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Abstract. In this paper a binary biometric comparator based on Count-
ing Bloom filters is introduced. Within the proposed scheme binary bio-
metric feature vectors are analyzed and appropriate bit sequences are
mapped to Counting Bloom filters. The comparison of resulting sets
of Counting Bloom filters significantly improves the biometric perfor-
mance of the underlying system. The proposed approach is applied to
binary iris-biometric feature vectors, i.e. iris-codes, generated from dif-
ferent feature extractors. Experimental evaluations, which carried out
on the CASIA-v3-Interval iris database, confirm the soundness of the
presented comparator.

1 Introduction

Iris biometric recognition [2] is field-proven as a robust and reliable biometric
technology. The iris’s complex texture and its apparent stability hold tremen-
dous promise for applying iris recognition in diverse application scenarios, such
as border control or forensic investigations [12]. Daugman’s algorithm [3], forms
the basis of the vast majority of today’s iris recognition systems, which report
(true positive) identification rates above 99% and equal error rates less than 1%:
(1) at enrollment an image of a subject’s eye is acquired; (2) in the pre-processing
step the boundary of the pupil and the outer iris are detected and the iris (in
the approximated form of a ring) is “un-rolled” to obtain a normalized rectan-
gular iris texture; (3) feature extraction is applied in order to generate a highly
discriminative binary feature vector called iris-code; (4) at the time of authen-
tication pairs of iris-codes are efficiently compared by calculating the Hamming
distance between them, where template alignment is performed within a sin-
gle dimension, applying a circular shift of iris-codes, to compensate against head
tilts of a certain degree. While most approaches to iris recognition algorithms fo-
cus on extracting highly discriminative iris-codes, potential improvements within
comparators are frequently neglected.

The contribution of this work is the proposal of a binary biometric com-
parator based on Counting Bloom filters (CBFs) [1,5]. In the presented scheme
iris-codes are transformed to sets of CBFs which enables an enhanced biomet-
ric comparison, yielding a significant improvement in biometric performance. In



addition the generic comparator does not require a re-enrollment of registered
subjects, i.e. it can be integarted to any existing iris recognition system.

This paper is organized as follows: related work is summarized in Sect. 2.
The proposed comparator based on CBFs is described in detail in Sect. 3. Ex-
periments are presented in Sect. 4 and conclusions are drawn in Sect. 5.

2 Template Comparison in Iris Recognition

Focusing on iris recognition, a binary representation of biometric features offers
two major advantages:

1. Rapid authentication (even in identification mode).
2. Compact storage of biometric templates.

Comparisons between binary biometric feature vectors are commonly imple-
mented by the simple Boolean exclusive-OR operator (XOR) applied to a pair
of binary biometric feature vectors, masked (AND’ed) by both of their corre-
sponding mask templates to prevent occlusions caused by eyelids or eyelashes
from influencing comparisons. The XOR operator ⊕ detects disagreement be-
tween any corresponding pair of bits, while the AND operator ∩ ensures that
the compared bits are both deemed to have been uncorrupted by noise. The
norms (|| · ||) of the resulting bit vector and of the AND’ed mask template are
then measured in order to compute a fractional Hamming distance (HD) as a
measure of the (dis-)similarity between pairs of binary feature vectors {codeA,
codeB} and the according mask bit vectors {maskA, maskB} [3]:

HD =
||(codeA⊕ codeB) ∩maskA ∩maskB||

||maskA ∩maskB||
. (1)

Note that for the dis-similarity metrics the score for a genuine comparison
(i.e. both codes stemming from the same source) is expected to be low. Apart
from the fractional Hamming distance several other techniques of how to com-
pare iris-codes have been proposed. To obtain a representative user-specific iris
template during enrollment Davida et al. [4] and Ziauddin and Dailey [13] an-
alyze several iris-codes. Davida et al. propose a majority decoding where the
majority of bits is assigned to according bit positions in order to reduce HDs
between genuine iris-codes. Experimental results are omitted. Ziauddin and Dai-
ley suggest to assign weights to each bit position, defining the stability of bits
at according positions. Hollingsworth et al. [6] examined the consistency of bits
in iris-codes resulting from different parts of the iris texture. The authors sug-
gest to mask out so-called “fragile” bits for each subject, where these bits are
detected from several iris-code samples. In experiments the authors achieve a sig-
nificant performance gain. Obviously, applying more than one enrollment sample
yields better recognition performance, however, commercial applications usually
require single sample enrollment as the operational constraints can not tolerate
an extended capture process duration. Rathgeb et al. [10,11] have demonstrated
that incorporating preliminary comparison scores, which are obtained during the
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Fig. 1. Proposed Counting Bloom filter-based transform: highlighted codewords incre-
ment in cb2 the element at index 39 and 40.

alignment process, significantly increases biometric performance. HD scores are
expected to decrease towards an optimal alignment, i.e. the distance between
the lowest and highest score as well as the overall distribution yielded by scores
at different shifting positions, indicates (non-)genuine comparisons. Typically,
minor improvements do not lead to significant performance gain with respect
to accuracy. On the other hand, more complex comparison techniques do not
provide a rapid comparison of biometric templates, yielding a trade-off between
computational effort and recognition accuracy.

3 Counting Bloom Filter-based Comparator

Basically, a Bloom filter b is a bit array of length n, where initially all bits are
set to 0 [1]. In order to represent a set S a Bloom filter traditionally utilizes k
independent hash functions h1, h2, ..., hk with range [0, n− 1]. For each element
x ∈ S, bits at positions hi(x) of Bloom filter b are set to 1, for 1 ≤ i ≤ k.
To test if an element y is in S, it has to be checked whether all position of
hi(y) in b are set to 1. If this is the case, it is assumed that y is in S with
a certain probability of false positive. If not, clearly y is not a member of S,
hence, traditional Bloom filters are suitable for any application where a distinct
probability of false positive is acceptable. In a Counting Bloom filter cb, which
has first been introduced by Fan et al. [5], the array positions are extended from
being a single bit to being an integer counter.

In the following subsections, the CBF-based transform, which is depicted in
Fig. 1, and the corresponding comparison technique are described in detail.

3.1 Counting Bloom Filter-based Transform

In the proposed system CBFs are utilized in order to achieve an alignment-free
representation (to a certain degree) of iris-codes. For this purpose the original
concept of CBFs is adapted in two ways:



Algorithm 1 Construction of CBF-based template.

for j = 0→ K − 1 do . process each block of the feature vector
for i = j ∗ l→ j ∗ (l + 1) do . process each codeword within a block

cbj [h(xi)]← cbj [h(xi)] + 1 . increment the CBF at the according position
end for

end for

1. A single trivial transform h is utilized instead of numerous hash function.
2. A fixed number of exactly l elements are inserted into an according CBF.

Generic iris recognition systems [2] extract binary feature vectors based on a
row-wise analysis of normalized iris textures, i.e. iris-codes typically represent
two-dimensional binary feature vectors of width W and height H (see Fig. 2
(e)-(f)). In the proposed scheme W ×H iris-codes are divided into K blocks of
equal size, where each column consists of w ≤ H bits. In case w < H, columns
consist of the w upper most bits, i.e. features originating from outer iris bands,
which are expected to contain less discriminative information, are ignored and
not represented in the CBF. Subsequently, the entire sequence of columns of each
block is successively transformed to according locations within CBFs, that is, a
total number of K separate Bloom filters of length n = 2w form the template of
size K · 2w. The transform is implemented by mapping each column in the iris-
code to the index of its decimal value, which is shown for two different codewords
(=columns) as part of Fig. reffig:system, for each column x ∈ {0, 1}w, the
mapping is defined as,

h(x) =

w−1∑
j=0

xj · 2j . (2)

The entire process of constructing a set of CBFs which represents a distinct
iris-code is described in Algorithm 1. The representation is alignment-free, i.e.
generated templates (=sets of CBFs) do not need to be aligned at the time of
comparison. Equal columns within certain blocks (=codewords) increment iden-
tical indexes within CBFs, i.e. self-propagating errors caused by an inappropriate
alignment of iris-codes are eliminated (radial neighborhoods persist).

3.2 Comparison in transformed Domain

The dissimilarity DS between two CBFs cb and cb′ of length n,n = 2w, is defined
as the sum of difference at each index of both CBFs,

DS (cb, cb′) =

n∑
j=1

|cbj − cb′j |/2l, (3)

Obviously, DS requires more computational effort compared to HD , however,
DS does not have to be computed at numerous shifting positions. In order to
incorporate masking bits obtained at the time of pre-processing, columns of iris-
codes which are mostly affected by occlusions must not be mapped to Bloom
filters, i.e. a separate storage of bit masks is not required.



(a) Acquisition (b) Detection

(c) Pre-processed iris texture

(d) Iris-code 1-D Log-Gabor filter

(e) Iris-code Ma et al.

Fig. 2. Iris processing chain: applied pre-processing and feature extraction algorithms.

4 Experiments

Performance is estimated in terms of false non-match rate (FNMR) at a tar-
geted false match rate (FMR) and equal error rate (EER). In accordance to
the International Standard ISO/IEC IS 19795-1 [7] the FNMR of a biometric
system defines the proportion of genuine attempt samples falsely declared not
to match the template of the same characteristic from the same user supplying
the sample. By analogy, the FMR defines the proportion of zero-effort impostor
attempt samples falsely declared to match the compared non-self template. As
score distributions overlap EERs are obtained, i.e. the system error rate where
FNMR = FMR.

4.1 Experimental Setup

Experiments are carried out using the CASIA-v3-Interval iris database1. At pre-
processing the iris of a given sample image is detected, un-wrapped to an en-
hanced rectangular texture of 512× 64 pixel, shown in Fig. 2 (a)-(d).

In the feature extraction stage custom implementations2 of two different iris
recognition algorithms are employed where normalized iris textures are divided

1 The Center of Biometrics and Security Research,
http://www.idealtest.org

2 USIT – University of Salzburg Iris Toolkit v1.0,
http://www.wavelab.at/sources/

http://www.idealtest.org
http://www.wavelab.at/sources/


Table 1. Original performance (in %) for both feature extractors (HD comparator).

Aligorithm 1-FNMR @ FMR=0.01 EER

1-D Log Gabor 95.03 1.58

Ma et al. 96.16 1.19

Table 2. 1-FNMRs @FMR=0.01 (in %) for different configurations of the comparator.

Algorithm
Word size Block size l (bits)
w (bits) 25 26 27 28 29

1D Log Gabor
10 95.75 94.32 88.43 66.24 31.81
9 94.98 94.27 89.36 64.45 –
8 93.65 93.91 87.97 – –

10 98.15 96.11 93.40 82.65 60.71
Ma et al. 9 97.80 94.88 91.30 76.21 –

8 97.08 93.40 87.92 – –

into stripes to obtain 10 one-dimensional signals, each one averaged from the
pixels of 5 adjacent rows (the upper 512 × 50 rows are analyzed). The first
feature extraction method follows an implementation by Masek [9] in which
filters obtained from a Log-Gabor function are applied. A row-wise convolution
with a complex Log-Gabor filter is performed on the texture pixels and the
phase angles of resulting complex values are discretized into 2 bits generating a
binary code of 512 × 20 = 10240 bit. The second feature extraction algorithm
was proposed by Ma et al. [8]. Within this algorithm a dyadic wavelet transform
is performed on 10 signals obtained from the according texture stripes. For two
selected subbands minima and maxima above an adequate threshold are located,
and a bit-code of 512×20 = 10240 bits is extracted. Sample iris-codes generated
by both feature extraction methods are shown in Fig. 2 (e)-(f). iris-code are
divided into upper and lower 512× 10 halfs as these represent real and complex
values or minima and maxima extracted from different subbands, respectively.

4.2 Performance Evaluation

The biometric performance of the original systems, in which HD-based iris-code
comparisons are performed at ± 8 circular bit shifts, are shown in Table 1.
The corresponding receiver operation characteristic (ROC) curves are plotted in
Fig. 3 (a). For both feature extraction techniques practical performance rates
are achieved, yielding EERs of 1.58% and 1.19%, respectively. With respect to
the proposed CBF-based comparator, Table 2 and Table 3 summarize obtained
1-FNMRs at target FMRs of 0.01% and EERs for different word sizes w and
block sizes l for both feature extraction algorithms. As can be seen, a choice of
large block sizes implies a greater loss of local information (original positions of



Table 3. EERs (in %) for different configurations of the proposed comparator.

Algorithm
Word size Block size l (bits)
w (bits) 25 26 27 28 29

1D Log Gabor
10 1.21 1.75 2.49 4.54 7.87
9 1.34 1.77 3.02 4.74 –
8 1.42 1.93 3.17 – –

10 0.88 1.56 2.54 4.10 6.90
Ma et al. 9 1.04 1.61 2.70 4.62 –

8 1.09 1.67 3.22 – –
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Fig. 3. ROC curves for (a) the original HD-based comparator and the proposed algo-
rithm for (b) the 1D Log-Gabor feature extractor and (c) the algorithm of Ma et al.
for different settings of block sizes and a word size of w = 10.

codewords) and causes a drastic decrease in biometric performance. From the
obtained results it is clear that rotations of ± 8 bits, which significantly affect
original systems, are compensated. For both feature extraction algorithms per-
formance is gained for different configurations, achieving best results at word
size of w = 10 and a block size of l = 32, obtaining EERs of 1.21% and 0.88%,
respectively. The according ROC curves for a word size of w = 10 are depicted in
Fig. 3 (b)-(c). Significant improvement is obtained compared to the original sys-
tem, while the proposed scheme does not require re-enrollment or any adaption
of the original iris-codes. CBFs can be stored in addition to iris-code records or
efficiently calculated at the time of comparison.

5 Conclusions

In this work an advanced binary biometric comparator based on counting Bloom
filters has been introduced. Compared to a conventional, HD-based comparison,
within the proposed approach iris-codes are transformed to sets of CBFs, prior
to comparison. Additional computational effort is limited since the CBF-based
representation enables an alignment-free comparison. The system is evaluated



on a publicly available dataset where it gains biometric performance for dif-
ferent feature extraction techniques, confirming the soundness of the presented
approach.
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