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Abstract—Finding similarities between byte sequences is a
complex task and necessary in many areas of computer science,
e.g., to identify malicious files or spam. Instead of comparing
files against each other, one may apply a similarity preserving
compression function (hash function) first and do the comparison
for the hashes. Although we have different approaches, there is
no clear definition / specification or needed properties of such
algorithms available.

This paper presents four basic properties for similarity pre-
serving hash functions that are partly related to the properties of
cryptographic hash functions. Compression and ease of computa-
tion are borrowed from traditional hash functions and define the
hash value length and the performance. As every byte is expected
to influence the hash value, we introduce coverage. Similarity score
describes the need for a comparison function for hash values.

We shortly discuss these properties with respect to three
existing approaches and finally have a detailed view on the
promising approach sdhash. However, we uncovered some bugs
and other peculiarities of the implementation of sdhash.

Finally we conclude that sdhash has the potential to be a
robust similarity preserving digest algorithm, but there are some
points that need to be improved.

I. INTRODUCTION

The identification of similar byte sequences is relevant in
many areas of computer science. Possible working fields are a
forensic investigation, malware / spam detection or biometrics.
In order to compare two different byte sequences a lot of
different algorithms like the Hamming distance, Levenshtein
distance and so on are available. Since both input byte se-
quences might be very large, we run into two problems. Let
ω1, ω2 be two inputs:

1) If ω1 and ω2 are ‘large’, the calculation is very time
consuming (run time problem).

2) If ω1 is known and we want to compare it against ω2,
we need to have ω1 available (disk space problem).

Thus one possible solution is to apply a compression function
that preserves the similarity of the domain and to compare the
compressed inputs instead of the original ones.

If we neglect similarity and focus on exact duplicates,
this issue is solved by cryptographic hash functions as they
produce a very short and fixed-length output. But crypto-
graphic hash functions meet several security requirements and
thus the hash value behaves pseudo-randomly. If the input
changes slightly, approximately 50% of the output bits change.

Comparing the similarity of files using cryptographic hash
functions is therefore not possible.

To overcome this drawback there are a few approaches
focusing on this issue called similarity preserving hash func-
tion (abbreviated SPHF) like ssdeep ([10]), sdhash ([14]),
and bbhash ([7]). While thinking about new algorithms or
evaluating existing ones, we run into the problem that there is
no clear specification or definition for such functions (which
is also in contrast to cryptographic hash functions).

The paper at hand therefore introduces four important prop-
erties for similarity preserving hash functions: Compression,
ease of computation, coverage and similarity score. As we also
use the term hash function, some of the properties are related
to the ones from cryptographic hash functions. Thus this paper
is a first step towards a definition for SPHF. In a second step
we validate an appropriate tool for similarity hashing called
sdhash against these properties. Due to a detailed analysis
of sdhash we also uncovered some weaknesses and present
improvements.

The rest of the paper is organized as follows: In the
subsequent Sec. I-A we introduce notation and terms, which
we use throughout this paper. Then, in Sec. II we sketch the
state of the art and discuss relevant literature. Next, we show
in Sec. III the foundations of the similarity digest fingerprint
sdhash, which is necessary to understand our improvements
and attacks. The core of our paper is given in Sec. IV
and Sec. V, where we discuss the properties and make an
assessment of sdhash based on these properties, respectively.
Sec. VI shows some further peculiarities of the algorithm. The
conclusion (Sec. VII) completes our paper.

A. Notation and Terms used in this Paper

In this paper, we make use of the the following notation
and terms:

• h denotes a cryptographic hash function (e.g., SHA-1,
MD5, RIPEMD-160).

• IN is a byte string of length L, BS = B0B1B2 . . . BL−1
called input.

• fk is a sub byte string in IN starting at offset k with a
length of l. We call f a feature. The implementation of
sdhash uses l = 64.

• Hnorm denotes the normalized entropy score.



• Rprec is the precedence rank which has been obtained by
preliminary statistical analysis.

• Rpop denotes the popularity score of a feature.
• F is a specific feature f whose Rpop is higher-equal than

a given threshold. The implementation uses a threshold
of 16.

• bf is a Bloom filter of 256 bytes containing a maximum
of 128 features.

• |bf | denotes the amount of bits set to one within bf .
• bf denotes the amount of features within bf .

II. RELATED WORK

Hash functions are very widespread in computer science
and mainly have two basic properties compression and ease of
computation ([11]) where compression means that independent
of the input length the output (hash value) is of a fixed size.
Besides their use in cryptography and databases ([20, Sec.
9.6]), hash functions are also used within computer forensics to
find identical files ([1, p.56++]). However, in order to uncover
the similarity between two inputs, we need some kind of
similarity preserving hash function1.

Before introducing different similarity preserving hash func-
tions, we shortly discuss the term similarity. In general we dis-
tinguish between a syntactic level (byte level) and a semantic
level. For instance, in case of a picture the underlying byte
sequence would be the syntactic level and the interpretation is
the semantic level.

The first idea for similarity preserving hashing was called
block based hashing and was presented in 2002 by Harbour.
The proceeding is quite simple: divide a given input in blocks
of fixed size, hash each block separately and concatenate all
hash values. A sample implementation is given by dcfldd2.
In order to overcome this approach, it is sufficient to add/re-
move one byte in the beginning. Thus the whole input shifts
and all hash values will be different.

Therefore another idea was context triggered piecewise
hashing (abbreviated CTPH) which divides an input based on
its context. It was presented in 2006 by Kornblum ([10]) and
based on a spam detection algorithm of Tridgell ([21]). Since
then several papers had been published which examined this
approach carefully. For instance, improvements with respect
to efficiency and security had been presented by [6], [9], [17],
[18] whereas a security analysis ([2], [5]) had shown that this
approach cannot withstand an active adversary with respect to
blacklisting and whitelisting.

A newer approach called sdhash was introduced by Rous-
sev in 2010 ([14], [16]) based on some previous work in [13].
sdhash (similarity digest hashing) extracts “statistically-
improbable features” using an entropy calculation for each 64
byte sequence, i.e., bytes 0 to 63, 1 to 64, 2 to 65, ... . Once

1This term might be a little bit confusing and similarity digest is more
appropriate as hashing normally indicates a fixed size output. But as most of
the similarity preserving algorithms do not output a fixed sized hash value,
we use similarity digest, fuzzy hash function and similarity preserving hash
function as synonyms.

2http://dcfldd.sourceforge.net/; last accessed on 2012-06-18

a ‘characteristic feature’ is identified it is hashed using the
cryptographic hash function SHA-1 ([19]) and inserted into a
Bloom filter ([3]). Hence, files are similar if they have common
features. More details are given in Sec. III.

[15] provides a comparison of ssdeep and sdhash and
shows that the latter “approach significantly outperforms in
terms of recall and precision in all tested scenarios and
demonstrates robust and scalable behavior”.

The third algorithm for similarity preserving hashing is
called bbhash and presented in [7]. The idea is to use 16
different building blocks (byte sequences with a length of
128 bytes) to rebuild a given input byte sequence as good as
possible. Basically bbhash calculates the Hamming distance
of all 16 building blocks at each position/offset of the input.
If the Hamming distance is smaller than a given threshold,
the index of this building block 0, 1, 2 . . . f is appended to the
current state of the fingerprint. Thus, the final fingerprint is
the sequence of the indices of the appended building blocks.

III. SDHASH

Sec. III-A introduces the main concepts of the similarity
digest algorithm (sdhash 1.2, [14]). The most recent ver-
sion is 2.0 and from 20th of April this year where he mainly
changed the programming language from C to C++ and fixed
some bugs ([16]).

Mostly an analysis is done due to the specification and not
the implementation as both have to coincide. Therefore we
did a detailed code review and identified some bugs which
are shown in Sec. III-B.

A. Foundations

In the following we summarize the main properties of
Roussev’s approach that are relevant for the remainder of this
paper.

Let IN be a byte sequence B0, B1 . . . BL−1 of length L
called input. Then a feature fk is a sub byte sequence of length
l in IN starting at Bk with 0 ≤ k ≤ L− l:

f0 = B0, B1 . . . B63

f1 = B1, B2 . . . B64

. . .

fL−l = BL−l, BL−l+1 . . . BL−1

For every feature fk the following two steps are required:
• First, the normalized Shannon entropy score Hnorm is

calculated on base of the empirical entropy H of fk

H = −
255∑
i=0

P (Xi) · log2 (P (Xi)) , (1)

where P (Xi) is the empirical probability (i.e., the relative
frequency) of encountering ASCII code i in fk. Then H
is scaled to a value in the integer range [0, 1000] using

Hnorm = b1000 ·H/ log2 lc . (2)

• Second, according to [13], “we associate a precedence
rank [(abbreviated Rprec)] with each entropy measure
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value that is proportional to the probability that it will
be encountered. In other words the least likely features
measured by its entropy score gets the lowest rank.” The
result is a sequence of Rprec values.

Next is the identification of the popular features which is
done using a sliding window Win of a fixed size W (sdhash
uses W = 64) going through all Rprec values. At each position
sdhash increments the Rpop score for the leftmost feature
with the lowest Rprec within Win.

An example is given in Fig. 1 where the size of the
window is set to W = 8. Let Rprec(i) and Rpop(i) denote
the precedence and popularity rank of fi, respectively. In
Fig. 1 we have Rprec(0) = 882, Rprec(1) = 866, . . . . As
Rprec(3) = 834 has the leftmost lowest Rprec within Win,
Rpop(3) is incremented and the window slides. Within the
second iteration Rprec(3) is still the leftmost lowest Rprec in
Win and Rpop(3) is incremented again, and so on. All features
whose Rpop score are higher-equal than a given threshold
(sdhash uses 16) are part of the fingerprint. We denote these
features F0, F1, . . . Fp (capital F ).

As the threshold is 16, the minimum byte distance between
neighboring features Fi and Fi+1 is 16. For instance, let E be
the last element within the window and also having the lowest
Rprec. As E is the last element, the Rpop could be at most
one. When sliding the window there are two possibilities, the
Rprec of the new element

1) is higher-equal, than Rpop of E is increased.
2) is lower, than the Rpop of the new element is increased.

A more general argumentation shows that if Rpop(i) = k (1 ≤
k ≤ 64), then Rpop(i+ n) ≤ n for all 1 ≤ n < k.

In order to generate the similarity digest, the byte string
of each corresponding feature F0, F1, . . . Fp is hashed using
SHA-1 and the resulting 160 bit hash value is split into five
sub hashes of 32 bit length. As Roussev’s Bloom filters consist
of 256 bytes = 2048 bits = 211 bits, he uses 11 bits from each
sub hash to set the corresponding bit in the Bloom filter.

Roussev decides for a maximum of 128 features per Bloom
filter which results in a maximum of 128 features ·5 bits

feature =
640 bits per Bloom filter. If an input has more features, a new
Bloom filter is created.

To define the similarity of two Bloom filters, we have
to make some assumptions of the minimum and maximum
overlapping bits by chance wherefore Roussev introduces a
cutoff point C. Let |bf | denote the number of bits set to one
within a Bloom filter. If |bf ∩ bf ′| ≤ C, then the similarity
score is set to zero.
C is determined as follows

C = α · (Emax − Emin) + Emin (3)

where α is set to 0.3, Emin is the minimum number of
overlapping bits due to chance and Emax the maximum
number of possible overlapping bits. Thus Emax is defined
as

Emax = min(|bf |, |bf ′|). (4)

Let j be the number of sub hashes (=5 within sdhash), bf
the amount of featureswithin a Bloom filter, m the size of a
Bloom filter in bits (=2048) and p = 1− 1/m the probability
that a certain bit is not set to one when inserting a bit. Thus

Emin = m · (1− pj·bf − pj·bf ′
+ pj·(bf+bf ′)) (5)

is an estimation of the amount of expected common bits set
to one in the two Bloom filters bf, bf ′ by chance.

Let SD1 = {bf1, bf2, . . . bfs} and SD2 =
{bf ′1, bf ′2, . . . bf ′r} the similarity digests of two inputs
and s ≤ r. If bf1 < 6 or bf ′1 < 6 then the original input does
not contain enough features and the similarity score is −1,
not comparable. Otherwise the similarity score is the mean
value of the best matches of an all-against-all comparison of
the Bloom filters, formally defined as

SDscore(SD1, SD2) =
1

s

s∑
i=1

max
1≤j≤r

SFscore(bfi, bf
′
j) (6)

where SFscore is the similarity score of two Bloom filters

SFscore(bf, bf
′) =

{
0, if e ≤ C
[100 e−C

Emax−C ], otherwise
(7)

with e = |bf ∩ bf ′|.
sdhash 2.0 is a parallelized version that divides an input

in blocks of a fixed size, pick out 160 features with the lowest
popularity score and insert them into a Bloom filter. Thus each
block has its own Bloom filter.

B. Popularity Rank Computation Bug

[8] inspected the source code from sdhash, where the
authors discovered two important bugs when computing the
popularity rank Rpop. Although they discovered them in
version 1.2 and communicated them to the author of sdhash,
they are still present in the current version. As a detailed
description is available in [8], we only summarize them here.

1) The window size bug is a typical off-by-one error con-
cerning the window size used to compute Rpop. Thus the
implementation does not correctly identify the minimal
Rprec value in the current window and does not always
select the ‘statistically improbable feature’ as defined by
the specification.

2) The leftmost bug means that the implementation does not
necessarily uses the leftmost feature as described in the
specification. The impact of this second bug is low but
we argue that the specification and the implementation
should coincide.

These two bugs lead to false results of Rpop and thus to an
unexpected behavior of the whole algorithm. Sec. V will show
that after fixing these issues the coverage increase as there is
less overlapping of features.



Fig. 1. Example for the Rpop calculation from [14].

IV. PROPERTIES OF SIMILARITY PRESERVING HASH
FUNCTIONS

Although ssdeep ([10]), sdhash ([14]), and bbhash
([7]) are candidates for similarity preserving hash functions,
at the moment there is no clear specification or definition for
similarity preserving compression functions / hash functions
(abbreviated SPHF). Thus, in order to later evaluate the SPHF
sdhash, in a first step we enumerate properties that we expect
from an SPHF.

Since we use the term hash function, some of our properties
are borrowed from the ones of cryptographic hash functions.
Our proposed properties are as follows:
P1 - Compression. The output (fingerprint) of an SPHF is

much smaller than the input (the shorter the better). In
contrast to traditional hash functions we do not expect
a fixed-length fingerprint. The reason for compression is
two-spread. First, a short fingerprint is space-saving and
second, the comparison of small fingerprints is faster.

P2 - Ease of computation. Generating a hash value is
‘fast’ in practice for all kinds of inputs. This is similar
to the comparable property of a classical hash function
like SHA-1. It is obvious that ease of computation is a
prerequisite for an SPHF to be usable in practice. As we
assume SHA-1 to be fast, we take this algorithm as a
benchmark.

P3 - Coverage. Every byte of an input is expected to
influence the hash value. We remark that this property
is formulated in a statistical way. It means that given a
certain byte of the input the probability that this byte does
not influence the input’s digest is insignificant. Otherwise
it is possible that small changes will be uncovered.
This property is in conformance with the corresponding
characteristic of classical hash functions.

P4 - Similarity score. In order to compare two hash values
we need a ‘comparison function’3. Input of the com-
parison function are two similarity digests, its output
is a value from 0 to X , where X is the maximum
match score. A match score of X indicates that the hash
values are identical or almost identical, which implies
that the input files are identical or almost identical, too.
Preferably the similarity score is between 0 and 100 and
represents a percentage value. If the comparison function
is linear, it is easy to map the match score in [0, X] to
the corresponding value in [0, 100].

3In most cases the comparison of similarity preserving hash values is more
complex than for traditional hashes where we can use the Hamming distance.

We point out that there are further (non-functional) re-
quirements of an SPHF, especially security requirements like
collision / second preimage resistance or resistance against
anti-forensics attacks. However, in this paper our aim is to
introduce the basic properties as described above4.

To give a first impression of these properties, we discuss
them in the context of the three currently available approaches
ssdeep, sdhash, and bbhash. As sdhash seems to
be the best trade-off candidate beween our properties and
security requirements, sdhash is evaluated thoroughly in the
subsequent sections.
ssdeep outputs a similarity digest of length about 100

Base64 characters, independent of the length of the input. This
is due to the fact that the internal trigger function does not
trigger any more, if the maximum fingerprint length is reached.
Although this implies security drawbacks as discussed in [2],
ssdeep achieves in general the best compression. In contrast,
the digest of bbhash and sdhash is proportional to the input
length, where the proportionality factor is 0.5% and 3.3%,
respectively.

With respect to property P2, ssdeep is relatively fast
compared to the two competitors. Its runtime is at 2.7·SHA-1.
This is due to the use of a fast trigger function and a non-
cryptographic FNV hash function (Fowler, Noll, Vo, [12]).Our
practical tests showed that sdhash 2.0 is at 11.2 ·SHA-1.
[7] states that bbhash needs nearly 2 minutes for a 10MiB
file and is neglected.

If we consider coverage, both ssdeep and bbhash fulfill
property P3 and every byte of the input is expected to influence
the digest. As we show in Section V-C 20% of the input bytes
are expected to not influence the sdhash digest.

Finally, we turn to the similarity score function. While
ssdeep makes use of the well-knwon weighted edit distance,
bbhash may use this comparison function, too. A similarity
score as percentage is available. However, the comparison
function of sdhash has some peculiarities, which we address
in Section V-D.

Although ssdeep seems to be a good approach concerning
our properties of an SPHF, we have to keep in mind the
security analysis ([2], [5]). An active adversary can easily
overcome this approach. Regarding bbhash as stated in [7]
the ‘ease of computation’ is rather poor and is approximately
150 times slower than sdhash. Thus we have a closer look
at sdhash in what follows.

4This is similar to the general properties of hash functions and additional
ones for cryptographic hash functions.



TABLE I
DIFFERENT STATISTICS ON SDHASH USING THE T5-CORPUS.

average... improved original
1. file size* 428,912 428,912
2. gaps count 2888 2889
3. min_gap* 1.090 1.076
4. max_gap* 1834 1834
5. avg_gap* 33.46 34.27
6. ratio to file size 20.65 % 21.21 %
7. overlap count 4387 4402
8. min_lap* 1.110 1.108
9. max_lap* 47.81 62.50

10. avg_lap* 22.53 22.71
11. ratio to file size 21.41 % 21.86 %
12. inserted features 6923 6937
13. ratio to file size 58.47 % 57.45 %
14. all features 7276 7292
15. required mod. 4248 4214
16. ratio mods. 60.14 % 59.48 %
17. SDsize % of file 3.321 % 3.344 %
* values are given in amount of bytes.

V. ASSESSMENT OF SDHASH BASED ON THE PROPERTIES

In the following we validate sdhash against the properties
presented in Sec. IV. Therefore we divide this section into
four parts, according to the properties and show how sdhash
fulfills these properties.

To evaluate our results we use some real-world data the t5-
corpus from [15, Sec. 4.1.] which is a collection of 4457 files
(1.8 GB)5 from 4 KB up to 16.4 MB.

A core result of our work is the statistics given in Table
I, which shows the average measurements for all files within
the t5-corpus (also the min/max values are no absolute values,
but averaged). Besides the original version we also built the
statistics for an improved version of sdhash, where we fixed
the bugs from Sec. III-B.

Table I has two core statements:
1) The first two blocks (rows 2-11) show that a lot of

features are overlapping, which results in wide gaps
between two non-overlapping consecutive features.

2) The last block (rows 12-16) describes the impact of the
overlappings. In the case that we want to manipulate
each feature (e.g., to achieve a non-match) we do not
need to change all inserted features (row 12) but only
60% of it due to the overlappings.

In the following we give some more details about Table I.
The first block describes the statistics for gaps where row 2
is the amount of gaps followed by the minimum, maximum
and average gap in bytes. Row 6 gives the ratio between
the gap and the file size. The next block (rows 7-11) is
constructed identically but with respect to overlaps. Details
about the features are given in the last block (rows 12-16). Row
13 describes the ratio between features and file size without
overlappings.

A. P1 - Compression

In Section IV we stated that the fingerprint size of sdhash
is proportional to the input size and has a compression

5http://roussev.net/t5/t5-corpus.zip; last accessed on 2012-06-10

1uint32_t sum_hash(unsigned char c, uint32_t h) {
2h *= HASH_PRIME;
3h ^= c;
4return h;
5}

Listing 1. FNV hash function from ssdeep 2.7.

rate of 2.6% (see [14]). The basis for this calculation are
six sample 100 MB document sets from the NPS Corpus
containing doc, html, jpg, pdf, txt, xls and a 100MB file from
/dev/urandom ([14, Sec. 5.1]). In order to validate this
result we used the t5-corpus, hashed all files and compared the
fingerprint length to the original file size. As shown in Table I
line 17 we obtained a compression rate of approximately 3.3%.

For practical applications in computer forensics this is a
rather bad compression rate. For instance, if the accumulated
original file size is 1 terabyte, the corresponding sdhash
database of fingerprints is about 33 gigabyte. For an ’ordinary’
investigator it is difficult to handle this size, as his IT system
will not supply a sufficient amount of RAM.

B. P2 - Ease of Computation

sdhash uses SHA-1 for hashing the features. Although
SHA-1 is optimized for performance, it is slower than non-
cryptographic hash functions or cryptographic hash functions
like MD5, which is one reason that sdhash is slower than
ssdeep. Thus we identified two possibilities to increase the
performance:

1) In the case that preimage resistance is important we
would change the feature hash function to MD5 as it
is faster ([4]). The security benefits of SHA-1 can be
neglected as sdhash only relies on 55 bits out of the
160 bit SHA-1 fingerprint.

2) In the case that preimage resistance is not a prerequisite
we would change the feature hash function to FNV as
given in Listing 1 or any other non-cryptographic hash
function. It is obvious that this simple hash function
containing one multiplication and one XOR outperforms
SHA-1 and MD5. Due to the large amount of features
it is very unlikely that an active adversary brute forces
each feature and result in a useful file.

In order that the security properties of SHA-1 are indispens-
able for sdhash we recommend to use all bits as given by
our following idea: Recall, after sdhash identified a feature,
it is hashed using SHA-1 and divided into 5·32 bit sub hashes.
Afterwards only 11 out of 32 bits are used to derive the bit
address within the Bloom filter. Hence, sdhash only uses 55
bits of the SHA-1 hash value which allows a brute force attack
as one attack vector.

To minimize this possibility we suggest to pad one bit at
each sub hash, divide each sub hash into 3 blocks of 11 bits
and XOR them, ⊕. A sample instruction sequence is given
below, where sHnew is the new sub hash and sHint the old

http://roussev.net/t5/t5-corpus.zip


one.

sHnew = sHint ⊕ (sHint >> 11)⊕ (sHint >> 22)

sHnew = sHnew & 0x7FF

As these are only low level operations this will not influence
the performance of sdhash, but increases its security.

C. P3 - Coverage

In general hash functions are designed so that each bit of the
input influences the hash value, otherwise it might be possible
that a modification is not discovered. Therefore we present
two major drawbacks of sdhash in Sec. V-C1 and Sec. V-C2
that allow to change up to 20% of an input with an unaltered
fingerprint. Then Sec. V-C3 shows a minor issue that allows
to change 30 bytes.

1) Unnoted Footer Changes: This section shows that it is
possible to have two inputs that differ by 11% but still result
in the highest similarity score of 100. As this issue is not
addressed within the specification [14], it was found during the
code review and is based on appending, deleting or modifying
the end of an input.

Let r denote the amount of Bloom filters of an sdhash
digest. Based on [14] there is only one restriction: If r = 1
and bfr < 6 the generation process stops and prints an error
message.

In fact this is different to the actual implementation where
a second condition is present: If r ≥ 2 and bfr < 16 then bfr
is skipped.

Due to this behavior it is possible to append or delete data
at the end of a file. For instance, if a file has exactly 128
features, we can append data containing up to 15 features or
the other way round we can cut off features if the input has
between 129 and 143 features. In both cases sdhash outputs
the highest similarity score of 100.

The average byte length of an input containing exactly 15
features can be estimated using Table I where we averaged
a large file corpus. In average a file has 428, 912 bytes and
contains 7292 features. Thus, a byte sequence containing 15
features has a medial length of approximately 428,912·15

7292 =
882.29 bytes.

To conclude, if we have an input containing exactly 128 fea-
tures which results in a length of approximately 428,912·128

7292 =
7528.90 bytes then we can append 882.29 bytes (which is over
11%) and sdhash outputs the highest similarity score. It is
questionable if the highest match score is acceptable if a file
changes by 11%.

2) Gaps and Overlaps: In the following we show that
only approximately 80% of an input is considered within the
fingerprint although it is possible to have full coverage. This
raises the question if the parameters for the window size and
the popularity rank threshold are chosen suitably.

Let L denote the length in bytes of an input and s the size
of all Bloom filters as percentage in relation to L. Thus the
size of all Bloom filters (the fingerprint) can be estimated by
BFssize = L·s

100 . As each Bloom filter consists of 256 bytes
the number of Bloom filters is BFsamount =

⌈
BFssize

256

⌉
.

Furthermore each Bloom filter except the last one contains 128
features and therefore can represent at most 128 · 64 bytes =
8192 bytes of the input. An upper bound of coverage (cv)
(influencing bytes) can be estimated by

cv = BFsamount · 8192

=
L · s

100 · 256
· 8192

= 0.3200 · s · L.

As we aim at a coverage of 100% we equate cv with L.

L = 0.3200 · s · L
s = 3.125 .

Thus, in order to achieve a full coverage we need a hash
value length of 3.125% which is fulfilled by sdhash as
discussed in Sec. V-A. But although full coverage might be
possible, this property is not fulfilled. In order to obtain the
coverage of features rows 11 and 13 of Table I need to be
added up. Thus the improved version results in 79.88% and
the original one in 79.07 % which also coincides with the gaps
from row 6. Due to the averaging the percentage values are
not exactly 100%.

Although it is questionable if all bytes need to influence
the final fingerprint, sdhash statistically allows to change
approximately 20% of an input and the similarity score its still
maximal. On the other hand, due to the overlapping of features
one changed byte of the input changes multiple features.

3) Unnoted Byte Changes: Besides overlaps and gaps, [8]
also discovered a minor issue concerning the first and last 15
bytes of a byte sequence. By design the first and last 15 bytes
will never influence the fingerprint as there have to be 16 slides
of the window to obtain a popularity score above 16. We rate
this as a minor weakness due to the following two reasons:
• Besides text files, most file types do not allow to change

the header or footer information.
• After changing 30 bytes both files are quite similar for

files of practical interest. Nevertheless it is a drawback
of sdhash that it outputs the highest match score even
if the first and final 15 bytes are modified.

An easy way to resolve this weakness is to create a
cryptographic hash value over the whole input, treat it as a
‘feature’ and insert it as first element into a Bloom filter.

D. P4 - Similarity Score

sdhash is promoted in two ways. First it can be used
to identify similar files and second it can be used to find
small pieces of an original file (fragments). Both issues are
very important in the area of computer forensics but the way
sdhash handles this point is questionable, because sdhash
does not distinguish these two use cases.

Recall, we treat sdhash as a similarity preserving com-
pression function. Therefore we like to have a high similarity
score if two inputs are almost similar. The peculiarity is that
comparing a fragment against an original file yields the highest
similarity score. For instance, having a file containing 128



features and a fragment of this file with 20 features, sdhash
outputs the maximum similarity score of 100 although these
files are definitely very different.

This behavior is due to the computation of the similarity
score SFscore(bf, bf

′) = [100 e−C
Emax−C ] as given in Eq. (7)

and the definition of Emax = min(|bf |, |bf ′|) (see Eq. (4)).
Recall that e denotes the amount of common bits in the Bloom
filters bf and bf ′.

A full match score occurs, if a full Bloom filter is compared
to a non-full Bloom filter and if both Bloom filters are related
to each other. More precisely let bf be a full Bloom filter and
bf ′ be a Bloom filter where we dropped x features compared
to bf . Roussev scales the comparison score to the number of
bits set in the non-full Bloom filter bf ′, i.e., we have Emax =
min(|bf |, |bf ′|) = |bf ′|. However, as every feature of bf ′ is
also represented by bf , we have e = |bf ′|, too. Thus if e > C
the similarity score is 100, although bf and bf ′ are obviously
different. Hence this comparison algorithm yields the highest
match score by design.

In order to avoid this issue, we recommend to change
the min-function in Eq. (7) into a max-function: Emax =
max(|bf |, |bf ′|). The cutoff point should still use the old
variant of Emax. As an example we consider a non-full
Bloom filter bf ′, where we ignore 64 features compared
to bf . Then the number of expected bits set in bf ′ is
2048 ·

(
1−

[
1− 1

2048

]5·64)
= 296.3. As we now have

Emax = 549.8 instead of 296.3, our proposal yields an overall
similarity score of 100 · 296.3−42.87

549.8−42.87 = 50.00, which is a
reasonable result for this setting.

Overall we think that sdhash should have two modes, one
for finding fragments and one for finding similar files. If a
user aims at finding fragments the original setting is perfect.
Otherwise our suggestions should be used.

VI. FURTHER ANALYSIS OF SDHASH

In the following we address a further aspect that is related
to the robustness of sdhash. [8] showed that a full Bloom
filter represents a byte sequence with 7545.46 bytes. In order
to reduce the similarity score between two Bloom filters down
to zero it is enough to flip 50 bits within this byte sequence.
Thus there need to be a lot of changes all over the file which
is only feasible for locally non-sensitive file types like bmp or
txt but only hardly for locally sensitive file types like jpg
or pdf.

Bloom filter shifts is another idea to reduce the similarity
score of two files by inserting self-made features in the
beginning of a file.

Let SD, SD′ be two identical similarity digests. Below we
describe an easy way how to reduce the similarity of both
digests down to approximately 28.

An SD is comprised of bf0, bf1, ...bfs where
• bf0 contains F0, F1, . . . F127,
• bf1 contains F128, F129, . . . F255,
• and so on.

The similarity score SDscore(SD, SD
′) is determined by

Eq. (6) which is an all-against-all comparison of Bloom filters.

The scores of all best matches are added up and divided by
the amount of Bloom filters.

The idea to diminish the similarity score is to build own fea-
tures that we insert at the beginning of an input. For instance,
we build a feature F ∗−1 and insert it. As a consequence
• bf0 contains F ∗−1, F0, . . . F126,
• bf1 contains F127, F128, . . . F254

• and so on,
which will reduce the similarity score for all following bf .
As all Bloom filters, except the last one, contain 128 features,
we expect to achieve the lowest score by inserting 64 own
features F ∗.

[8] analyzed the impact of changing one feature and con-
cluded that approximately 3.383 bits change within the Bloom
filter for real-world data. Thus, if we insert 64 new features
in the beginning, this will approximately change 3.383 · 64 =
216.51 bits. As described in Eq. (7) the similarity score of two
Bloom filters is SFscore = 100 · e−C

Emax−C . Due to the feature
insertion, e should reduce from 550 to 550− 216 = 334 and

SFscore = 100 · e− C
Emax − C

= 100 · 334− 268

550− 268
= 23.40 .

In order to test our conclusion, we used our improved
version of sdhash and did three tests:

1) We changed 64 features of 10,000 randomly generated
files containing exactly 128 features and obtained an
average similarity score of 24.61.

2) We inserted 64 features into cut files from the t5-corpus
where ‘cut’ mean we reduced to original files down to
128 features. The result was 21.34.

3) We inserted 64 features into each file of the t5-corpus
and resulted in an average similarity score of 27.27.

Inserting byte sequences is often possible for a lot of file
types. [2] demonstrated that for the locally sensitive file type
jpg and pdf. Focusing txt or bitmap it is even more
trivial.

An important question in this context is: how much of an
input do we have to change at least in order to reduce the
similarity score to a minimum? Theoretically it is possible to
create a shortest byte sequence with 16 ·63+64 = 1072 bytes
as there is a minimum distance of 16 between two features.
However, in our test case we used the shortest sequences we
found within the t5-corpus which has a length of 2765 bytes.
Once we identified such a byte sequence, the time complexity
of manipulation is O(1) because we can use this pre-computed
feature sequence and insert it in any given file.

The current version 2.0 is a parallelized version and there-
fore splits an input in fixed blocks of lb bytes and proceeds
each block as described in Sec. III. Thus, instead of inserting
a feature sequence in the beginning, we insert/delete a byte
sequence of lb

2 and therefore shift the offset of all blocks.
The problem due to these shifts is that we now do have two

best matching Bloom filters. Thus, an idea to overcome this



issue would be to use to change the matching algorithm and
consider the two consecutive Bloom filters (if the similarity
score of the first one is lower than a certain threshold).

VII. CONCLUSION

Currently three different similarity preserving hash func-
tions on the syntactical level are available. They all have
different strengths and weaknesses. The developers of these
algorithms pursue different strategies and thus it is very hard
to compare these approaches. Therefore the paper at hand
presents four basic properties and serves as a first step towards
a definition for SPHF.

We evaluated the approach sdhash thoroughly, as there
is yet no independent analysis available and sdhash is
promoted strongly by its inventor. We did a detailed code
review and identified two bugs that impair the original idea
of the algorithm. The evaluation showed different weaknesses
of sdhash, e.g., that there is no full coverage, but a large
amount of overlapping features. Furthermore we showed that
the chosen design of the fingerprint comparison function is
made for fragment detection, but not for comparing two files.

Finally, we showed the robustness of sdhash against an
active adversary and conclude that it is very hard to beat down
the similarity score down to 0.
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