Command and Control Servers Through
Large-Scale NetFlow Analysis. In Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC ’12, pages 129–138, New York, NY, USA, 2012.
ACM.

[BMP10] Rodrigo Braga, Edjard Mota, and Alexandre Passito. Lightweight DDoS Flooding At-
tack Detection Using NOX/OpenFlow. In Proceedings of the 2010 IEEE 35th Confer-

ence on Local Computer Networks, LCN ’10, pages 408–415, Washington, DC, USA,
2010. IEEE Computer Society.

[Cis07] Cisco Systems, Inc. NetFlow Services Solutions Guide. http://www.cisco.
com/en/US/docs/ios/solutions_docs/netflow/nfwhite.html, Jan-
uary 2007.

[FSR09] Maryam Feily, Alireza Shahrestani, and Sureswaran Ramadass. A Survey of Botnet
and Botnet Detection. In Proceedings of the 2009 Third International Conference on
Emerging Security Information, Systems and Technologies, SECURWARE ’09, pages
268–273, Washington, DC, USA, 2009. IEEE Computer Society.

[FWSE11] Jérôme François, Shaonan Wang, Radu State, and Thomas Engel. BotTrack: Tracking
Botnets using NetFlow and PageRank. In 10th International IFIP TC 6 Networking
Conference - Part I, NETWORKING ’11, pages 1–14, Valencia, Spain, 2011. Springer-
Verlag.

[GH07] Jan Goebel and Thorsten Holz. Rishi: Identify Bot Contaminated Hosts by IRC Nick-
name Evaluation. In Proceedings of the first conference on First Workshop on Hot
Topics in Understanding Botnets, HotBots ’07, pages 8–8, Berkeley, CA, USA, 2007.
USENIX Association.

[GMT05] Yu Gu, Andrew McCallum, and Don Towsley. Detecting Anomalies in Network Traffic
Using Maximum Entropy Estimation. In Proceedings of the 5th ACM SIGCOMM con-
ference on Internet Measurement, IMC ’05, pages 32–32, Berkeley, CA, USA, 2005.
USENIX Association.

[Goo12] Google Inc. Inter-Datacenter WAN with centralized TE using SDN and OpenFlow. case
study, Google Inc., 2012. https://www.opennetworking.org/images/
stories/downloads/sdn-resources/customer-case-studies/
cs-googlesdn.pdf.

[KS07] Satoshi Kondo and Naoshi Sato. Botnet traffic detection techniques by C&C session
classification using SVM. In Proceedings of the Security 2nd international conference
on Advances in information and computer security, IWSEC’07, pages 91–104, Berlin,
Heidelberg, 2007. Springer-Verlag.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling Innovation
in Campus Networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March 2008.

[Mah03] Matthew V. Mahoney. Network Traffic Anomaly Detection Based on Packet Bytes.
In Proceedings of the 2003 ACM symposium on Applied computing, SAC ’03, pages
346–350, New York, NY, USA, 2003. ACM.

[MKK11] Syed Akbar Mehdi, Junaid Khalid, and Syed Ali Khayam. Revisiting Traffic Anomaly
Detection using Software Defined Networking. In Proceedings of the 14th interna-
tional conference on Recent Advances in Intrusion Detection, RAID ’11, pages 161–
180, Berlin, Heidelberg, 2011. Springer-Verlag.

[Ope11] Open Networking Foundation. OpenFlow Switch Specification 1.1.0, Februar 2011.

[Ope12] Open Networking Foundation. Software-Defined Networking: The New Norm for
Networks. White Paper, April 2012.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. In Proceedings of the 7th International
World Wide Web Conference, WWW ’98, pages 161–172, Brisbane, Australia, 1998.

[pro12] project consortium of NetFlowBot. Anforderungsbeschreibung LOEWE3-Projekt Net-
FlowBot. requirements document, project consortium of NetFlowBot, 2012.

[SJB04] Stuart E. Schechter, Jaeyeon Jung, and Arthur W. Berger. Fast Detection of Scanning
Worm Infections. In Proceedings of the 7th International Symposium on Recent Ad-
vances in Intrusion Detection, RAID ’04, pages 59–81, 2004.

[SSAB13] Jessica Steinberger, Lisa Schehlmann, Sebastian Abt, and Harald Baier. Anomaly de-
tection and mitigation at Internet scale: A survey. In Proceedings of the 7th Inter-
national Conference on Autonomous Infrastructure, Management and Security, AIMS
’13, Barcelona, Spain, 2013. Springer.

[SSPS13] Sérgio S. C. Silva, Rodrigo M. P. Silva, Raquel C. G. Pinto, and Ronaldo M. Salles.
Botnets: A survey. Computer Networks, 57(2):378–403, 2013.

[TFVK12] Florian Tegeler, Xiaoming Fu, Giovanni Vigna, and Christopher Kruegel. BotFinder:
Finding Bots in Network Traffic Without Deep Packet Inspection. In Proceedings of the
8th international conference on Emerging networking experiments and technologies,
CoNEXT ’12, pages 349–360, New York, NY, USA, 2012. ACM.

[TW03] Jamie Twycross and Matthew M. Williamson. Implementing and testing a virus throt-
tle. In Proceedings of the 12th conference on USENIX Security Symposium - Volume
12, SSYM ’03, Berkeley, CA, USA, 2003. USENIX Association.

[VSB08] Ricardo Villamarin-Salomon and Jos Carlos Brustoloni. Identifying Botnets Using
Anomaly Detection Techniques Applied to DNS Traffic. In Consumer Communications
and Networking Conference, 2008. CCNC ’08. 5th IEEE, pages 476–481, 2008.

[Wil02] Matthew M. Williamson. Throttling Viruses: Restricting propagation to defeat mali-
cious mobile code. In Proceedings of the 18th Annual Computer Security Applications
Conference, ACSAC ’02, pages 61–68, Washington, DC, USA, 2002. IEEE Computer
Society.

