
On the Investigation of Application Specific Data within
Digital Forensics

Harald Baier and Achim Brand

Center for Advanced Security Research Darmstadt (CASED),
Hochschule Darmstadt, Darmstadt, Germany

e-mail: harald.baier@cased.de, achim.brand@stud.h-da.de

Abstract

Microsoft Word and Skype are widespread applications in our daily IT life. Up to now, if a
computer forensic examination is required, the majority of forensic investigators tends to use
commercial software to analyse this application-specific data. However, commercial software
is rather expensive and typically closed-source. This paper aims at exploring if an application-
specific forensic investigation is feasible by using free available software and whether its
findings then still meet the investigators' demands. We contribute to this question by
developing a guideline for the forensic investigation of Microsoft Word binary files (aka .doc
files) and Skype chat log files. Solely free of charge available tools are proposed for use. In
addition, we develop a Python-based, platform independent tool to enable a more in-depth-
analysis of .doc-metadata. This tool does not rely on any third-party application libraries (e.g.
Microsoft APIs (Application Programming Interfaces)). Furthermore we optimise an existing
tool for analysing Skype's .dat files by reverse-engineering the file's structure. Finally, we
present a questionnaire completed by 4 experienced practitioners. In spite of the small number
of participants their answers underline that our approach meets their needs.

Keywords

Forensic Investigation, Application Forensics, Microsoft Word, Skype, Binary Files,
Guideline, Open-Source Software, Anti-Forensics

1. Introduction

Application-specific forensics is a rather new branch in the computer forensic
community, but it is very crucial. This is obviously due to the fact that the very basis
of all our forensic investigation activities is for the accurate extraction of information
from computer-based systems, such that it may be presented as acceptable evidence
in a trial (Sammes and Jenkinson, 2007), (Geschonneck, 2011). Therefore, we need
to extract all possible information from an application-specific file: the actual content
of a file and all its relevant metadata. Thus, we can explore relationships between
common actions and associated application metadata (Casey, 2010), (Marshall,
2008). These results can be the cutting edge to solve a forensic case.

Office applications (e.g. Microsoft word), browsers (e.g. Internet Explorer, Firefox),
mail clients (e.g. Microsoft Outlook, Thunderbird), or Instant Messaging
(e.g. Skype) are of central importance in our daily use of computers. Apart from the

standard usage of these applications, some people use them for illegal practices. If
this is the case and a trial is supposed to take place, a computer forensic investigator
must examine the data which was created by the use of these applications. The
majority of forensic practitioners tends to use commercial software which can
possibly be rather costly (e.g. standard tools like EnCase, FTK or X-Ways).
Additionally commercial software typically is closed-source and hence cannot be
inspected (e.g. if we can trust its functionality).

Thus, the question is raised whether it is also possible to conduct such an
investigation solely by using free available software and whether its findings then
still meet the investigators' demands. As a first contribution we therefore develop a
questionnaire, which we sent to established German forensic practitioners (including
law enforcement people). Unfortunately only 4 of them answered our questions
(though the results are not universally valid, they give us a hint that we are on the
right track with our approach). The main statement of their answers is that they have
to investigate Microsoft Word and Skype files on a regular basis, they use a variety
of rather expensive tools for those purposes, and they are not able to extract all
intended information by their current tools.

Additionally this paper contributes to application-specific forensics by developing a
guideline for the forensic investigation of Microsoft Word binary files (aka .doc
files) and Skype chat log files. Solely free of charge available tools are used in the
guideline. In case of Microsoft Word we develop a Python-based, platform
independent tool to enable a more in-depth-analysis of .doc-metadata. We call this
tool wordmetadata.py. Our tool does not rely on any third-party application
libraries (e.g. Microsoft APIs). Its source code is open and can thus be trusted. Our
tool is superior to previous tools not only due to its simplicity and independence, but
also due to its functionality: it is designed to read more metadata from a .doc file
than other tools do. We will show that in contrast to current software our tool is able
to detect some anti-forensic measures of .doc files.

Finally, reverse engineering of Skype's .dat files is conducted and the file's structure
is described. Moreover, the results of our reverse engineering processing are used to
improve an existing analysis tool for Skype, the Skype Chatsync Reader. All our
tools are available via www.dasec.h-da.de.

The rest of this paper is organised as follows: we first present our questionnaire and
the related main results in Section 2. Then we describe our guideline to investigate
Microsoft word .doc files and our tool wordmetadata.py in Section 3. Next in
Section 4 we show how to investigate Skype's .dat files. We close our paper with our
conclusions in Section 5.

2. Questionnaire to Forensic Practitioners

In order to learn about the professional investigators' needs for an accurate
examination of Microsoft Word and Skype files, we set up a questionnaire, which we
sent to experienced forensic practitioners (including law enforcement people) in
Germany. They were enquired about their daily work including questions on whether

they regularly have to investigate Microsoft Word and Skype files, which tools they
usually use for this purpose, which information they are mostly looking for and if
they had already had a forensic case where revealed information of these applications
helped to solve the case. The answers were given anonymously.

The number of experienced IT forensic practitioners is, however, small. From the 11
contacted persons 4 filled out the questionnaire. Although this is only a small amount
of answers, the informative value is nevertheless high due to the huge experience of
the investigators in question. In order to stress the qualitative rather than quantitative
property of our results, we do not use a percentage presentation of the results.

Some general results of our survey are listed in Table 1. The investigators had to
investigate Microsoft Word and Skype files, and in fact, they have to do it on a
regular basis. They use a variety of rather expensive tools to fulfil their task. Some
forensic cases were mentioned in which information originating from a Word/Skype
file helped to solve the case. Finally, as not all relevant information may be
extracted, the interviewees appreciate a new application-specific tool.

Do you have to investigate Microsoft Word
doc- and Skype-files on a regular basis?

Very often: 1 of 4,
Often: 1 of 4,
Regularly: 2 of 4

Which tools do you use for such an
application-specific forensic investigation?

EnCase, FTK, Ways

Application-specific
like MS Word,
OpenOffice, Skype

Are you able to extract all relevant
information using these tools?

Yes: 2 of 4
No: 2 of 4

Table 1: General aspects of our questionnaire

Regarding Microsoft Word some results of our survey are given in Table 2. The
relevant information for the forensic investigation is said to be the content, the title,
the author, the comments, the last author, the creation date, the modification date, the
last print date, the editing time, the used template, the reviewers, and contained VBA
(Visual Basic for Applications) macros. Further interesting information includes the
name and the model of the printer used, if the file was printed at all.

Some of the survey’s interviewees were not able to extract all relevant information
using their tools. As a consequence they appreciate a new tool. Missing points
compared to existing applications are

• the capability of showing the byte-offset where the inspected information is
stored within the doc-file,

• name and model of the utilised printer, and

• the GUID of the computer, where Microsoft Word was used.

Which data structures are of interest when
investigating a Microsoft Word doc-file?

Content: 4 of 4
Title: 2 of 4
Author: 4 of 4
Comments: 3 of 4
Last editor: 2 of 4
Creation date: 4 of 4
Last changed: 4 of 4
Last printed: 3 of 4

Are you able to extract all relevant
information using your tools?

Yes: 2 of 4
No: 2 of 4

Do you appreciate a new tool for investigating
Microsoft Word doc-files, especially if
additionally the byte-offset of the inspected
data structure within the file is listed?

Yes: 3 of 4
No: 1 of 4

Table 2: Microsoft Word doc-file specific answers of the questionnaire

Finally, Table 3 lists some Skype specific aspects of our survey. The relevant
information for the forensic investigation is said to be chat's counterpart, date and
time of sent messages, the messages' content, the call's counterpart, the date, time,
and duration of a call, the file name of a sent file, the file size of this file, the date
and time of the transfer, and its duration. Besides, it is also interesting to learn
whether the call was incoming or outgoing. In contrast to Microsoft Word doc-files
the majority of the participants were not able to retrieve all relevant information by
using their tools (only 1 of 4 was able to do so).

Which data structures are of
interest when investigating a
Skype file?

Chat communication parties: 4 of 4
Chat time stamps: 4 of 4
Chat content: 4 of 4
Call communication parties: 4 of 4
Call time stamps: 4 of 4
Call incoming / outgoing: 4 of 4
File transfer: Name and size: 4 of 4

Do you investigate only the
binary dat-files, the database db-
files or both?

Only dat-files: 0 of 4
Only db-files: 0 of 4
Both file types: 4 of 4

Are you able to extract all
relevant information using your
tools?

Yes: 1 of 4
No: 3 of 4

Table 3: Skype specific part of the questionnaire

3. Investigation of Microsoft Word doc-Files

For the investigation of Microsoft Word files it is essential to get, besides the actual
content of the file, all the contained metadata, e.g. authors, subject, title, keywords,
creation date/time, last saved date/time, last author, last printed date/time, printer
name, reviewers and company or organisation name; only to name a few. MS Word
stores some of them without any user’s influence. In order to be able to conduct a
profound forensic investigation of Word doc-files, it is necessary to know which
metadata is stored within those files. As a matter of fact, each piece of these
metadata could help to solve a forensic case in some way.

When starting our work we were surprised about missing published information on
that topic. This paper only addresses Microsoft Word binary files, i.e. .doc-files.
According to common market share overviews of Office software (Hümmer, 2011)
MS Word has a market share of about 80 to 85% worldwide. Though introduced
with Microsoft Office 2003 the XML-based file structure becomes the default format
recently. Thus the binary Microsoft Word doc-format is currently the most important
office format from a forensic point of view.

The results of our questionnaire of Section 2 show, that most forensic applications do
not show all the possible information such as the reviewers, the printer name or the
offset to the stored information. Furthermore, the majority of professional tools are
closed source and there is no possibility to check if the tool works correctly besides
some black box tests. Therefore, we developed a new Python-based open source tool
wordmetadata.py to overcome these shortcomings.

In order to understand our tool we first give some short insights to .doc-files in
Section 3.1. Then in Section 3.2 we present our guideline to investigate Microsoft
Word binary files. For each investigation step we recommend a tool, which may be
used free of charge. Finally, we discuss in detail our tool wordmetadata.py in
Section 3.3.

3.1. Foundations of the Microsoft Word doc-File Structure

Word binary files are using OLE (Object Linking and Embedding) structured storage
to manage the structure of the file format (Microsoft Corporation OLE Web Site,
2012). These files are also called compound files. The reason for using compound
files is that traditional file systems encounter challenges when they attempt to
efficiently store multiple kinds of objects in one document. Compound files provide
a solution by implementing a simplified file system within a file.

Structured storage defines how to treat a single file as a hierarchical collection of two
types of objects, storage objects and stream objects, which behave as directories and
files, respectively. This reduces the overhead and performance penalties associated
with storing separate objects in a flat file and also solves performance problems by
eliminating the need to entirely rewrite a file when someone changes its content. If
there has been a change, new data will be written in the next free space available in
the file, and the storage object will update an internal structure which maintains the

locations of its storage and stream objects. In addition, structured storage enables end
users to treat compound files as if they were a single file rather than several objects.
Hence, these files can be copied, backed up, and e-mailed like any other ordinary
single file.

A Word binary file uses several structures to organise the file (see e.g. Microsoft
OLE 2012). Figure 1 shows the fundamental OLE structures and the byte offsets into
the file as absolute offsets from the beginning of the file. The design resembles a
classical FAT file system, where the DIFAT (double-indirect file allocation table) is
used to find the FAT sectors in the compound files, the FAT is used to find the
object chain (like a FAT in the FAT file system), and the mini FAT is used for
streams (which are not relevant in our scope). Again like in a FAT file system,
directory entries are used to address objects in the doc-file.

Figure 1: OLE objects in a Microsoft Word doc-file

3.2. Our Guideline to Investigate Microsoft Word doc-Files

In this section we present our guideline to investigate Microsoft Word doc-files. Our
aim is to get hold of the content and the (forensic relevant) metadata of the files, just
by using free available software, preferably open source software. The reason for
this paradigm is reliability and cost-effectiveness of the tools. An additional rich
source of open source tools is the web site (Open Source Forensics Web Site, 2012).

Currently we are not aware of any published guideline to investigate Microsoft doc-
files and an enumeration of adequate freely available tools. Neither the well-known
literature mentioned in this paper nor the up-to-date doc-section of the Forensics
Wiki (Garfinkel, 2012) yields support for that. Our aim is to fill this gap.

Figure 2 shows a flow chart on which an investigator can rely on if he has to
investigate .doc files. For each step we propose concrete tool(s) to perform this step.
The reasoning about our tool choice and a short overview of its capacity is given in
the Appendix. However, the overall design of the process model is straightforward.

Figure 2: Guideline to investigate Microsoft Word doc-files

3.3. Our Tool wordmetadata.py

The answers of forensic practitioners presented in Section 2 reveal shortcomings of
currently available software to analyse .doc files. We therefore developed a Python
tool named wordmetadata.py. It is available via www.dasec.h-da.de. The
aim of this tool is to gain as much forensic relevant metadata of a Word .doc file as
possible and to be platform independent (i.e. to be usable on any common Operating
System). Furthermore, this tool is based only on information provided by the MSDN
(Microsoft Developer Network) and therefore it does not rely on any APIs. So, the
correctness of the results is transparent and an investigator can rely on the tool.

With respect to the practitioners' needs our tool performs the following tasks on
Word .doc files (a sample run of wordmetadata.py on a test file hello.doc
is given in the Appendix):

• Show file system information: file system file size, creation date and time,
last modified date and time, and last access date of the file.

• Show internal file size: the file size as given by the internal FAT.

• Show relevant metadata from the “DopBase”: creation date and time, last
save date and time, revision number, editing time, word count, character
count, and paragraph count. This is also the information which is often read
by other tools to show the document’s metadata.

• Interpret and show all Summary Information Property Set (SIPS) metadata.

• Show byte offset to each value (absolute from the beginning of the file).

• Show number of reviewers and their names.

• Show last save date and time read from the File Information Base (FIB).

• Show printer information where the file was printed.

• Sanity check of file sizes (i.e. comparison of file system based file size to
internal FAT stored file size) to recognize anti-forensics.

As the above-noted list and the sample output for hello.doc in the Appendix
show, some redundancy regarding certain metadata can be noticed, e.g. the creation
time is stored in the DopBase and in the SIPS. While analysing the doc-file structure
it became apparent that all tested tools read the metadata solely from one source. In
contrast, our tool reads metadata from several locations and there is one particular
reason for doing so: to recognise anti-foreniscs.

As a matter of fact it could happen that a person tries to obfuscate some chargeable
content or action by manually editing the file using a hex editor or an obfuscation
tool, e.g. he tries to change the file's creation date and time. Due to the redundancy of
this information (DopBase and SIPS), the person probably only changes one location
and leaves the further locations unchanged. This obfuscation will be discovered
using our wordmetadata.py tool. In addition, it might very well happening that
he changes the date and time to an invalid value: the value of the seconds for SIPS
times must always be “:00” (cf. green rectangle in the output in the Appendix) since
Word stores time information in the SIPS only accurate to the minute level.
Therefore, the time information in the SIPS plays a vital role and to conform to the
specification the wordmetadata.py tool calculates these times exact to the
second. Thus, if a time stamp within the SIPS contains any other value than “:00” for
the seconds, a closer look for a potential anti-forensics manipulation is worth doing.

Showing the offset for each data structure of a doc-file is another advantage of our
tool: this feature considerably helps an investigator or any other person
comprehending the file structure of .doc files. First, the tool can be used to find the
relevant data structure at the corresponding offset. Then, a hex editor/viewer can be
used to review and evaluate the findings. Besides proving the correctness of
investigation results this proceeding has a positive side-effect on the learning process
of forensic relevant data structures. Besides, the findings of the survey in Section 2
demonstrated that three out of four investigators welcome such a feature.

The following example concerning the reviewer's information within a doc-file
illustrates how this can be done:

 sherlock@ubuntu:~$ xxd -s 1938441 -l 40 hello.doc
 01d9409: 0700 5500 6e00 6b00 6e00 6f00 7700 6e00 ..U.n.k.n.o.w.n.
 01d9419: 0300 6500 7600 6500 0300 6200 6f00 6200 ..e.v.e...b.o.b.
 01d9429: ffff 0300 0800 0000

From our sample output in the Appendix we know that the offset to the data structure
containing the reviewers is 1,938,441 bytes (see section Miscellaneous

Metadata of the output). Now xxd can be used to seek to this offset and to show
the actual value of the data structure. The reviewers are “Unknown”, “eve”, and
“bob”. This is correct as Word stores the user “Unknown” as a first reviewer by
default into each file as soon as the “Track Changes” feature has been enabled. Thus,
the user “Unknown” is no reviewer and therefore there are only two reviewers
named “eve” and “bob” (as our tool claims).

A further benefit of using our tool is to perform a sanity check of the file size. When
comparing the actual file size (file system file size) to the file size regarding the
internal FAT, another way of doing anti-forensics can be identified. Hence, it is
possible to append something (e.g. a picture) to an already existing .doc file. A
“standard” check using the tools described in this paper would not reveal that there
has been another file appended to the .doc file. This fact would not even be
discovered by opening the .doc file using Word. As the following listing shows, a
file called picture.jpg is appended to the test file hello.doc. A run of the
wordmetadata.py on this modified hello.doc then reveals after the sanity
check that there is an inconsistency corncerning the file.

sherlock@ubuntu:~$ cat picture.jpg >> hello.doc
sherlock@ubuntu:~$ python wordmetadata.py hello.doc
--
File system information about hello.doc:
--
Size: 3900549 (bytes)
[REMOVED]
File Size regarding FAT: 1972736 (bytes)
##
Caution: File size sanity check failed.
Actual file size is larger than file size regarding FAT.
Something could be hidden within the file.
##

Furthermore our tool shows information about the printer which was used to print the
file, provided that Word (or another Office application) stored this information
(typically only older versions of Word behave so). The following listing shows a run
of the tool on a file containing some printer information (our sample file
hello.doc in the Appendix does not contain printer information as declared at the
end of the corresponding output). Again we address a dedicated request of the
practitioners as discussed in Section 2.

sherlock@ubuntu:~$ python wordmetadata.py foo-printed.doc
[REMOVED]
--
Printer Information:
Offset to Printer Information: 77812
--
Name: \\srvfps\HP LaserJet 2420 Sekretariat
Port: Ne05:
Driver: HP LaserJet 2420 PCL 5e
Product Name: HP LaserJet 2420 PCL 5e
--
End of Printer Information.

4. Investigation of Skype Log-Files

Although there are some publications available with respect to Skype network
communication (Biondi and Desclaux, 2006), (Baset and Schulzrinne, 2006) for the
forensic investigation of Skype log files it is essential to know all used file structures
and their content. The latter, however, is not investigated in detail. Information
which is of particular interest regarding Skype log files are the following: chat's
counterpart, date and time of sent messages, the messages' content, the call's
counterpart, the date, time, and duration of a call, the file name of a sent file, the file
size of this file, the date and time of the transfer, and its duration. Besides, it is also
interesting to learn whether the call was incoming or outgoing. This information is
stored in different files, as the following section will describe.

We contribute to a dead-analysis of Skype log files by extending a common existing
tool in Section 4.2. Before, we shortly explain in Section 4.1 the locations, where
Skype saves forensic relevant persistant data.

4.1. Structure of Skype Log File Folders

The Skype log files are stored in the following folder (henceforth referred to as “log
folder”) which is dependent on the operating system:

• Windows 7: C:\Users\<osUser>\AppData\Roaming\Skype\<skypeUser>\

• Linux: /home/<osUser>/.Skype/<skypeUser>/

whereby <osUser> is the user name of the operating system user and <skypeUser> is
the user name of the Skype user.

As to Windows versions of Skype, all conversations are stored in both, an SQLite3
database “…\main.db” and several binary .dat files within the “…\chatsync” folder.
Due to the fact that there is no official documentation for Skype or for the structure
of its log files, it remains unclear why Skype stores redundant information using the
logs in two different formats.

The Linux versions of Skype, too, store all conversations in two various ways, in
several binary .dat files within the “…\chatsync” folder and in several .dbb files
within the log folder (“…\”). However, in contrast to Windows versions there is no
“…\main.db”.

The main.db is an SQLite3 file, which can be opened with any SQLite3 client to
extract the relevant information. It comprises 19 tables. The most interesting ones are
the tables Messages (all chat conversations are stored), CallMembers (all members
of a call), Calls (Information about calls), Contacts (all Skype contacts), and
Transfers (all file transfers). Details about an investigation of the main.db are
given in (Brand, 2011).

For both versions (Windows and Linux) of Skype, there is another interesting file,
the “…\config.xml” file, which contains the configuration of Skype and some further
information. This file can be opened with any text editor or Internet browser and thus
reveals its content. The “config.xml” file contains the configuration of Skype as well
as other interesting information. The bulk of the file cannot be interpreted due to the
lack of information about the structure. But there are two interesting things stored
within this file (see sample config.xml in the Appendix): a UNIX timestamp
showing the last time when Skype was used by the corresponding user is stored
between the start tag “<LastUsed>” and the end tag “</LastUsed>” (which is in this
example “20.07.2011 10:32:06 UTC”). In addition, all contacts (Skype user names)
of the corresponding user (in this case Sherlock) are stored between the start tag
“<u>” and end tag “</u>” (in this example only the Skype user
“doktor_watson_001”, which means he is Sherlock’s only contact).

4.2. Reverse Engineering of Binary .dat File Structure

Due to the necessity of understanding the file structure of the binary .dat files and of
providing its description, a programme Skype Chatsync Reader (SCR) was selected
(Skype Chatsync Reader Web Site 1, 2012), (Skype Chatsync Reader Web Site 2,
2010). The Skype Chatsync Reader parses the log files and extracts the contained
conversations. Based on the source code of SCR we were able to do a reverse
engineering of the file structure and to describe it. We sketch our results in what
follows and point to (Brand, 2011) for details.

The “Skype Chatsync Reader” is intended to work with files of Skype version
4.2.0.169. Therefore, this exact version of Skype is needed to perform an initial
reverse engineering. As a next step, a test bed with three test users (Sherlock,
Watson, and Alice) was created. This test bed contains, in addition to the (up to the
present) newest versions for Windows and Linux, also the version of Skype that is
supported by SCR. The reverse engineering of SCR’s source code combined with a
further reverse engineering of the .dat file structure has shown that SCR does not
work properly. Therefore, we fixed the bugs in SCR, released an improved version
of the SCR, and verification shows that our improved version works now without
any failures (for details we refer to (Brand, 2011)).

The combinations of both reverse engineerings lead into a description of this
structure. We released a table providing a complete overview of the identified data
structures, which deal with the binary file structure of Skype .dat files. A mapping of
this table to a sample hexdump is discussed in (Brand, 2011). Our improved SCR is
available via www.dasec.h-da.de.

5. Conclusions

We have shown that currently the majority of forensic practitioners tends to use
commercial software, but that they are not able to extract all intended information by
their current tools. We therefore developed a guideline for the forensic investigation

of Microsoft Word binary files (aka .doc files) and Skype chat log files using solely
free of charge available tools. In case of Microsoft Word we provide a Python-based,
platform independent tool to enable a more in-depth-analysis of .doc-metadata. Our
tool is superior to previous tools due to its simplicity, independence, and
functionality. Finally, reverse engineering of Skype's .dat files lead to an improved
version of the Skype Chatsync Reader. All our tools are available via
www.dasec.h-da.de.

6. References

Brand, A (2011), “On the Investigation of Application Specific Data within Digital
Forensics”, Master's thesis, Hochschule Darmstadt, available via www.dasec.h-da.de

Biondi, P. and Desclaux, F (2006), “Silver Needle in the Skype”, BlackHat Europe

Baset, S.A. and Schulzrinne, H.G. (2006), “An Analysis of the Skype Peer-to-Peer Internet
Telephony”, INFOCOM 2006, 25th IEEE International Conference on Computer
Communications, pp1-11

Casey E. (2010), “Handbook of Digital Forensics and Investigation”, Academic Press

Hümmer T. (2010), “International OpenOffice market shares - Portal – Tutorials, Tipps und
Tricks für Webmaster auf Webmasterpro.de”,
www.webmasterpro.de/portal/news/2010/02/05/international (Accessed 13 February 2012)

Garfinkel, S. (2012), "Forensics Wiki, a Creative Commons-licensed wiki devoted to
information about digital forensics", www.forensicswiki.org, (Accessed 28 February 2012)

Geschonneck, A (2011), "Computer-Forensik: Computerstraftaten erkennen, ermitteln,
aufklären", dpunkt-Verlag

Marshall, A (2008), "Digital Forensics – Digital Evidence in Crime Investigation", Wiley-
Blackwell

Microsoft Corporation OLE Web Site (2012), "Compound File Binary File Format",
msdn.microsoft.com/en-us/library/dd942027%28v=prot.13%29.aspx (Accessed 4 February
2012)

Open Source Forensics Web Site (2012), “Open Source Digital Forensics”,
www2.opensourceforensics.org/tools/application (Accessed 27 February 2012)

Sammes, T. and Jenkinson, B. (2007), “Forensic Computing – A Practitioner's Guide”,
Springer-Verlag

Skype Chatsync Reader Web Site 1 (2012), “Read Skype Data: Chatsync and SQLite”,
itsecuritylab.eu/index.php/2010/07/07/read-skype-data-chatsync-and-sqlite/ (Accessed: 21
February 2012)

Skype Chatsync Reader Web Site 2 (2010), “Skype.dat reader is updated”,
itsecuritylab.eu/index.php/tag/read-skype-chatsync-files/ (Accessed: 21 February 2012)

Appendix

Tools Used in the doc-Analysis-Guideline

Tool Reason

antiword
(Open Source)

Antiword is a free software reader for Linux that makes it
possible for binary Microsoft Word documents to be read
and to be converted into plain text, PostScript, and also into
PDF (Portable Document Format) files. Besides, it
recognizes pictures within the files and identifies them as
“[pic]”. This also holds for other embedded objects, e.g.
an .mp3 or .wav file. Additionally, antiword is ported to
several platforms, including Windows and DOS (Disk
Operating System). A major asset of antiword is that it can
display the content regardless of the used font, font color,
effect, style, or any other formatting. This means that content
which is not visible by default, such as hidden text or text
with white font colour on white background, are being
displayed just like everything else.

catdoc
(Open Source)

Catdoc is quite similar to antiword. Catdoc, too, produces the
text of the Word file as plain text. But there is no possibility
to export the output to PostScript or PDF and it does not
identify contained objects such as pictures or .mp3 files the
way antiword does. However, there is an option “-b” to
process also broken Word files and maybe this helps to read
a broken file. Catdoc can be considered to be a second-
verification tool in addition to antiword.

Office Visualizer
Tool
(Free Available)

The “Office Visualizer Tool” is a parser for Microsoft Office
OLE structured files, i.e. Excel, PowerPoint, and Word
binary files. It definitely offers a good possibility to have an
organized view of a binary file. The tool is divided into two
panes: The left pane (called “Raw File Contents”) shows the
raw content of the file (in hexadecimal values). The right
pane (called “Parsing Results”) shows the results from the
parsing, i.e. the name of the current data structure, its value,
byte offset within the file, size, and type. A click on a certain
data structure within the “Parsing Results” indicates the
corresponding raw data in the “Raw File Contents” pane and
vice versa. This simplifies the discovery of a certain value a
lot and helps an investigator to detect the wanted information
rather quickly. Due to the high complexity of OLE structured
files, the tool cannot interpret every data structure in a
sufficient way as an investigator would need it. Thus, this
must be done manually, which is far too inconvenient for

practical usage in a forensic scope. On the other hand, the
tool may just be the perfect choice for some other scenarios,
e.g. if an investigator needs an offset to a certain value or if
he needs to learn how the OLE file structure works in
general.

OfficeMalScanner
(Free Available)

With regard to an investigation of Word files it can also be
interesting to find out which VBA macros are stored within
these files. A highly comfortable way to extract the source
code of contained macros provides the “OfficeMalScanner”
tool for Windows. OfficeMalScanner is a Microsoft Office
forensic tool that finds malicious shellcode within (legacy
binary and new XML) Office files. Additionally, it saves
identified VBA macro code to disk. Thus, an investigator can
use this tool for both purposes: Checking Office files for
malicious shellcode and extracting contained VBA macros
without the risk of infecting one’s own system, which would
happen if the file was opened with Office. Furthermore, it
prevents the performing of unwanted calls which could come
from the VBA macro. Furthermore, this tool was developed
by Frank Boldewin who is well-known in the field of digital
forensics.

wordmetadata.py
(Open Source)

See section “Our Tool wordmetadata.py”.

file
(Open Source)

The Linux/UNIX command “file” is commonly used to
determine the file type of a certain file, e.g. if the file is an
.mp3, .jpg or .png file. For .doc files it gives a short overview
of the file’s metadata. This command comes preinstalled
with almost any version of Linux/UNIX and so it can be
used for a very first inspection of the file’s metadata.

extract
(Open Source)

The “extract” tool was developed to read metadata from
certain file types. The website of “extract” says it is able to
read metadata from any files, which sounds a bit
overbearing. But for the scope of this paper it works pretty
well: It gives a short overview of the investigated file’s
metadata. Additionally, it shows even more information of
older versions of .doc files: It is able to extract the revision
log of a .doc file, in case there is one. This could be the
cutting edge to solve a forensic case. Extract is a good choice
if an investigator needs only some basic information about
the file’s metadata or, for older files, to read the revision log.

Microsoft Word If the tools mentioned above do not evoke the wanted results,
one of the last possibilities is to use Microsoft Word itself to
open the document (read-only). The investigator will then

see the document from the same point of view as the author
or the suspicious person did. However, he has to take into
account that he should be well-informed about all the
features offered in Word (e.g. hiding pictures and text).
Otherwise he might easily be deceived. Additionally, there
might also be some VBA macros or other malicious code be
contained in the file which could change the file or even
infect the investigator’s computer. Thus, using Word for the
investigation of .doc files should never be an investigator's
first choice.

A Sample Output of our doc-Metadata-Tool wordmetadata.py

sherlock@ubuntu:~$ python wordmetadata.py hello.doc

--
File system information about hello.doc:
--
Size: 1972736 (bytes)
Creation Date: 2011-08-13 07:31:18 (UTC)
Last Modified Date: 2011-06-28 14:40:45 (UTC)
Last Access Date: 2011-08-13 07:31:18 (UTC)
--
End of file system information.
--
Header Signature: 0xD0CF11E0A1B11AE1 (OLE compound file header)
File Size regarding FAT: 1972736 (bytes)
Offset to 1Table: 1932800
File Identification: 0xA5EC (Word Binary File)
--
DopBase Metadata:
--
Name: Creation Date
Value: 2011-06-28 16:21 (UTC)
Offset: 1938923
--
Name: Last Save Date
Value: 2011-06-28 16:40 (UTC)
Offset: 1938927
--
Name: Last Printed Date
Value: Never
Offset: 1938931
--
Name: Revision Number
Value: 6
Offset: 1938935
--
Name: Editing Time
Value: 0
Offset: 1938937
--
Name: Word Count
Value: 9
Offset: 1938941

--
Name: Character Count
Value: 63
Offset: 1938945
--
Name: Page Count
Value: 1
Offset: 1938949
--
Name: Paragraph Count
Value: 1
Offset: 1938951
--
End of DopBase Metadata.
--
--
Summary Information Property Set Metadata:
SIPS Size: 428 (bytes)
Number of Properties: 16
--
Name: CodePage
Value: 000004E4
Offset to TPV packet: 1940152
--
Name: Title
Value: Hello World
Offset to TPV packet: 1940160
--
Name: Subject
Value: Application Layer Forensics
Offset to TPV packet: 1940180
--
Name: Author
Value: sherlock;watson
Offset to TPV packet: 1940216
--
Name: Keywords
Value:
Offset to TPV packet: 1940240
--
Name: Comments
Value: This files serves as investigation test
file.
Offset to TPV packet: 1940252
--
Name: Template
Value: Normal.dotm
Offset to TPV packet: 1940308
--
Name: Last Author
Value: alice
Offset to TPV packet: 1940328
--
Name: Revision Number
Value: 6 (regarding to CodePage)
Offset to TPV packet: 1940344
--
Name: Application Name
Value: Microsoft Office Word
Offset to TPV packet: 1940356
--

Name: Creation Date
Value: 2011-06-28 14:21:00 (UTC)
Offset to TPV packet: 1940388
--
Name: Last Save Date
Value: 2011-06-28 14:40:00 (UTC)
Offset to TPV packet: 1940400
--
Name: Page Count
Value: 1
Offset to TPV packet: 1940412
--
Name: Word Count
Value: 9
Offset to TPV packet: 1940420
--
Name: Character Count
Value: 63
Offset to TPV packet: 1940428
--
Name: Document Security
Value: 0
Offset to TPV packet: 1940436
--
End of Summary Information Property Set Metadata.
--
--
Miscellaneous Metadata.
--
Number of Reviewers: 2
Offset to Reviewers: 1938441
Reviewers: eve;bob
Last Save Date (from FIB): 2011-06-28 14:40:45 (UTC)
No Printer Information found.

--- end of script ---

A Sample Skype file config.xml

<?xml version="1.0"?>
<config version="1.0" serial="18" timestamp="1311157960.8">
 <Lib>
 <Account>
 <LastUsed>1311157926</LastUsed>
 </Account>
 <CentralStorage>
 <SyncSet>
... <u>
 <doktor_watson_001>7bff23a8:2</doktor_watson_001>
 </u>
 </SyncSet>
 </CentralStorage>
</config>

	1. Introduction
	2. Questionnaire to Forensic Practitioners
	3. Investigation of Microsoft Word doc-Files
	3.1. Foundations of the Microsoft Word doc-File Structure
	3.2. Our Guideline to Investigate Microsoft Word doc-Files
	3.3. Our Tool wordmetadata.py

	4. Investigation of Skype Log-Files
	4.1. Structure of Skype Log File Folders
	4.2. Reverse Engineering of Binary .dat File Structure

	5. Conclusions
	6. References

