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Abstract—In this work the application of adaptive Bloom
filters to binary iris biometric feature vectors, i.e. iris-codes,
is proposed. Bloom filters, which have been established as a
powerful tool in various fields of computer science, are applied
in order to transform iris-codes to a rotation-invariant feature
representation. Properties of the proposed Bloom filter-based
transform concurrently enable (1) biometric template protection,
(2) compression of biometric data, and (3) acceleration of
biometric identification, while at the same time no significant
degradation of biometric performance is observed. According to
these fields of application detailed investigations are presented.

Experiments are carried out on the CASIA-v3 iris database for
different feature extraction algorithms. Confirming the soundness
of the proposed approach, the application of adaptive Bloom fil-
ters achieves rotation-invariant cancelable templates maintaining
biometric performance, a compression of templates down to 20–
40% of original size, and a reduction of bit-comparisons to less
than 5% leading to a substantial speed-up of the biometric system
in identification mode.

Index Terms—Biometrics, iris recognition, Bloom filter, bio-
metric template protection, biometric template compression,
computationally efficient identification.

I. INTRODUCTION

IRIS BIOMETRIC RECOGNITION [8], [2], [40] is field-
proven as a robust and reliable biometric technology. The

iris’s complex texture and its apparent stability hold tremen-
dous promise for applying iris recognition in diverse applica-
tion scenarios, such as border control, forensic investigations,
as well as cryptosystems [12], [41]. Daugman’s algorithm
[10], forms the basis of the vast majority of today’s iris
recognition systems, which report (true positive) identification
rates above 99% and equal error rates less than 1%: (1) at
enrollment an image of a subject’s eye is acquired; (2) in
the pre-processing step the boundaries of the pupil and the
outer iris are detected and the iris (in the approximated form
of a ring) is “un-rolled” to obtain a normalized rectangular
iris texture; (3) feature extraction is applied in order to
generate a highly discriminative binary feature vector, i.e.
iris-code; (4) at the time of authentication pairs of iris-codes
are efficiently compared by calculating the Hamming distance
between them, where template alignment is performed within
a single dimension, applying a circular shift of iris-codes, to
compensate against head tilts of a certain degree. Technologies
of iris recognition are already deployed on national-sized
databases, e.g. the Unique IDentification Authority of India
(UIDAI) [44], which aims at registering all 1.2 billion Indian
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citizens, is enrolling 1 million subjects on a daily basis.
With about 300 million persons enrolled (status February,
2013), against which the daily intake has to be compared
to check for duplicate identities the daily workflow of iris
cross-comparisons results in 3 × 1014, or 300 trillion (!).
Resistance to false matches and comparison speed, which is
achieved by various existing approaches [40], are vital for any
large-scale biometric deployments. Nonetheless, the explosive
impact and scale of iris recognition is accompanied by serious
consequential issues, e.g. privacy concerns or computational
limitations, which are still to be solved.

From a privacy perspective most concerns against the com-
mon use of biometrics arise from the storage and misuse
of biometric data as well as the permanent tracking and
observation of activities [7]. In addition, it has been shown
that spoofed iris images can be re-constructed from stored
iris-codes [45]. In accordance with the ISO/IEC IS 24745 [19]
on biometric information protection, technologies of biometric
template protection [21], [37] in particular, cancelable biomet-
rics [34] meet the two major requirements of irreversibility
and unlinkability. Cancelable biometrics which consist of
intentional, repeatable distortions of biometric signals based on
transforms that provide a comparison of biometric templates in
the transformed domain, permanently protect biometric tem-
plates. However, the majority of approaches to cancelable bio-
metrics report a significant decrease in biometric performance,
which is caused by the fact that local neighborhoods of feature
elements are often obscured and the transformed enrollment
templates are not “seen” at the time of authentication, i.e.
alignment can not be performed properly [37].

A binary representation of biometric data offers two major
advantages, compact storage and rapid comparison [9]. Despite
these benefits, it has been found that extracted iris-codes still
suffer from low entropy [18], e.g. approximately 250 mutually
independent bits out of 2048 in [10]. A compression of iris-
codes enables an even more compact storage, e.g. in 2D
bar codes, smart cards, or magnetic stripes [14]. Focusing
on biometric identification, deployments of iris recognition
perform brute force exhaustive searches which are accelerated
in case the amount of required bit comparisons is significantly
reduced, e.g. by utilizing compressed templates [13] or an
alignment-free representation, which does not require circular
bit-shifting [25].

The contribution of this work is the proposal of a generic
approach to obtain a rotation-invariant representation of iris-
codes based on adaptive Bloom filters. A Bloom filter [1] is a
space-efficient probabilistic data structure representing a set in
order to support membership queries. In addition to an efficient
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storage and rapid processing of queries, Bloom filters convince
by their wide field of applications, e.g. database applications
[31] or network applications [4]. In [35] we have already
demonstrated the applicability of Bloom filters in order to
achieve template protection. In the presented work these ideas
are extended and properties of Bloom filter-based transforms
are utilized to tackle all of the aforementioned issues regarding
(iris) biometrics:

1) Template protection: the successive mapping of parts of
a binary biometric template to Bloom filters represents
an irreversible transform achieving alignment-free pro-
tected biometric templates.

2) Biometric data compression: the proposed Bloom filter-
based transform can be parameterized to obtain a desired
template size, operating a trade-off between compression
and biometric performance.

3) Efficient identification: a compact alignment-free repre-
sentation of iris-codes enables a computaionally efficient
biometric identification reducing the overall response
time of the system.

According to these benefits, the proposed approach rep-
resents a secure template protection scheme which can be
efficiently applied within an iris identification system.

The remainder of this work is organized as follows: related
work with respect to iris biometric template protection, tem-
plate compression, and computationally efficient iris biometric
identification is summarized in Sect. II. In Sect. III the
proposed approach is described in detail and applications of
adaptive Bloom filters are proposed. Experimental evaluations
are presented and obtained results are discussed in Sect. IV.
Finally, conclusions are drawn in Sect. V.

II. RELATED WORK

Biometric template protection schemes [37] are commonly
categorized as biometric cryptosystems and cancelable bio-
metrics. Focusing on biometric cryptosystems the majority
of existing approaches implement cryptographic primitives,
e.g. fuzzy commitment scheme [23] or fuzzy vault scheme
[22]. However, suggested approaches [16], [3], [26], have
been exposed to be vulnerable to diverse attacks, e.g. based
on statistical attacks [38] or via record multiplicity [42].
Complex key retrieval procedures, which are required at bio-
metric comparison, prevent from a computationally efficient
identification, representing another drawback of biometric
cryptosystems. Ratha et al. [34] were the first introducing the
concept of cancelable biometrics. In their work the authors
apply image-based block permutations and surface-folding
in order to obtain revocable biometric templates. In further
work [47] the authors propose different techniques to generate
cancelable iris biometrics based on non-invertible transforms
and biometric salting, which are applied in image and feature
domain. In order to preserve a computational efficient align-
ment of resulting iris-codes based on circular bit-shifting, iris
textures and iris-codes are obscured in a row-wise manner,
which means adjacency of pixels and bits is maintained
along x-axis in image and feature domain, respectively. In
[15] block re-mapping and image wraping have been applied

to normalized iris textures. For both types of transforms a
proper alignment of resulting iris-codes is infeasible causing
a significant decrease of biometric performance [37]. In [32]
several enrollment templates are processed to obtain a vec-
tor of consistent bits. Revocability is provided by encoding
the iris-code according to a subject-specific random seed.
In case subject-specific transforms are applied in order to
achieve cancelable biometrics, these transforms have to be
considered compromised during inter-class comparisons [24].
Subject-specific secrets, be it transform parameters, random
numbers, or any kind of passwords are easily compromised,
i.e. performance evaluations have to be performed under the
“stolen-secret scenario”, where each impostor is in possession
of valid secrets. In [33] cancelable iris templates are achieved
by applying sector random projection to iris images. Again,
recognition performance is only maintained if subject-specific
random matrices are applied. In [5] non-invertible iris-codes
are computed by thresholding inner products of the feature
vector with randomly generated vectors. The random vectors
are created by using a per-subject secret and a pseudo ran-
dom number generator. Several normalized iris textures are
multiplied with a random kernel in [6] to create concealed
feature vectors. The vast majority of cancelable iris biometric
systems only maintains biometric performance for settings
which leave security doubtable, e.g. a row-wise permutation
and shifting of iris texture stripes in [47] or a permutation
of 32×32 pixel blocks within 512×64 pixel textures in [15].
Within approaches to biometric salting, e.g. in [5], [32],
subject-specific secrets are incorporated while experiments are
performed under the non-stolen-secret scenario omitting the
actual biometric performance of the system.

Focusing on iris biometric identification different mecha-
nisms have been proposed in order to reduce the response
time of the system. Biometric data does not have any natural
sorting order, i.e. indexing databases represents a critical
issue. In [17] a technique referred to as Beacon Guided
Search is introduced. The algorithm is applied to a large-
scale database of 632500 iris-codes enrolled in the United
Arab Emirates (UAE), achieving a substantial improvement
in search speed. However, computational efficiency comes at
the cost of biometric performance, the same holds for other
approaches [30], [36]. Based on the fact that entropy is not
uniformly distributed across iris-codes [18], a compressed
representation of the most reliable bits can be utilized to reduce
the number of bit comparisons in a serial combination sce-
nario. In [14] the generation of a short length iris-code (SLIC)
is introduced which is applied in a two-stage identification
[13], i.e. exhaustive 1 : n comparisons are performed based on
the compressed template. By applying comparisons of original
iris-codes only within a shortlist of most likely candidates the
number of overall bit comparisons and the resulting response
time is reduced. A pre-selection based on a rotation-invariant
feature representation is presented in [25]. Since no circular
bit-shifting is applied in the pre-selection step, the speed of
identification is improved. In [39] an incremental comparison
technique which successively compares the most reliable bits
in iris-codes is applied to reduce bit comparisons.
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Fig. 1. Operation mode of the proposed rotation-invariant biometric templates applying Bloom filter-based transforms to feature vector columns. The highlighted
codewords change in Bloom filter b2 the element at index 39 (decimal representation of 100111) and also index 40 (decimal representation of 101000) to 1.

III. COMBINING BLOOM FILTERS AND IRIS RECOGNITION

Basically, a Bloom filter b is a bit array of length n, where
initially all bits are set to 0. In order to represent a set S a
Bloom filter traditionally utilizes k independent hash functions
h1, h2, ..., hk with range [0, n − 1]. For each element x ∈ S,
bits at positions hi(x) of Bloom filter b are set to 1, for 1 ≤
i ≤ k. A bit can be set to 1 multiple times, but only the
first change has an effect. To test if an element y is in S, it
has to be checked whether all position of hi(y) in b are set
to 1. If this is the case, it is assumed that y is in S with a
certain probability of false positive. If not, clearly y is not a
member of S, hence, traditional Bloom filters are suitable for
any application where a distinct probability of false positive
is acceptable [1].

The original concept is adapted in different ways. Given a
Bloom filter b of length n we restrict to inserting exactly l
elements, where l ≤ n. In case of uniformly distributed data
the probability that a certain bit is set to 1 during the insertion
of an element is 1/n, i.e. the probability that a bit is still 0 is
1−1/n. For inserting a total of l elements 1−(1−1/n)l bits are
expected to be set to 1. For n = l·c and c ∈ N, i.e. n represents
a multiple of l, limn→∞(1 − 1/n)l = 1/el/n. In addition, a
trivial transform h is applied to each element x ∈ S instead of
multiple hash functions. Since feature elements are expected
to be small the application of any hash function would not be
resistant to brute force attacks.

In the following subsections the alignment-free adaptive
Bloom filter-based transform and its properties with respect
to template protection, biometric data compression and com-
putationally efficient identification are described in detail.

A. Adaptive Bloom Filter-based Transform

In the proposed system adaptive Bloom filters are utilized
in order to achieve an alignment-free representation of iris-
codes. Generic iris recognition systems [2] extract binary
feature vectors based on a row-wise analysis of normalized
iris textures, i.e. iris-codes typically represent two-dimensional
binary feature vectors of width W and height H (see Fig.
3 (e)-(f)). In the proposed scheme W × H iris-codes are

divided into K blocks of equal size, where each column
consists of w ≤ H bits. In case w < H (e.g., for the
purpose of compression), columns consist of the w upper
most bits, i.e. features originating from outer iris bands, which
are expected to contain less discriminitave information, are
ignored. Subsequently, the entire sequence of columns of each
block is successively transformed to according locations within
adaptive Bloom filters, that is, a total number of K separate
adaptive Bloom filters of length n = 2w form the template of
size K · 2w. The transform is implemented by mapping each
column within the 2D iris-code to the index of its decimal
value, which is shown for two different codewords (=columns)
as part of Fig. 1, for each column x ∈ {0, 1}w, the mapping
is defined as,

b[h(x)] = 1, with h(x) =
w−1∑
j=0

xj · 2j . (1)

The very essence of the proposed transform is that it
is alignment-free, i.e. generated templates (=sets of Bloom
filters) do not need to be aligned at the time of comparison.
Equal columns within certain blocks (=codewords) are mapped
to identical indexes within adaptive Bloom filters, i.e. self-
propagating errors caused by an inappropriate alignment of
iris-codes are eliminated (radial neighborhoods persist). The
rotation-compensating property of the proposed system comes
at the cost of location information of iris-code columns. At
block boundaries miss-alignment of iris-codes will distribute
a certain amount of potentially matching codewords among
different blocks, which would be mapped to neighbored Bloom
filters. In experiments where ±8 bit shifts are required to align
iris-codes properly, miss-alignment did not affect biometric
performance. In case larger rotation angles need to be antici-
pated, multiple columns of right and left neighbor-block can
be mapped to the adaptive Bloom filter under construction in
order to overcome this drawback.

B. Comparison in Transformed Domain

Typically, comparisons between binary biometric feature
vectors are implemented by the simple XOR operator applied
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to a pair of binary biometric feature vectors. The sum of all
detected disagreements between any corresponding pairs of
bits divided by the amount of compared bits yields the frac-
tional Hamming distance (HD) as a measure of dissimilarity
between pairs of binary biometric feature vectors [10]. Let |b|
denote the amount of bits within a Bloom filter b, which are
set to 1. Then the dissimilarity DS between two Bloom filters
bi and bj is defined as,

DS (bi, bj) =
HD(bi, bj)

|bi|+ |bj |
|bi| 6= 0, |bj | 6= 0. (2)

If pairs of adaptive Bloom filters would be compared by
merely estimating Hamming distances between these, mis-
matching bits between adaptive Bloom filters in which fewer
bits are set to 1 would be weighted less and vice versa.
Obviously, DS is computed as efficient as HD while DS does
not have to be computed at numerous shifting positions. In
order to incorporate masking bits obtained at the time of pre-
processing, columns of iris-codes which are mostly affected
by occlusions must not be mapped to adaptive Bloom filters,
i.e. a seperate storage of bit masks is not required.

C. Template Protection

The Bloom filter-based transform conceals the original
positions of codewords, i.e. given a Bloom filter b it is not clear
from which column a distinct 1-bit in the generated protected
template originated. In addition, it is most likely that diverse
columns are mapped to a single index and the occurrence
of distinct codewords can not be established from the stored
template, i.e. the proposed transform achieves irreversible
alignment-free templates, implementing cancelable biometrics.
In order to provide unlinkability between multiple cancelable
templates of a single subject an application specific secret
T in form of a bit vector of length w, T ∈ {0, 1}w, is
incorporated. Each codeword is transformed applying this
secret vector (of same length) by XORing both prior to
mapping it to a Bloom filter. It is important to note that this
secret is application-specific (and potentially subject specific)
and is only incorporated as parameter in order to suffice the
property of unlinkability required by the ISO/IEC IS 24745
[19]. Alternatively, different types of hash functions could be
applied in different applications, or a single hash function
could be parameterized based on an application specific seed
(implementing MACs).

High correlation between codewords, especially neighbor-
ing ones, is expected. Consequently, a significant amount
of codewords are mapped to identical positions in Bloom
filters even for small values of l. Assume |b| bits are set to
1 within a Bloom filter after inserting l codewords, i.e. |b|
different codewords occur in a block of length l. Hence, the
amount of re-mapped bits is 1− |b|/l. For a potential attacker
the reconstruction of the original iris-code block involves an
arranging of |b| codewords to l positions (K-times for the
entire iris-code). For |b| ≤ l the theoretical amount of possible
sequences is recursively defined by the function f(|b|, l) where
each of the |b| codewords have to appear at least once within
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l columns,

f(|b|, l) =


1, if |b| = 1,

|b|l −
|b|−1∑
i=1

(
|b|
i

)
· f(i, l) otherwise.

(3)

In other words, all sequences where less than |b| code-
words appear are subtracted from the number of all possible
sequences, |b|l. Fig. 2 illustrates the rapid increase of possible
sequences even for small values of |b| (note the logarithmic
scales on both axis). Peaks are located around 3l/4, in case
of l = |b| we get f(l, l) = l! and f(1, l) = 1. For instance,
for l = 4 and |b| = 2 we get f(2, 4) = 24 −

(
2
1

)
· f(1, 4) =

16−2·1 = 14 possible sequences, for l = 4 and |b| = 3 we get
f(3, 4) = 34−

(
3
1

)
·f(1, 4)−

(
3
2

)
·f(2, 4) = 81−3·1−3·14 = 36

possible sequences and for l = 4 and |b| = 4 we get f(4, 4) =
4! = 24 possible sequences and so forth. In experiments it
will be demonstrated that for randomly generated bit vectors
it is infeasible for potential attackers to cross-match pairs of
protected templates extracted from a single subject.

D. Biometric Data Compression

The original template size is W ×H bits. In the proposed
scheme the template is divided into W/l = K blocks of length
l resulting in a template size of 2w · K = 2w · W/l where
w ≤ H . If we set l = 2q a compression is achieved if,

W/l · 2w < W ·H ⇔ 2w−q/H < 1 (4)

applies, which is most likely the case as we will demonstrate
in experiments. For instance, for an iris-code of size 2048 with
W = 256 and H = 8, and the setting l = 64 and w = 8 we
get 256/64 · 28 = 1024 < 2048, i.e. a compression down to
50% of the original size is achieved (28−6/8 = 0.5). Sizes
of transformed templates are operated by setting parameters
l and w. Both, increasing l and decreasing w reduces the
overall size of the resulting template, see Eq. 4. Again the
major advantage of the proposed transform is that compared
to existing approaches to biometric template compression,
e.g. [14], a comparison of compressed templates does not



5

require an optimal alignment within the presented scheme.
It is important to note that algorithms may extract binary
templates where distinct parts comprise features which should
not be arranged in single columns, e.g. in [29] different parts
of iris-codes represent real and complex values or minima and
maxima extracted from different wavelet subbands.

E. Adaptive Bloom Filter-based Identification

Despite indexing techniques, original iris-codes have been
combined with compressed and rotation-invariant templates
in serial combination scenarios [13], [25]. For both types
of attempts, compressed templates and alignment-free feature
extractors have been found to exhibit unpractical biometric
performance, requiring the application of a more sophisticated
algorithm within a second stage. In contrast, as will be shown
in experiments, the proposed Bloom filter-based transform
generates rotation-invariant cancelable templates which main-
tain biometric performance.

If a biometric comparator is required to perform ±s bit
shifts in each direction in order to compensate for head tilts the
overall amount of bit comparisons increases to W ·H ·(2s+1).
This means for the proposed approach the number of required
bit comparisons is reduced to,

100 · 2w−q/
(
H · (2s+ 1)

)
%. (5)

For example, if a comparator performs ±6 bit shifts and the
proposed transform retains the template size (no compression)
a reduction of bit comparisons down to 1/(12 + 1) '7.7%
is obtained, while no second algorithm is required. Again,
the proposed system takes major advantage of its rotation-
compensating property.

IV. EXPERIMENTAL EVALUATIONS

Performance is estimated in terms of false non-match rate
(FNMR) at a targeted false match rate (FMR), equal error
rate (EER), and (true-positive) identification rate (IR). In
accordance to the ISO/IEC IS 19795-1 [20] the FNMR of
a biometric system defines the proportion of genuine attempt
samples falsely declared not to match the template of the same
characteristic from the same user supplying the sample. By
analogy, the FMR defines the proportion of zero-effort impos-
tor attempt samples falsely declared to match the compared
non-self template. As score distributions overlap EERs are
obtained, i.e. the system error rate where FNMR = FMR. The
IR is the proportion of identification transactions by subjects
enrolled in the system in which the subject’s correct identifier
is the one returned. In experiments identification is performed
in the closed-set scenario returning the rank-1 candidate as
identified subject (without applying a decision threshold).

A. Experimental Setup

Experiments are carried out using the CASIA-v3-Interval
iris database1 consisting of good quality NIR illuminated

1The Center of Biometrics and Security Research,
http://www.idealtest.org

(a) Acquisition (b) Detection

(c) Iris texture

(d) Pre-processed iris texture

(e) Iris-code 1-D Log-Gabor filter

(f) Iris-code Ma et al.

Fig. 3. Preprocessing and both applied feature extraction algorithms.

TABLE I
ORIGINAL SYSTEMS: NATIVE PERFORMANCE RATES (IN %) FOR FEATURE
EXTRACTORS WITH AND WITHOUT SHIFTING (FNMRS ARE OBTAINED AT

FMR=0.01%).

Alignment 1-D Log Gabor Ma et al.
1-FNMR EER IR 1-FNMR EER IR

± 8 bits 95.03 1.58 98.01 96.16 1.19 98.11
No shift 81.48 8.35 89.71 72.17 17.41 78.26

indoor images with 320 × 280 pixel resolution. The dataset
comprises 2639 iris images of left and right eyes of 249
subjects resulting in a total number of 395 different classes.
At pre-processing the iris of a given sample image is detected,
un-wrapped to an enhanced rectangular texture of 512 × 64
pixel, shown in Fig. 3 (a)-(d) applying the weighted adaptive
Hough algorithm proposed in [43]. The two-stage segmenta-
tion algorithm employs a weighted adaptive Hough transform
iteratively refining a region of interest to find an initial center
point, which is utilized to polar transform the image and
extract polar and limbic boundary curves one after another
from an (ellipso-)polar representation.

In the feature extraction stage custom implementations2 of
two different iris recognition algorithms are employed where
normalized iris textures are divided into stripes to obtain 10
one-dimensional signals, each one averaged from the pixels
of 5 adjacent rows (the upper 512 × 50 rows are analyzed).
The first feature extraction method follows an implementation

2USIT – University of Salzburg Iris Toolkit v1.0,
http://www.wavelab.at/sources/

http://www.idealtest.org
http://www.wavelab.at/sources/
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by Masek [29] in which filters obtained from a Log-Gabor
function are applied. Within this approach the texture is
divided into 10 stripes to obtain 5 one-dimensional signals,
each one averaged from the pixels of 5 adjacent rows, hence,
the upper 512 × 50 pixel of preprocessed iris textures are
analyzed. A row-wise convolution with a complex Log-Gabor
filter is performed on the texture pixels. The phase angle of
the resulting complex value for each pixel is discretized into
2 bits. The 2 bits of phase information are used to generate a
binary code, which therefore is again 512 × 20 = 10240 bit.
This algorithm is somewhat similar to Daugman’s use of Log-
Gabor filters, but it works only on rows as opposed to the
2-dimensional filters used by Daugman. The second feature
extraction algorithm was proposed by Ma et al. [27]. Within
this algorithm a dyadic wavelet transform is performed on
10 signals obtained from the according texture stripes, and
two fixed subbands are selected from each transform resulting
in a total number of 20 subbands. In each subband all local
minima and maxima above an adequate threshold are located,
and a bit-code alternating between 0 and 1 at each extreme
point is extracted. Using 512 bits per signal, the final code
is 512× 20 = 10240 bit. Sample iris-codes generate by both
feature extraction methods are shown in Fig. 3 (e)-(f).

A common way to estimate the average entropy (' amount
of mutually independent bits) of biometric feature vectors
is to measure the provided “degrees-of-freedom” which are
defined by d = p(1− p)/σ2, where p is the mean HD and σ2

the corresponding variance between comparisons of different
pairs of binary feature vectors. In case all bits of each binary
feature vector of length z would be mutually independent,
comparisons of pairs of different feature vectors would yield
a binomial distribution, B(z, k) =

(
z
k

)
pk(1−p)z−k =

(
z
k

)
0.5z

and the expectation of the Hamming distance would be
1/z · E(X ⊕ Y ) = zp · 1/z = p = 0.5, where X and Y
are two independent random variables in {0, 1}. In reality
p decreases to 0.5 − ε while Hamming distances remain
binomially distributed with a reduction in z in particular,
B(d, 0.5) [46]. The 1D Log-Gabor feature extractor achieves
a total of 592 degrees of freedom for a mean of 0.493 and an
according standard deviation of 0.021. The algorithm of Ma
et al. yields 1291 degrees of freedom for a mean of 0.498 and
a standard deviation of 0.013.

Feature alignment represents an essential task at compari-
son. Table I summarizes the biometric performance of both
feature extractors for ±8 circular bit shifts and no bit shifting.
Obviously, biometric performance is significantly improved
if templates are aligned properly, where 8 circular bit shifts
in each direction was found to be an adequate choice. As
expected improved identification rates are obtained in the
closed-set evaluation returning rank-1 candidates whitout con-
sidering any decision threshold. For both methods practical
performance rates are obtained while the iris-code extracted
by the algorithm of Ma et al. exhibits twice as much degrees
of freedom compared to the feature extraction of Masek.

High correlation appears between neighboring columns of
iris-codes, for both algorithms correlations in terms of 1-HD
are plotted in Fig. 4 for more than 10 000 randomly chosen
iris-code columns. As expected, directly neighboring columns
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Fig. 4. Correlation (1-HD) between columns of iris-codes for both feature
extraction algorithms.

exhibit high correlation since they originate from neighbour-
ing pixel blocks in the iris texture which are not mutually
independent. Columns with high correlation are surrounded
by columns exhibiting rather low correlation, that is, from the
estimated degrees-of-freedom an average iris-code extracted
by the algorithm of Ma et al. corresponds to 1291 Bernoulli
trials which means concatenated sequences of 0s and 1s exhibit
an average length of '8 (10240/1291) bit. By analogy, for the
1D Log-Gabor feature extractor according sequences exhibit
an average length of '17 (10240/592) bit (see Fig. 3(e)-(f)).

B. Performance Evaluation

Focusing on the applied feature extraction algorithms ex-
tracted iris-codes are divided in an upper 512×10 bit half and
a lower 512×10 bit half as these represent real and complex
values or minima and maxima extracted from different wavelet
subbands, respectively. In case HDs are estimated based
on column-wise codewords, i.e. a single error between two
codewords defines a mis-match, FNMRs slightly increase with
the size of codewords while EERs increase rather fast. 1-
FNMRs and EERs for codeword sizes of w = 8 to w = 10 bits
are summarized in Table II, where codewords start at the top of
the upper and lower half (the original biometric performance
corresponds to a word size of w = 1).

Table III - V summarize obtained 1-FNMRs, EERs, and
IRs for different word sizes w and block sizes l for both
feature extraction algorithms. From the obtained results it is
clear that rotations of ± 8 bits, which significantly affect
original systems, are compensated. The according receiver
operation characteristic (ROC) curves are depicted in Fig. 5.
Biometric performance is maintained or even improved for
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TABLE II
ORIGINAL SYSTEMS: PERFORMANCE RATES (IN %) FOR BOTH FEATURE

EXTRACTOR FOR HD-BASED COMPARISONS FOR DIFFERENT WORD SIZES
(FNMRS ARE OBTAINED AT FMR=0.01%).

Word size 1-D Log Gabor Ma et al.
w (bits) 1-FNMR EER 1-FNMR EER

10 93.65 2.61 95.44 1.75
9 96.11 2.31 95.70 1.69
8 96.16 1.54 96.93 1.63

TABLE III
1-FNMRS (IN %) AT FMR=0.01% FOR DIFFERENT CONFIGURATIONS OF

THE ADAPTIVE BLOOM FILTER-BASED TRANSFORM.

Algorithm Word size Block size l (bits)
w (bits) 25 26 27 28 29

1-D 10 96.36 93.45 84.75 60.19 41.48

Log Gabor 9 95.90 92.07 81.73 60.15 41.22
8 94.78 90.89 79.33 50.89 –

10 97.95 95.08 86.70 75.29 52.68
Ma et al. 9 97.49 93.50 84.04 66.08 27.46

8 96.52 92.17 75.39 31.40 –

small block sizes, which support the previous claim that initial
miss-alignments do not cause a drastic decrease in biometric
performance. Again, performance is improved in identification
mode. Throughout experiments best result were achieved for
the maximum word size of 10 bit, i.e. K = 10240/(32 ·10) =
32 blocks of l = 32 codewords which are mapped to 32
Bloom filters of size n = 2w = 210. By applying the DS
metric, which represents an improved biometric comparator,
to pairs of Bloom filters accuracy is gained. For greater block
sizes (e.g. l = 28) biometric performance decreases. While
an increase of block sizes provides rotations-invariance for
higher degrees of miss-alignment, it increases the chance that
identical codewords occur within blocks, i.e. local information
is lost leading to a greater overlap of intra- and inter-class score
distributions.

C. Cancelable Templates

The security of the entire approach relies on the non-
invertible mapping of codewords to a Bloom filter. W.l.o.g.
this transform obscures the original position of the code-
word as well as the number a codeword occurs, hence, for
different configurations certain amounts of codewords are
mapped to an identical position within according adaptive
Bloom filters. Fig. 6 depicts the average percentage of re-
mapped codewords and according standard deviations for both
algorithms and applied configurations, according to Fig. 2
remapping 1 − |b|/l ' 1 − 3/4 = 25% would be optimal in
terms of security. In contrast to uniformly distributed data for
configurations of w = 9 and w = 10 bit more codewords
are re-mapped for smaller block sizes which is caused by
correlation between iris-code columns. For w = 8 bit, the
amount of re-mapped codewords increases with the block size
l, i.e. more information is lost compared to larger values of

TABLE IV
EERS (IN %) FOR DIFFERENT CONFIGURATIONS OF THE ADAPTIVE

BLOOM FILTER-BASED TRANSFORM.

Algorithm Word size Block size l (bits)
w (bits) 25 26 27 28 29

1-D 10 1.49 2.12 3.17 5.04 9.04

Log Gabor 9 1.67 2.15 3.32 6.10 12.17
8 1.83 2.24 4.74 11.55 –

10 1.14 1.72 2.64 5.08 8.99
Ma et al. 9 1.44 1.95 3.74 7.57 13.90

8 1.47 2.51 4.79 11.97 –

TABLE V
IRS (IN %) FOR DIFFERENT CONFIGURATIONS OF THE ADAPTIVE BLOOM

FILTER-BASED TRANSFORM.

Algorithm Word size Block size l (bits)
w (bits) 25 26 27 28 29

1-D 10 98.01 97.34 95.14 90.53 78.61

Log Gabor 9 97.89 96.93 93.96 86.44 70.23
8 97.45 95.93 92.12 75.60 –

10 98.87 98.05 96.52 91.35 82.14
Ma et al. 9 98.56 97.54 94.62 85.93 68.08

8 98.05 96.72 92.73 70.74 –

w. As a result, in general, biometric performance decreases
with the word size w (see Table III–V), as opposed to the
case where no information about codeword positions is lost
(see Table II).

For best performing configurations (w.r.t. accuracy), map-
ping l = 32 codewords of length w = 10 to a n = 210 bit
adaptive Bloom filters, for the 1D Log-Gabor feature extrac-
tion ∼ 48% of codewords are re-mapped, 1 − |b|/l ' 0.48
(see Fig. 6(a)). By analogy, for the algorithm of Ma et al. on
average ∼ 32% of codewords are re-mapped (see Fig. 6(b)).
Focusing on the 1D Log-Gabor feature extractor, according to
the previously estimated amount of possible sequences (see
Fig. 2, l = 32) a potential attacker would have to try ∼ 2126

different sequences, |b| = 32 · (1− 0.48) = 16.64, for each of
the K = 32 blocks. For the algorithm of Ma et al. the average
amount of re-mapped codewords is even lower resulting in
∼ 2131 different sequences for |b| = 32 · (1− 0.32) = 21.76.
By increasing block sizes security is significantly increased,
e.g. for the feature extractor of Ma et al. a total number of
∼ 2283 possible sequences have to be tried per block in order
to guess the original iris-code for w = 10 and l = 64, with
|b| = 32 · (1 − 0.31) = 22.08, while the system still reveals
a practical EER of 1.72%. Obviously, a cancelable biometric
system is operated through a natural trade-off between security
and biometric performance.

Unlinkability, i.e. the infeasibility of cross-matching dif-
ferent protected templates of a single subject, represents a
major issue of biometric template protection, however, ex-
perimental studies on unlinkability are commonly neglected
[28]. According to the ISO/IEC IS 24745 on biometric in-
formation protection, unlinkability can be implemented by
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Fig. 5. ROC curves for the 1D Log-Gabor feature extractor (a)-(c) and the algorithm of Ma et al. (d)-(f) for different settings of block sizes and word sizes.

encrypting biometric references employing different (secret)
keys, provided that the secret keys are managed appropriately
to avoid collusion [19]. An application-specific secret bit
vector is XORed with each iris-code column before applying
adaptive Bloom filter-based transforms. To further enhance
security with respect to unlinkability, this XOR-encryption
based on a secret key could be substituted by an application of
non-linear functions. In order to investigate the unlinkability
of the presented approach we focus on the best performing
configuration in terms of accuracy, i.e. l = 32 columns
comprising w = 10 bits are successively mapped to according
adaptive Bloom filters of size n = 210. Subsequently, obtained
inter-class distributions are compared to distributions yielded
by comparing adaptive Bloom filters originating from a single
iris-code which are obscured by different bit vectors. Obtained
score distributions are depicted in Fig. 7 for both algorithms,
where unlinkability studies have been obtained from more than
10 000 genuine comparison with randomly chosen bit vectors.
The comparison of different cancelable templates generated
from a single iris-code does not allow cross-matching since
resulting dissimilarity scores are generally higher than that of
impostor comparisons within a single application.

D. Compressed Templates

Regarding resulting template sizes, which are depicted in
Fig. 8 for most configurations K · 2w < W · H = 20 · 29
applies, which means a compression of the original template
is achieved. Again, a trade-off is observed, between template

size and biometric performance. Smallest template sizes (10%
of original size), for the configuration w = 8 and l = 28, result
in rather un-practical performance rates of EERs >10%, while
compressions down to 20% or 40% of the original size almost
maintains accuracy, see Table III–V. Fig. 9 shows examples
of resulting codes for both feature extraction algorithms. As
can be seen for the algoritm of Ma et al. which provides
more degrees of freedom, more bits are set to 1. Extracted
codes appear suitable to be used in aforementioned application
scenarios.

E. Identification Speed

In Fig. 10 the number of bit comparison of different con-
figurations and the resulting IRs are compared to the original
systems (requiring ±8 bit shifts). A significant reduction of bit
comparisons (at least <25% of original system) is obtained
for all settings of w and l while biometric performance is
maintained for decreasing the bit comparisons down to ∼5%,
which corresponds to a comparison of 213 bits.

Identification is performed on a 2.30 GHz system. In order
to minimize computational overhead caused by file access
operations, all enrolled iris-codes are loaded a priori. A 1 : n
comparison of a single iris-code of 10240 bits applying ±8
bit shifts takes on average 607 ms, which is defined as the
baseline (=100%) of computational effort. Optimized C-based
programs are able to compare more than one million iris-codes
per second [11] which has been confirmed by published tests
(e.g. NIST IREX-3). However, this difference is irrelevant
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Fig. 6. Proportion of re-mapped codewords, 1-|b|/l, for different block sizes
l and word sizes w for both feature extractors.

since we aim at comparing the two types of techniques
based on the same platform and report speed-up in percent.
Experimental results according to the average relative time
required to identify a single subject compared to the original
algorithms are summarized in Table VI. As expected, due
to remaining inevitable computational overhead the obtained
speed-up does not precisely relate to according template sizes,
still, speed-up is substantial. For the best configuration with
respect to biometric performance, w = 10 and l = 25, a
four-fold speed-up is achieved (607 · 0.2357 = 143.07ms).
Up to a ten-fold speed-up comparable biometric performance
is maintained, see Fig. 10. Furthermore, it is important to
note that, while the applied database consits only of a few
hundred subjects, in contrast to an indexing approach, the size
of the applied dataset is irrelevant as well, since the proposed
approach aims at achieving linear speed up requiring a 1 : n
comparison.

V. CONCLUSIONS

The wide use of (iris) biometrics raises the need for pri-
vacy protection. Technologies of cancelable biometrics are
designed to permanently secure biometric data, preventing
from identity fraud and privacy violation. In addition, while a
binary representation of biometric features enable a rapid com-
parison computational limits are reached deploying national-
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Fig. 7. Score distributions for inter-class comparisons and according unlink-
ability tests for both feature extractors.
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sized biometric databases in identification mode and public
deployments of iris recognition are still based on a brute force
exhaustive search through a database. While the majority of
approaches to biometric database indexing suffer from a sig-
nificant decrease in biometric performance, indexing protected
biometric templates represents an even greater challenge.

In this article alignment-free cancelable iris biometric tem-
plates based on adaptive Bloom filters are introduced. The
generic adaptive Bloom filter-based transform which is applied



10

(a) w = 8, l = 28 (b) w = 9, l = 28

(c) w = 8, l = 28 (d) w = 9, l = 28

Fig. 9. Sample compressions for the 1D Log-Gabor (a)-(b) and the Ma et
al. (c)-(d) feature vector of sample iris-codes in Fig. 3 (e)-(f) (256 × 4 and
256× 8 codes have been rearranged for visualization).
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Fig. 10. Amount of required bit comparisons and resulting IRs for different
configurations of the adaptive Bloom filter-based transform.

TABLE VI
RELATIVE TIME (IN %) COMPARED TO THE TRADITIONAL APPROACH FOR

DIFFERENT CONFIGURATIONS OF THE ADAPTIVE BLOOM FILTER-BASED
TRANSFORM.

Word size Block size l (bits)
w (bits) 25 26 27 28 29

10 23.57 13.07 8.51 5.51 4.03
9 13.09 8.50 5.51 4.01 3.48
8 8.50 5.55 4.03 3.47 –

to binary feature vectors of different iris recognition algorithms
enables (1) template protection, (2) a compression of biometric
data, and (3) computational efficient biometric identification.
Existing approaches to iris biometric template protection suffer
from low biometric performance or utilize rather insecure
alignment-preserving transforms. In contrast, the proposed
rotation-invariant Bloom filter-based transform provides a high
level of security while recognition accuracy is maintained. In
addition, the presented scheme can be parameterized in order
to highly compress biometric templates (down to 10% of origi-
nal size). Furthermore, since bit-shifting is obsolete at the time
of biometric comparison (in transformed domain) a substantial
speed-up of biometric identification is achieved. Finally, it is
important to note that the proposed approach can be utilized in
order to generate a fixed-length protected template based on a
variable-length binary biometric feature vector which may be
the case for other biometric characteristics, e.g. fingerprints.
To the authors’ knowledge the proposed approach represents
the very first template protection scheme which enables com-
pression and computationally efficient identification.
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APPENDIX

Proof (by induction). for all |b|, l ∈ N, l ≥ |b| > 1, the
theoretical amount of possible sequences is f(|b|, l), where
|b| codewords have to appear at least once within l columns,

f(|b|, l) = |b|l −
|b|−1∑
i=1

(
|b|
i

)
· f(i, l). (6)

Base case: f(1, l) = 1, and for |b| = 2, the number of
possible sequences is 2l− 2, i.e. all possible sequences minus
the two sequences where only one codeword occurs,

f(2, l) = 2l −
1∑

i=1

(
2

i

)
· f(i, l) = 2l −

(
2

1

)
· f(1, l) = 2l − 2.

(6) is true for the base case, |b| = 2.
Induction step: |b| → |b|+1, suppose (6) is true for |b|. For

|b|+ 1 the number of all possible sequences is (|b|+ 1)l, the
subtracted number of possible i-element subsets are now of a
set containing |b|+ 1 elements, and sequences comprising |b|
codewords are subtracted. We get,

f(|b|+ 1, l) = (|b|+ 1)l −
(
|b|+ 1

|b|

)
· f(|b|, l)

−
|b|−1∑
i=1

(
|b|+ 1

i

)
· f(i, l)

= (|b|+ 1)l −
(
|b|+ 1

|b|+ 1− |b|

)
· f(|b|, l)

−
|b|−1∑
i=1

(
|b|+ 1

i

)
· f(i, l)

= (|b|+ 1)l − (|b|+ 1) · f(|b|, l)

−
|b|−1∑
i=1

(
|b|+ 1

i

)
· f(i, l)

= (|b|+ 1)l −
|b|∑
i=1

(
|b|+ 1

i

)
· f(i, l)

Conclusion: by the principle of induction, (6) is true for all
|b|, l ∈ N, l ≥ |b| > 1.
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