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Abstract

The ubiquitous use of smartphones raises the need for stronger protection of these de-

vices. Traditional authentication methods on mobile devices are still knowledge-based,

exhibiting well-known drawbacks. In addition, requests for passwords, PINs, or screen

lock patterns represent an interruption of the device usage. Unobtrusive biometric au-

thentication techniques, e.g. background speaker or accelerometer-based gait verifica-

tion, provide a means to improve the user experience. Since these methods only work

within distinct environments, further unobtrusive authentication methods are required.

In this thesis the design and evaluation of a context-aware mobile biometric system

is presented. An acquired database, which comprises contextual data of 26 different

subjects, is employed for subject modeling and classification, and experiments are pre-

sented. Obtained results confirm the feasibility of the proposed system and provide hints

for further optimizations.
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Kurzfassung

Mit der stetig zunehmenden Verwendung von Smartphones steigt der Bedarf an stärk-

eren Sicherheitslösungen für diese Geräte. Traditionelle wissensbasierte Authentifika-

tionsmethoden, wie PINs oder Musterabfrage, stellen eine Beeinträchtigung in der Be-

nutzung der Geräte dar. Unaufdringliche biometrische Verfahren, wie Hintergrund-

Sprecherverifikation oder Beschleunigungssensor-basierte Gangerkennung, sind ein Mit-

tel um den Benutzungskomfort zu erhöhen. Da diese Methoden jedoch lediglich in fest

definierten Umgebungen funktionieren, werden zusätzliche Verfahren benötigt.

In der vorliegenden Arbeit wird ein kontext-sensitives mobiles biometrisches Sys-

tem entwickelt und evaluiert. Eine Datensammlung mit 26 Teilnehmern wird durchge-

führt und die erhaltenen Kontextinformationen werden zur subjekt-spezifischen Model-

lierung und Klassifikation verwendet. Die Resultate bestätigen die Umsetzbarkeit des

vorgeschlagenen Systems und enthalten Hinweise für weiterführende Optimierungen.
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1. Introduction

With the introduction of the iPhone in November 2007, the smartphone industry de-

veloped into a rapidly growing market. Google and 33 other members of the Open

Handset Alliance announced the development of the Android operating system in the

same month. The first Android smartphone, the HTC Dream, became available in Oc-

tober 2008. It included a GPS module, a three-axis accelerometer, a digital compass as

well as a camera. As the trend continued current smartphones are equipped with even

more sensors, e.g. ambient light sensors and gyroscopes. These smartphones rely on an

internal memory that holds the Android operating system and can be utilised for the

installation of apps1. In many cases it can be supplemented by inserting an SD-card.

Nowadays the lower boundary for the internal memory of the “top tier” smartphones is

8GB. Storage capacity is growing even faster, e.g. caused by the introduction of high

resolution displays and the increased file size of app assets.

As a consequence a huge amount of data can be generated by and stored on modern

smartphones. People store their contacts, emails, images, journals, music, videos and

other personal data on these devices. Business users can store corporate information and

connect to company networks via VPN. With the possibility to store and access private

or confidential information, a necessity to secure these devices arises. Conventional au-

thentication procedures employ challenge-response methods, with the PIN or Password

being the commonly used in operating systems. Knowledge-based authentication has

a well-known drawback: passwords are either insecure or hard to remember. People

tend to choose simple passwords and PINs, which are easy to guess, that is, the entire

system may be infiltrated by applying a brute-force or dictionary attack. Despite these

concerns challenge-response procedures pose an inconvenience, that many users avoid by

not activating authentication on their devices [BN10]. A second form of authentication

requires the user to present a security token, which must be presented to a reader. An

example for token-based authentication is the SIM card in mobile phones. This type of

authentication is often supplemented with a knowledge-based method.

Biometrics are a well-studied alternative to the former two authentication types.

1Short for “application”
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CHAPTER 1. INTRODUCTION

While observation of biological biometric characteristics such as fingerprint, iris, ear

or face recognition require an interaction with the subject, other characteristics like

gait, keystroke-dynamics or other behavioural characteristics enable unobtrusive au-

thentication use cases. Employing such techniques might lower the barrier for users to

activate authentication on their devices. These characteristics are frequently regarded

as supplemental, as there is no guarantee that a person is walking or typing at the time

authentication is requested. A combination of multiple unobtrusive techniques therefore

increases the chance to correctly authenticate a subject.

Within the presented thesis emphasis is put on behavioural characteristics of mobile

device usage and thus, on the balance between security and user convenience. One

convenience aspect is related to false negative decisions of biometric systems. It is

inconvenient for users to repeatedly present e.g. their finger or face in order to succeed

in authenticating. While tweaking the parameters of the biometric module might reduce

false negatives, it might as well increase the number of false positives, which poses a

security risk. Thus, the system should optimised to lower these errors. A source of

failure apart from biometric characteristics are environmental conditions like ambient

light, noise or accelerations. A biometric system should be deployed in a setting with

optimal conditions. This represents an unsolved challenge in the case of mobile biometric

systems. The contribution of this work is the proposal and development of a context-

aware biometric system, evaluating contextual information for subject-specific modelling.

Experimental evaluations confirm the soundness of the approach.

1.1. Objectives

Biometric systems inherently have error rates associated with them. While the perfor-

mance of such a system highly depends on the sophistication of particular algorithms

for a given biometric characteristic, the context also plays an important role regarding

the overall performance. This is especially true for mobile biometric systems, where the

sensor device is constantly used in different environments.

Deploying biometric systems includes controlling certain environmental conditions.

For instance, successfully performing speaker recognition requires the acoustic noise in

the area of a sensor to be at acceptable levels. Other examples include a dark envi-

ronment, which can lead to a significant number of false negative errors of a system

performing face recognition, or a person driving a car while the system tries to perform

gait recognition.
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CHAPTER 1. INTRODUCTION

The approach of this thesis is to develop an unobtrusive authentication method, which

is based on contextual information. A context-aware biometric system is designed, which

utilises contextual data to decide whether authentication is necessary at all, or how many

authentication factors shall be required. Other authentication methods can be deployed

as modules in the system, and can be activated by the context-aware subsystem. The

context-subsystem shall make sensible assumptions about the trustworthiness of the

active user, and only require authentication if an unusual context is detected. Users

do not want to constantly enter a PIN or password before using their mobile device.

While biometrics provide user-friendly and unobtrusive approaches, the question remains

whether authentication is necessary at all in a given context. It may not be necessary

to protect a device while being at home, meeting friends or staying with the family,

while protection shall be active in untrusted environments. Geographical coordinates

can be combined with other features like device usage patterns, average acoustic noise

level, ambient light level, and battery state to learn if the device is used in a trustworthy

context. The derived security level is then used to intelligently require authentication

and the number of necessary authentication factors. For this purpose a data collection

is performed to gather training data for the classification algorithm.

The modular architecture for the authentication part of the system is based on the

international BioAPI ISO/IEC 19784–1 [ISO06a] standard. As the focus of this thesis

is put on the context-awareness of the system and the subjects’ behavioural character-

istics, the design, development, and evaluation of the context-aware subsystem of the

architecture represents the major contribution of this work.

1.2. Organisation of Thesis

In chapter 2 the reader is introduced to fundamentals regarding biometrics and biometric

systems. The key components of such systems are discussed as well as metrics to measure

biometric performance. Common terms and magnitudes are introduced, which are used

throughout the thesis.

In chapter 3 a definition for the term “context” is given and the reader is introduced to

the field of context-aware systems. Subsequent sections will elaborate on the modelling

of context, supporting (architectural) structures for the development of context-aware

systems, as well as general information on data acquisition and evaluation.

The design of a context-aware mobile biometric system referred to as Modular Biomet-

ric Authentication Service System (MBASSy), is described in chapter 4. This chapter
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includes a section on previous work in this area, a short introduction to the BioAPI

standard, the proposed system architecture, and implementation aspects.

A data collection was carried out as part of the presented thesis. The feature selection,

privacy concerns, the software which was developed to assist in collecting the data as

well as the collection process, and the results are described in detail in chapter 5.

In chapter 6 the reader is introduced to the concept of the machine learning technique

“support vector machine”, which is later applied for the classification of contextual data.

Furthermore, advantages and disadvantages of support vector machines are discussed,

and information on available implementations is presented.

The process of building subject-specific models is outlined in chapter 7. In addition,

related work and research results in the field of implicit or context-based authentication

are presented. Furthermore, the classification performance of the system is evaluated,

and discussion of obtained results is given.

Final conclusions, findings and future directions are given in chapter 8.
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2. Biometrics

A definition for the term “biometrics” is given by the ISO/IEC JTC1 SC37 [ISO12a]:

“Automated recognition of individuals based on their behavioural and biological char-

acteristics”

Biometrics provide user-friendly ways to authenticate individuals. The last decade

indicates a trend to incorporate biometrics into a growing number of use cases. In

Germany a contemporary example is the inclusion of facial and/or fingerprint references

data in identity documents and passports1. Another example for the deployment of a

biometric system is the EasyPass border control system2 at the Frankfurt Airport, which

performs automatic face recognition on passengers. A large scale biometric system was

developed and deployed by the Unique Identification Authority of India (UIDAI)3, with

the goal to provide a way for the verification of identity claims. The enrolment process

includes the extraction of iris, fingerprint and face reference templates.

Biometrics provide a means for storing permanent authentication information. Bio-

metrics cannot be forgotten or stolen like e.g. passwords of knowledge-based or smart-

cards of token-based authentication. While this is a desirable property of biometrics, it

also poses a risk to the privacy of individuals. Standards were developed to ensure pri-

vacy, by protecting the generated templates with cryptographic methods [ISO11]. This

chapter gives a brief overview of some important aspects of biometrics and biometric

systems.

2.1. Categorisation

Biometric characteristics can be grouped into two categories: biological and behavioural.

The following definitions stem from the biometric vocabulary document [ISO12a]:

1http://bundesdruckerei.de/de/1548-neuer-personalausweis, last access: 26.01.2013
2https://www.bsi.bund.de/EN/Topics/ElectrIDDocuments/EasyPASS/EasyPASS_node.html, last

access: 26.01.2013
3http://en.wikipedia.org/wiki/Unique_Identification_Authority_of_India
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“Biological and behavioural characteristics are physical properties of body parts, bio-

logical and behavioural processes created by the body and combinations of any of these.”

Examples for each category can also be found in the aforementioned document:

Biological These characteristics can be directly derived from biological features of the

human body. Examples for such characteristics include face topography, iris struc-

ture and finger topography.

Behavioural These characteristic can be derived by observing human behaviour. Ex-

amples for such characteristics include gait, voice patterns, key-stroke dynamics or

handwritten signature dynamics.

The context-aware components of the authentication framework developed in this the-

sis utilise behavioural characteristics. The derived usage patterns of a device represent a

mental model that expresses how and when a user interacts with it. Environmental as-

pects, which do not represent biometric characteristics, such as ambient light or acoustic

noise level are measured as well.

2.2. Biometric Systems

A biometric system consists of several subsystems, which are defined in this section.

Before describing the individual components in detail, it is essential to understand the

general workflow of such a system. A detailed description of these concepts can be found

in the Standing Document 11 (SD11) of the ISO SC37 [ISO10].

Subjects are added to a biometric system with an adequate enrolment function. Each

system captures biometric samples of a subject through sensors. The raw sample is then

processed in order to extract distinctive features forming the biometric template, which

is subsequently stored in a database. Before adding a new template to a database it

can be compared to the ones already present in order to avoid multiple enrolments. The

identity claim of a subject can now be verified by comparing the similarity of stored

features with the extracted features of a sample. The system can be used for verification

and identification purposes. These use cases are described in the respective sections.

A general biometric system is depicted in Figure 2.1.

All definitions in the remainder of this chapter are taken from or based on the Standing

Document 11 (SD11) of the ISO SC37 WG1 [ISO10], and shortened where necessary

to improve readability. This gives the reader the opportunity to quickly familiarise with

the standard.

20



CHAPTER 2. BIOMETRICS

Figure 2.1.: Components of a general biometric system; Source: [ISO10]

Data Capture Subsystem Captures an image or a signal of a subject’s biometric char-

acteristics.

Transmission Subsystem Transmits samples, features or references between subsys-

tems. This subsystem is represented by the connections between the other subsys-

tems in Figure 2.1.

Signal Processing Subsystem Processes raw sensor data and performs segmentation,

feature extraction and quality control. Creates a biometric template as part of the

enrolment process.

Data Storage Subsystem Stores biometric templates. Before being stored in the database,

the data can be formatted to conform to a biometric interchange format.

Comparison Subsystem Compares the features extracted from a biometric sample with

the features of one or multiple biometric templates. In the verification use case,

only a single template is compared with the sample. The results of the comparison

are transmitted to the decision subsystem.

Decision Subsystem Uses the comparison score of the comparison subsystem to decide

whether an identity claim of a subject is genuine or not. The comparison score

must exceed a certain threshold.
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Administration Subsystem Controls the implementation, usage and policies of a bio-

metric system.

The following sections provide a brief description of the transactional workflows of a

biometric system, namely enrolment, verification and identification.

2.2.1. Enrolment

Subjects are added to a biometric system as part of the enrolment process. A biometric

template is created and stored in the database, which is subsequently used in verification

or identification processes. The steps involved to enrol a subject are the following:

1. Obtaining a biometric sample from the subject

2. Processing the sample to extract features

3. Quality checks of the derived features

4. Reference creation and conversion to a biometric interchange format

5. Ensure the usability of the generated template by testing verification or identifica-

tion attempts

6. Repeat process if the initial enrolment is not sufficient

2.2.2. Verification

Verifying the identity claim of a subject involves a (1 : 1) comparison of the acquired

sample with the template of the claimed identity. The system can either accept or reject

the claim. An identity claim is accepted when the comparison score exceeds a certain

threshold, which can be regarded as a minimum confidence level.

The verification process differs from the enrolment process, in that after the quality

assurance of the derived features the following steps are performed:

1. Comparison of sample and template

2. Decision based on comparison score

A verification error occurs if a sample of a subject that is enrolled in the system is

rejected (false reject error), or in case a claim is accepted but the subject is not enrolled

(false accept error).
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2.2.3. Identification

A biometric system can be utilised to determine the identity of a subject based on the

acquired biometric sample. A (1 : n) comparison of a sample against all or a subset of

biometric templates in the database is performed and a candidate list is derived from

the scores of this comparison. The score of all candidate identifiers on this list must

exceed a certain threshold. Identification is successful, if the subjects’ identifier is on

the candidate list.

The identification process differs from the verification process, in that multiple com-

parisons are performed and the results are used to build a candidate list. The identity

with the highest score on this list has the greatest similarity to the input sample.

An identification error occurs, when a subjects’ identifier erroneously is not on the list

(false negative error) or if the subject is not enrolled but its identifier is on the candidate

list (false positive error).

2.3. Performance Metrics

The performance of a biometric system can be measured by running verification and

identification processes with a test set of users against an enrolment database. The test

set may include enrolled users and samples of arbitrary subjects.

The definitions in the following subsections are taken from or based on the biometric

performance testing and reporting standard [ISO06b].

2.3.1. False Accept Rate

The false accept rate (FAR) measures the portion of subjects, whose identity claims were

erroneously accepted by the biometric system. This error rate cannot be determined in

a production system without double-checking the identity of a subject, because there

is no way to detect false accepts in the case of automatated verification. However, this

would render the automated biometric authentication obsolete. Thus, this error must

be determined as part of an explicit evaluation.

2.3.2. False Reject Rate

The false reject rate (FRR) measures the portion of enrolled users, whose identity claim

was rejected by the system. Again, this error rate can only be determined by evaluating
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the reason for the reject in a production system, since the reject might be valid e.g. due

to the expiration of an identity document.

2.3.3. Equal Error Rate

The equal error rate (EER) is defined as the setting where FAR and FRR are equal and

can be visualised in an detection error-tradeoff (DET) curve. This metric is important

for the evaluation of a biometric system, as it represents the lowest achievable total error

by balancing convenience (low FRR) and security (low FAR).

2.3.4. Further Metrics

The so far discussed performance metrics are function-level metrics, that are specific

to authentication processes. This selection was made as these error rates are the ones

a biometric system should be optimised for. This implies that these error rates are

acquired at the highest possible level. Errors that occur in deeper levels of a biometric

system hierarchy contribute to these error rates.

A set of fundamental performance metrics can be used to measure these lower-level

errors, namely the failure to acquire rate (FTA), the false non-match rate (FNMR)

and the false match rate (FMR). The FNMR and FMR are algorithmic-level failures,

while the FAR and FRR are system-level failures. A false non-match error occurs, when

the comparison score of a genuine sample does not exceed the required threshold and

accordingly a false match error occurs in the event of a non-genuine sample exceeding

the threshold. The FTA can be related to the quality of the feature extraction algorithm,

but also to injuries of the subject (e.g. a missing finger) or malfunctioning sensor devices.

The failure to enrol rate (FTE) is not considered in this context.
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3. Context and Context-Awareness

The Oxford Dictionary of English [SS11] defines ‘context’ as “the circumstances that

form the setting for an event, statement, or idea, and in terms of which it can be fully

understood”. An alternative definition of context in the dictionary is related to natural

language: “the parts of something written or spoken that immediately precede and follow

a word or passage and clarify its meaning”. While these definitions are in line with the

tacit understanding of context, these do not fully capture what is understood as context

in the field of ubiquitous computing (ubicomp) or human-computer interaction (HCI).

HCI represents a research field which focuses on the user interaction aspects of com-

puting systems. A definition of this field is given by the ACM Special Interest Group on

Computer-Human Interaction (SIGCHI): “Human-computer interaction is a discipline

concerned with the design, evaluation and implementation of interactive computing sys-

tems for human use and with the study of major phenomena surrounding them.” —

[HBC+13]

Improving the usability of computer applications and systems is one of the core goals

of HCI. While a major aspect of HCI is the design, implementation and evaluation of

user interfaces for the desktop model, a paradigm, that is focused on computing devices

which have been embedded into everyday objects and activities, emerged in recent years.

The phrase ‘ubiquitous computing’ was first mentioned by Mark Weiser as part of his

work at the Xerox Palo Alto Research Center (PARC). He published several papers and

articles on this topic [Wei91; Wei93a; Wei93b] and is generally regarded as the “father”

of this particular research area.

One aspect of ubicomp is that technology fades into the background. Computing de-

vices shouldn’t be exposed that much, but instead provide their service without requiring

user interaction. This is also in line with the idea, that computing devices should fit

the user instead of requiring interaction and, thus, forcing him or her into their world.

One way to achieve such adaptable computing platforms is to use context information to

provide services in the background without requiring user attention or interaction. This

goal drove the design and development of the authentication system in the presented

thesis.
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Visionary examples for ubiquitous computing devices and services include the smart

refrigerator1 that automatically creates shopping lists based on its contents, to the al-

ready near ubiquitous location based services, that are the foundation of many thriving

businesses.

The remainder of this chapter provides a definition of the term ‘context’, additional

information on the categorisation, and features of context-aware applications. Further,

context-modelling techniques are discussed and the reader is introduced to the processes

of acquiring, preprocessing, and evaluating context data. This lays the foundation for the

design and implementation of the multi-biometric authentication system for smartphones

and other portable mobile devices.

3.1. Definition of Context

In order to make informed decisions in the system design phase, a correct understanding

of the terms ‘context’ and ‘context-aware’ is essential. This subsection provides a brief

overview of some attempts to define the terms and closes with a statement regarding

which definition is used in this thesis.

Schilit et al. were the first to provide a definition for ‘context’ and ‘context-aware

computing applications’. According to them, ‘context’ is defined by the identity of the

user, as well as “the location of use, the collection of nearby people, hosts, and accessible

devices, as well as to changes to such things over time.” [SAW94]. Other factors

such as lighting condition, noise level, communication bandwidth, or social situation are

mentioned as interesting features of a context description. Schmidt et al. emphasise, that

a context is characterised by more information than just the physical location [SBG99].

Dey and Abowd elaborate on various attempts to define context [AD99]. They claim

that previous definitions are problematic in that they are based on examples or define

‘context’ as ‘situation’ or ‘environment’, which are synonyms perse. While they also use

a synonym, they do not define context as a special type of situation, but instead as the

information that can be used to describe a situation:

“Context is any information that can be used to characterise the situation of an entity.

An entity is a person, place, or object that is considered relevant to the interaction

between a user and an application, including the user and applications themselves.” –

[AD99].

1http://en.wikipedia.org/wiki/Internet_refrigerator
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Based on this abstract definition of ‘context’, Dey and Abowd define the term ‘context-

aware’ as follows:

“A system is context-aware if it uses context to provide relevant information and/or

services to the user, where relevancy depends on the user’ s task.” — [AD99].

Contrary to definitions that are centred around the device or environment [Pas98;

SAW94], this definition puts the user into the centre of contextual considerations. This

definition fits with the goal of this thesis, which is enhancing the usability of authenti-

cation systems in order to increase the convenience for users. The task of the user in

this case is gaining access to his/her device. Thus, when ‘context’ is mentioned in this

thesis, it is in accordance to the definition of Dey and Abowd.

3.2. Categorisation

This section provides an overview of attempts to categorise contextual information and

context-aware applications. Taxonomies for contextual information have been suggested

by several researchers. Schilit et al. were among the first, who classified the important

aspects of context as [SAW94]:

• User identity

• Other people nearby

• Proximate resources

Schmidt et al. proposed a hierarchical feature space, with general human factors and

the physical environment as the primary categories, which were then specified in more

detail. Examples of human factors are the user, the social environment, and tasks. The

physical environment category consists of subcategories for conditions, infrastructure

and location. Context history is represented as the time dimension of the feature space.

This categorisation is depicted in Figure 3.1.

Dey and Abowd define the intent of context-aware application to monitor the “[..]

who’s, where’s, when’s and what’s [..] of entities” [AD99]. They derive four primary

categories of context data, namely:

• Identity

• Location
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• Time

• Activity

Figure 3.1.: A categorisation of context information; Source: [SBG99]

These categories are used as indices into a secondary feature space and thus, should

be supported by every context-aware application. Secondary contextual information

directly depends on primary data. If the identity of a user is known, more specific

information such as age, address, job, etc. can be obtained. Other context information

can be based on the location of a subject. Contemporary examples are location based

services, that users can access, e.g. with smartphones or tablets. Activity context

information answers the question of what is happening in the current situation. Is the

user walking or driving? Is he/she sitting on a couch, watching TV or dancing in a club?

This type of contextual information belongs into the activity category.

In this context model it is not defined how the categories relate to or depend on

each other. For example, time can depend on the timezone of a subject and thus on

the location. It could also be location-independent as in the case of Lamports’ logical

clock [Lam78] or time intervals in the form of duration constraints. Since the context

model in the presented thesis depends on temporal information, every context informa-

tion type is annotated with a timestamp. The timestamp is based on the system time
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of a device and is trusted by default. Time is recorded as real time, which depends

on the timezone of the user. This clarifies the undefined relation between the context

categories for the purpose of the presented thesis. A slightly modified version of Deys’

context model is depicted in Figure 3.2.

Figure 3.2.: Basic context information categories

Numerous categorisations of context-aware applications have been proposed in liter-

ature. The definitions of Schilit [SAW94] and Pascoe [Pas98] are very similar and have

been superseded by the proposed categorisation of Dey and Abowd, who describe three

distinctive categories [AD99]:

1. Presentation of information and services

2. Automatic execution of services

3. Tagging and storage of context information

These categories can be used to classify the context component of the authentication

system in the presented thesis. The classification of the current context to determine

the required amount of authentication factors, is a combination of category two and

three. Contextual information is utilised in order to infer the strength of the association

between the current context and the subject, which in turn is utilised to configure the

authentication process.

3.3. Acquisition

Contextual information must be obtained by a background process and, thus, require

no user input. As modern smartphones are equipped with a multitude of sensors, a rich
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set of contextual information can be acquired by applications. The following sections

introduce the reader to the type of sensors embedded in the vast majority of modern

smartphones, as well as the problem of data granularity or accuracy, and the concept of

multi-sensor information fusion.

3.3.1. Sensors

Sensors are the primary source for contextual information. Moschgath identifies three

sensor types [Mos13]:

Physical Sensors These sensors provide information about the physical environment.

They measure e.g. temperature, acceleration, humidity, geographical position, or

light and noise levels

Logical Sensors These sensors provide state information about the computing environ-

ment. Examples include battery percentage, number of open network connections,

system time, or results from arbitrary database queries.

Interview Components These components are used to acquire information that only

the user can provide. This includes information about the user identity or explicit

preferences. As the name implies, interview components require user interaction

and thus, are not considered in the presented thesis.

While this provides an abstract classification of sensors, other researchers mention

specific types. Schmidt et al. focus on physical sensors in their work. They discriminate

between three physical sensor categories [SBG99]:

Optical/Vision These sensors provide visual information like light intensity, type of

light, colour temperature etc. A camera is regarded as a composition of optical

sensors.

Audio Information like frequency, acoustic noise level or loudness can be obtained from

raw audio data. A microphone is an example for an audio sensor.

Motion This includes accelerometers that measure acceleration, or gyroscopes that ap-

ply the principle of angular momentum to measure orientation.

Location These sensors acquire position information via GPS, cell-site triangulation, or

other methods.
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Bio-Sensors These sensors measure biological characteristics like pulse, blood pressure

or skin resistance.

Specialised Sensors This category includes all sensors that cannot be classified as part

of one of the other categories.

Building a context-model for an active user of the authentication system requires the

input of a multitude of sensors. Logical sensors are used to obtain time information

and usage patterns such as the activation and deactivation of the screen, incoming and

outgoing calls including checks if the associated number is part of the contact list and

changes to the battery state. Physical sensors are used to determine basic information

about physical activity (acceleration), location information, as well as acoustic noise

and ambient light levels. The preprocessing of the obtained sensor data is described in

section 3.4.

Table 3.1 gives an overview of types of physical sensors, that are embedded in modern

smartphones and associates them to the aforementioned categories.

Table 3.1.: Available Sensors in modern smartphones

Sensor Type Description Category

Accelerometer Measures the acceleration on three axes Motion

Gyroscope Measures orientation based on angular

momentum

Motion

A-GPS Determines position coordinates Location

Camera Can take high resolution images of the

environment

Optical/Vision

Microphone Records audio signals Audio

Light Sensor Measures ambient light levels Optical/Vision

Compass Measures the magnetic field and provides

orientation information

Location

Proximity Measures the proximity of objects Various, often Optical/Vision

Temperature Measures the temperature of hardware

components

Specialised Sensor

Humidity Measures the relative air humidity Specialised Sensor

Touchscreen Measures touch input Specialised Sensor

Not all listed sensors are available in all smartphones and it depends on the operating

system if it exposes access to them. Nevertheless, all of the above mentioned sensors
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can be accessed through the Android API2.

3.3.2. Granularity

A general problem occurs when dealing with sensor data. Physical sensors are a means to

transform continuous analog signals into discrete digital values. While the discretisation

inevitably leads to errors, the accuracy of measurement of the analog component also has

an impact on the overall quality of the acquired data. Sensor data obtained from het-

erogenous devices is not guaranteed to meet comparable accuracy levels or data ranges.

These facts have to be considered in the design phase of the learning algorithm, since a

model trained with fine grained data might not provide an adequate generalisation for

coarse grained data, or vice versa.

Since the accuracy of sensors has an impact on the model building, it also has an

impact on the evaluation. Devices from different manufacturers may include different

sensor models or sensors from different vendors. Thus, a normalisation and transforma-

tion of the data would be required if a model shall be evaluated with data acquired on

different devices. Raw data should be transformed into suitable ranges as part of the

preprocessing step. For instance, instead of directly working with position coordinates,

a grid of a specific size could be applied to classify the geographical location data. The

grid size could be based on the accuracy of the sensor. Another common preprocessing

step is a binning of continuos variables, in order to derive discrete categories.

Another example is the use of acceleration, acoustic noise, magnetic field, and ambient

light information. Instead of utilising sequences of raw data, the mean and median of

the recordings can be computed and stored for evaluation. While the raw data enables

a detailed analysis of features contained in the recorded signals, it also increases the

complexity of the model and the evaluation. Developing and applying algorithms for

sophisticated feature extraction would make it hard to keep the focus on the development

and evaluation of the context-aware system. Thus, a coarser granularity is applied to

enable the development and analysis of multiple sensors within the time constraints of

the presented thesis.

2http://developer.Android.com/reference/Android/hardware/Sensor.html
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3.4. Preprocessing

An essential aspect of building a context-model represents the definition of the data types

and associated ranges of context information. Since a situation shall be characterised

by this information, the use of raw data is impractical. Instead, discriminative features

should be extracted from the data and stored for reference purposes. Extracting features

from raw data is a process, which may involve numerous steps:

Transformation For instance, subtracting a real number from raw accelerometer data

to account for the effect of gravity, and centre the data around zero.

Normalisation A special type of transformation. For example the mean normalisation

of raw data to obtain comparable ranges across features is referred to as feature

scaling.

Mapping For instance, mapping categorial attributes such as the direction of a call to

a binary value.

Filtering Removing noise from raw data is an examples for filtering.

Reduction Instead of using the complete set of input data, it is reduced by a function,

e.g. computing the mean or median.

None of these steps are mandatory and an application of one of these is determined by

the requirements of the model. Adequate methods for the preprocessing of the sensory

data used in this work are discussed in chapter 7.

3.5. Multi-Sensor Information Fusion

Combining captured data from various sensors to improve the overall quality of the

results is referred to as multi-sensor information fusion [XS02]. A simple example is the

combined utilisation of WiFi SSIDs, acoustic noise and GPS to determine whether the

subject stays indoors or outdoors. A rule that fuses the results of these sensors may

require the device to be logged onto a WiFi network, and an acoustic noise level that

does not exceed a certain threshold.

By employing multi-sensor information fusion, the accuracy, robustness, and field

of view of a system can be improved. A set of sensors can either be homogenous or

heterogenous, which determines the type of fusion. By using a set of homogenous sensors,
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the overall accuracy of the measurements can be improved by combining the results,

whereas using heterogenous sensors increases a systems field of view and may lead to

enriched knowledge.

Another aspect of multi-sensor information fusion is the level at which sensor data

is fused. Fusing raw data without any preprocessing represents the lowest level and is

referred to as data level fusion. Extracting features from raw data and combining those

into a single feature vector is referred to as feature level fusion, and combining the results

at the end of each individual processing chain is referred to as decision level fusion.

There is no guarantee that a sensor delivers accurate data over time. A good example

are the location providers in smartphones, which can be based on GPS or network

and WiFi information. It is inherently error prone to derive position information from

network or WiFi data, as these deliver only rough estimates. The error increases when

a subject moves away from the WiFi access point, so that two location fixes recorded

at two different points in time can vary greatly. A location fix is a pair of latitude and

longitude at a given time. Even the accuracy of GPS is limited to 10m deviation in

the best case. However, the effect of inaccuracies or errors resulting from the subjects’

distance to the WiFi access point can be mitigated by using a location database, which is

indexed by SSIDs, to retrieve a location estimate, which in turn can be used to speed up

the satellite search of the GPS. Other sensors are also subject to errors. To account for

these inaccuracies, the data obtained from multiple sensors can be combined to improve

the overall result.

While position information is a key feature of the context model in this work, en-

vironmental conditions at specific locations may also represent valuable discriminative

features. For instance, in case the position information includes an error of several hun-

dred meters, environmental information such as brightness, noise levels or WiFi SSID

provide hints about the actual position. For example, if a subject is sitting in an office

and the location sensor returns a position that is outside of a building and close to a busy

street, the noise level can provide information about the actual setting. The detection

performance can be increased further by extending the feature space or by extracting

richer features from the raw data. For the previous example, a classification of noise

types might deliver more valuable insights regarding the environment.

Another way to fuse multiple sensors is to apply weights to the results as part of a

decision process. Weights can be computed for each feature, according to the importance

of the feature in the model. This topic is discussed in more detail in chapter 7.

If a sensor fails and does not deliver data, it is marked as a missing value. This can be
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resolved as part of a preprocessing step, e.g. by replacing missing values with a constant

or the mean of the specific feature.
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4. Context-Aware System Design

A context-aware mobile biometric system is designed and partially implemented in the

presented thesis, which represents the basis for a data collection and analysis. An impor-

tant aspect of the system is the flexibility to add sensors and group them into categories,

as well as to attach preprocessing elements to the sensor groups. A snapshot of the last

preprocessed data is held in a context object and archived to a persistent store for later

reference.

This chapter provides information on concepts of the Android operating system, the

BioAPI standard, previous work, and the context-aware system architecture.

4.1. Android

The Android operating system1, which is developed by Google and the Open Handset

Alliance, had an estimated market share of 68,1%2 in the second quarter of 2012. An

advantage of choosing Android over other platforms for research in the mobile space is,

that it has a very permissive API, thus allowing developers to use the features of modern

smartphones to a great extent.

Another rational for the platform choice is, that all research carried out by the biomet-

ric research group at the Center for Advanced Security Research Darmstadt (CASED)3

is focused on Android, so building upon this experience is a natural fit.

The following sections briefly describe some of the fundamental concepts of the An-

droid API, that are important to understand.

1http://www.android.com
2http://www.heise.de/newsticker/meldung/Marktforscher-Ueber-100-Millionen-Androiden-

ausgeliefert-1659638.html
3http://www.cased.de
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4.1.1. Intent

According to the Android developer documentation [Goo13], “an Intent is an abstract

description of an operation to be performed”4. Thus, an Intent is used to start an Activity

or Service, which are described in the next subsection. Furthermore, a discrimination

between Implicit Intent and Explicit Intent is required. While the operating system

dispatches an Implicit Intent to components that match certain criteria, i.e. the action

and category specified in an Intent, the target component is specified explicitly by its

package path in an Explicit Intent.

4.1.2. Activity

An Activity is the main part of a user interface. It contains interface elements such as

buttons, sliders, tables, image views, or Fragments5. Fragments are groups of interface

elements that can be reused in other activities and have their own lifecycle management,

while still depending on the hosts lifecycle. For instance, when an Activity is closed, so

are all Fragments it contains.

The lifecycle of an Activity consists of the following phases:

• onCreate

• onStart

• onResume

• onPause

• onStop

• onRestart

• onDestroy

The lifetime of an Activity is determined by calls to its onCreate and onDestroy

methods. The other methods are related to the user-visible part of the Activity lifetime,

such as moving to the back- and foreground.

Since an Activity represents an interface to the user, it is only used as part of the data

collection application in the presented thesis. The context-aware system is configured in

code without any interface elements.

4http://developer.android.com/reference/android/content/Intent.html
5http://developer.Android.com/guide/components/fragments.html
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4.1.3. Service and WakeLock

A Service is an operation that can run in the background, even when a user closes the

foreground Activity of an application. This feature differentiates Android from iOS6,

since it enables true multitasking for applications (iOS supports multitasking on the

operating system level, but exposes only a limited API for developers). It is important

to note that a Service is neither spawning a separate process, nor is it running in a

separate thread. Thus, computation intensive tasks shall create threads of their own

when running as part of a Service. When a Service crashes, it can be automatically

restarted by the operating system, so that continuous operation is possible.

The lifecycle of a Service is comprised of fewer methods than that of an Activity :

• onCreate

• onStartCommand

• onDestroy

A Service is paused when the user puts the device to sleep. Furthermore, components

of a smartphone such as sensors are deactivated. In order to keep a Service and sensors

active in such situations, a WakeLock can be registered within an application, that keeps

the CPU and/or the screen of the device active.

Performing computation intensive tasks in the background leads to a high energy

consumption of the application and, thus, to a reduced battery life of the device. Hence,

a WakeLock shall only be active for a limited period of time. In the next section, the

AlarmManger is introduced, which enables a scheduled activation of a Service.

4.1.4. AlarmManager

The AlarmManager provides an API to schedule an Alarm. An interesting property

of the AlarmManager is, that the operating system keeps timers active, and is able to

wake up the device when an Alarm goes off. This implementation is more energy-efficient

compared to permanently enabling a WakeLock. In order to schedule an Alarm, the time

and an interval for the repeated execution, as well as an Intent must be specified. When

the Alarm goes off, the registered Intent is broadcasted by the operating system. This

enables a scheduled execution of an Activity and/or Service.

6http://www.apple.com/de/iphone/ios/
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The AlarmManager is used in this work to activate the context-aware system in prede-

fined intervals. Thus, the energy consumption of the application is optimised by keeping

WakeLocks active for a limited time instead of permanently.

4.1.5. Sensors

Smartphones include a multitude of sensors, e.g. an accelerometer, GPS, digital compass,

light, proximity, and temperature sensor. The Android API provides a general interface

for querying sensors, that can be used in applications. An overview of the supported

sensor types is given in table Table 4.17. While the Android API supports a broad range

of sensors, it is not guaranteed that every device includes all of these.

Table 4.1.: Sensor types supported by the Android API

Sensor Type Specifier Commonly Available

Accelerometer TYPE ACCELEROMETER Yes

Temperature TYPE AMBIENT TEMPERATURE No

Gravity TYPE GRAVITY Yes

Gyroscope TYPE GYROSCOPE No

Light TYPE LIGHT Yes

Linear Acceleration TYPE LINEAR ACCELERATION Yes

Magnetic Field TYPE MAGNETIC FIELD Yes

Air Pressure TYPE PRESSURE No

Proximity TYPE PROXIMITY Yes

Humidity TYPE RELATIVE HUMIDITY No

Rotation Vector TYPE ROTATION VECTOR No

An instance of a specific sensor can be retrieved from the SensorManager object that

is associated with the application context. In order to receive data from a sensor, a

SensorEventListener must be registered. The SensorEventListener delivers data in the

configured intervals by calling the onSensorChanged method.

7http://developer.Android.com/reference/Android/hardware/Sensor.html
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4.2. Previous Work

A strong motivator for the development of a context-aware system stems from research on

unobtrusive authentication methods at CASED. The Modular Biometric Authentication

Service System (MBASSy)8 was developed [WN10] and used for data collection, test-

ing and demonstration purposes. Authentication methods are implemented as modules

which can be loaded into the system, and subsequently used to authenticate a subject

if the device is activated in a locked state.

Modules are installed as separate applications. MBASSy exposes its database via

a ContentProvider. A ContentProvider represents a means to perform inter-process

communication. Modules authenticate themselves to the system by passing the authen-

tication token, which is retrieved during the registration process, to the ContentProvider,

so that a module cannot access the data stored by other modules.

The communication interface between the modules and MBASSy is based on Explicit

Intents, so that malicious applications cannot intercept calls to the MBASSy database.

MBASSy discriminates between background and foreground modules. This discrim-

ination was chosen to determine the primary execution order of modules in the event

of an authentication request. Background modules do not require user interaction and,

thus, are called prior to foreground modules. In addition to the fixed execution order of

module categories, modules within the categories can be prioritised. For instance, if only

two foreground modules are installed, the system executes them in the order specified

by the user. Depending on the configuration, a single positive authentication result may

be sufficient to unlock the system.

Since software interfaces for a biometric authentication system are defined in the

BioAPI standard, future implementations shall adhere to it. The presented thesis aims

at augmenting the authentication system by adding a context-awareness layer.

The following sections provide an overview of design concepts and architectural deci-

sions, as well as insight into implementation details of the system.

4.3. System Architecture

In this section, an architecture for a context-aware mobile biometric system is presented.

Inter-relations of its components, as wells as exemplary configurations are presented. The

system is comprised of three key components, which are depicted in Figure 4.1:

8https://www.dasec.h-da.de/research/biometrics/mbassy/
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1. Context Subsystem: Within the context subsystem contextual information is

collected and processed in order to build a subject-specific model. After deriving

the model from training data, a classification process computes the probability

of the association between the current context and the genuine subject. This

probability, or confidence value, can be used to decide whether authentication is

necessary at all, or how many factors shall be required.

2. Authentication Subsystem: The authentication subsystem is based on the Java

BioAPI standard. Biometric service providers (BSPs) can be registered in the

BioAPI Framework and utilised by the context subsystem.

3. Result Action Subsystem: Software components can register to receive infor-

mation on (un-)successful authentication attempts and execute according actions.

An interface for the notification on authentication results is implemented in the

result action subsystem. An example for such a use case is the combination of bio-

metrics and token-based authentication as presented by Derawi et al. [DWMB12].

Figure 4.1.: Context-Aware Mobile Biometric System Overview

The components of the context-aware mobile biometric system are described in detail

in the following subsections.

4.3.1. Context Subsystem

A context model is a set of contextual information, that describes the situation of an

entity and can contain behavioural characteristics. Smartphones embed a multitude of

sensors that can be used to collect a broad range of information about the environment
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and the behaviour of a subject. The context subsystem, which is illustrated in Figure 4.2,

uses sensors embedded in smartphones to collect contextual data and, thus, represents

the core of the context-aware system.

Figure 4.2.: Context Subsystem Overview

The sensor concept as outlined in the Android developer documentation is extended

for the sensor components of the context subsystem, in order to enable the definition

of collection periods and durations. The integration of the sensor and preprocessing

components is based on the observer pattern [JGVH95], thus, sensors push data to

their observers in predefined intervals. Since the observer pattern is the fundamental

concept for the communication between all layers of this subsystem, it is depicted in

Figure 4.3. This may be extended by offering a pull API, to obtain sensor data at

arbitrary times. Sensors are grouped within a preprocessing element, which receives

raw data from the sensors and performs a transformation, normalisation, or feature

extraction. Subsequently, the resulting features are sent to the context component which

aggregates the preprocessed data and combines it into a context data frame.

Context data frames can then be written to a persistent store for later reference.

These context stores may be implemented on the device, for instance by using an SQLite

database9, or remotely on a server. Finally, the model component employs the collected

9http://www.sqlite.org
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Figure 4.3.: Observer Pattern

context frames and a set of training examples, in order to generate a model of the

subject. Subsequently, the current context is evaluated by the decision component,

which computes the probability of the current context frame being associated with the

enrolled subject.

Detailed component specifications of the proposed system are provided within the

next subsections.

4.3.1.1. Sensor Component

Sensors constitute the lowest layer of the context subsystem. A sensor can measure

anything, from an arbitrary physical quantity to the keyboard input of a subject. All

sensors request a WakeLock in order to keep receiving events from the SensorEventLis-

tener when the device is put to sleep. The WakeLocks are managed by the context

component, which is discussed later. The Java interface of the ContextSensor imple-

mentation is depicted in Figure 4.4.

Aside from methods required for implementing the observer pattern, the interface in-

cludes methods to set polling intervals and durations. When such values are set, the

sensor activates itself at the given interval by registering an Alarm with the AlarmMan-

ager in the startPolling method. At the time the activateSensor method is called,

a Timer with the specified duration is registered. A ContextSensor stops collecting

when the Timer is fired. Subsequently, the collected data is passed to all registered pre-

processor components. The remaining methods return sensor specific information such

as a description, type, category, or information provided by the Android API such as

resolution, delay, and range.

43



CHAPTER 4. CONTEXT-AWARE SYSTEM DESIGN

Figure 4.4.: Interface of the ContextSensor Component

4.3.1.2. Preprocessor Component

A preprocessing component can be used to create arbitrary groups of sensors. It cre-

ates instances of sensors, registers itself as an observer, and sets the polling interval

and duration parameters. When a sensor finishes collecting data, it notifies the pre-

processing component, which in turn calls the poll method of the sensor and receives

a ContextRawUnit. This unit includes the raw sensor data and a timestamp. Subse-

quently, ContextRawUnits are preprocessed and the result is stored in a ContextUnit

object, which in turn is passed to the context component.

Instead of implementing the preprocessing methods directly, the visitor pattern [JGVH95]

is used to group the functionality within a class. Each ContextRawUnit has an accept

method, which accepts a visitor object. The ContextRawUnit then calls a method of the

visitor object, which can handle the specific data, e.g. an accelerometer raw unit would

call the visitAccelerationUnit method of the visitor object. This enables the group-

ing of related functionality in the visitor object, instead of spreading the code across

all ContextRawUnit implementations. Since different types of sensors may be used and

grouped into multiple preprocessing components, the visitor pattern enables a better

maintainability of preprocessing code. The interface of the preprocessing component is

depicted in Figure 4.5.
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Figure 4.5.: Interface of the ContextPreprocessor component

4.3.1.3. Context Component

The context component represents the current context as a list of ContextUnits. Pre-

processed sensor data can be aggregated by the context component and made persistent

by sending the context data frame instance to a ContextStore, in addition to storing the

last one in a buffer. The interface of the context component is depicted in Figure 4.6.

Aggregating the data to a specific format is an application-specific feature and, thus,

not part of the interface design. For reasons that are outlined in chapter 6, all features

of the context model need to take on numeric values for the purpose of the presented

thesis. An instance of the application-specific representation of the context model can

be retrieved by calling the getCurrentContext method.

The context component is also responsible for releasing the WakeLocks, which were

acquired by the sensor components. References to the WakeLocks are stored in a queue.

When a ContextUnit is received by the context component, it retrieves the head of the

queue and releases the WakeLock. It is not important whether the released WakeLock

was acquired by the sensor that delivered the ContextUnit, since only the release of the

last acquired WakeLock will permit the device to go to sleep. This ensures that all

ContextUnits can be received and persisted by the context component.
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Figure 4.6.: Interface of the Context Component

4.3.1.4. ContextStore Component

A ContextStore provides methods to persist individual or aggregated ContextUnits, ei-

ther directly as objects or alternatively in a JavaScript Object Notation (JSON)10 or

any other text-based representation. It can be implemented locally, e.g. by using an

SQLite database, or remotely on a server. For the purpose of the data collection, which

is described in chapter 5, a remote ContextStore with a write-only policy is implemented.

In addition to insert methods, a select method is provided as part of the interface,

which is depicted in Figure 4.7. Since the concept of a ContextStore is not bound to

a database implementation, it does not provide a specification for a query language.

Custom domain specific languages (DSLs) for queries must be provided by the appli-

cation developer. The result of a query is a list of ContextUnits, either individually or

aggregated, depending on the application.

A ContextStore is used by the context and model components of the context-aware

system. The interface of the ContextStore component is depicted in Figure 4.7.

4.3.1.5. Model Component

Context data is used to build subject-specific models in the presented thesis. Building

a statistical model requires input data for the training of e.g. a regression function or a

10http://www.ietf.org/rfc/rfc4627.txt?number=4627
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Figure 4.7.: Interface of the ContextStore Component

classifier. The ContextStore component provides the necessary interface to a database

and is used by the model component for retrieving the training data to train a statistical

model.

Since the behaviour of subjects varies over time, the system shall adapt to these

changes. Training a model once and using it for all future classifications would decrease

the confidence in the classification results after some time. Thus, a model needs to

be trained frequently based on the most current data. An optimal model component

updates current models with the latest data, which is referred to as the online setting.

However,the implementation of this component in the presented thesis requires a com-

plete training set, which is referred to as the batch or offline setting. In either case,

these details are implementation-specific and, thus, not part of the interface, which is

depicted in Figure 4.8.

Figure 4.8.: Interface of the ContextModel Component

The interface of the ContextModel component includes a method to retrieve the trained

model. Since the design is not bound to a specific type of models, the return value of this

method is a generic object. In addition, the training interval can be set by specifying

a duration in hours, in order to enable the adaptive behaviour of the system. Another

timer can be set, that specifies the interval at which the database is queried to check for

new data. The interval for the data check timer shall be smaller than the interval for
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the training timer. If not enough new data is available when the training timer is fired,

a flag shall be set. This flag is checked in the method called by the data check timer.

If enough data is available and the training flag is set, the method called by the data

check timer shall start the training process and reset the training timer. This process

ensures, that the training is still executed when the collection or storage of new data is

slightly delayed. However, when the data is still missing when the next training timer is

fired, the flag is cleared and the process starts over. An activity diagram for the training

timer workflow is depicted in Figure 4.9 and the activity diagram for the data check

timer workflow in Figure 4.10.

Figure 4.9.: Activity diagram for the training timer workflow

4.3.1.6. Decision Component

When a statistical model has been built, the decision component retrieves the current

context from the context component and the trained model from the model component in

configurable intervals, or on request. It then uses the model to classify the current context

and derives a confidence score, that reflects the strength of the association between the

current context and the enrolled subject. The confidence score can be mapped to an
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Figure 4.10.: Activity diagram for the data check timer workflow

application-specific security level, that determines how many authentication factors shall

be required. An example for such a mapping is given in Table 4.2.

Table 4.2.: Example for a context security level to authentication factors mapping

Context Security Level Confidence Authentication Factors

3 >=99% 0

2 80%–98% 1

1 60%–79% 2

0 <60% 3

The context security level increases with the confidence score. If the confidence of the

context classification is low, additional authentication factors are required to keep the

overall security level of the system high. Based on this mapping, the decision component

controls the authentication flow by calling the respective methods in the authentication

subsystem. The interval at which the current context is classified can be configured

through the interface of the decision component. The decision interval shall be greater

or equal to the interval at which the data for the training set was collected.

In addition to controlling the authentication subsystem, the decision component also

receives the authentication results and propagates these to all registered observers. Ob-

servers of the decision component comprise the result action subsystem, which is de-

scribed later. The interface for the decision component is depicted in Figure 4.11.
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Figure 4.11.: Interface of the Decision Component

4.3.2. BioAPI-based Authentication Subsystem

The BioAPI has been established as a standard for application programming interfaces in

biometric systems. Originally designed for the C programming language, an extension to

the standard defines interfaces for object oriented languages [ISO12b]. This international

standardisation project addresses a specification for the Java programming language,

which is the default language for the Android operating system, and thus a natural fit

for the presented context-aware system. A BioAPI compliant system is comprised of the

following components:

• BioAPI Framework

• BioAPI Units

• Biometric Service Provider (BSP)

• Biometric Function Provider (BFP) – optional

BioAPI Units are categorised as: sensor units, archive units, matching units, process-

ing units, and can be implemented by BSPs or externally provided in BFPs.

BSPs provide an interface for the enrolment, authentication, and identification of a

subject. Information on the registered components can be retrieved from the BioAPI

framework component. Given the information on installed BSPs, an extension of the

context subsystem can be utilised to automatically determine an authentication module

which is expected to perform best under the current conditions. Figure 4.12 depicts the

entire authentication subsystem.

While the BioAPI defines interfaces for the components of a biometric system and a

component registry for the management of these, the authentication flow is determined

by the application. In contrast to MBASSy (see section 4.2), there is no way to specify an
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Figure 4.12.: Authentication Subsystem Overview

execution order for the registered components. This functionality must be implemented

in the decision component, by calling the enumBSPs method of the BioAPI framework

and commit to a selection of desired authentication modules in the source code of the

application. However, it is possible to expose this functionality through a user interface

to let a user make these choices manually. Only authenticated subjects may alter the

configuration after the initial setup. Since the context-aware system does not provide

such a user interface, but rather a framework that can be utilised by developers, ad-

ditional steps are required to develop an application like MBASSy for demonstration

purposes. Thus, MBASSy is an application that can be based on the context-aware

system presented in this thesis.

4.3.3. Result Action Subsystem

At the time an authentication result is available, the system shall provide a way to han-

dle it. The decision component of the context subsystem implements an interface that

other software components can attach to, in order to register for authentication result

notifications. These components can, for instance, propagate the results to objects in the

proximity of the user (see Figure 4.1). Notifications are published by the decision com-

ponent to its subscribers. Again, the underlying design is based on the observer pattern

(see Figure 4.3), i.e. the result action subsystem is comprised of software components

that handle authentication results. In addition to the authentication decision, a confi-

dence score may be returned that can be utilised by components like policy-enforcers,

which may require a mapping of scores to security levels.
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An example for a result action was implemented by Derawi et al. [DWMB12]. They

combined the recognition of finger images, taken with a smartphone camera, with token-

based authentication over Near Field Communication (NFC). In case the finger image

of a subject was successfully verified, the smartphone sent an authentication token over

NFC to a NFC reader at a door, which was connected to a PC inside the room. The

received token was compared against a list of tokens on the PC. In the event of a match

between the authentication token and an item of the access control list, an electronic

door lock was activated to grant access to the room. A generalised sequence diagram of

this use case is depicted in Figure 4.13.

Figure 4.13.: Sequence diagram of the result action workflow

The result action subsystem is designed to simplify the development and deployment

process for such use cases by providing an interface, which allows additional components

to subscribe to authentication decisions. Developers can focus on implementing the

action, without having to design and implement proprietary interfaces to the context

subsystem.

4.4. Implementation Aspects

Not all of the discussed components are implemented as part of the presented thesis.

A simplified version of the ContextStore is developed for the data collection, which is

described in chapter 5. The ContextStore uploads data to a server, but has no methods

to query the server-side database, since this would require server-side software that is

not required for the collection purpose. Communication with a server is optional for
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the general use case, but was necessary for the data collection purpose of the presented

thesis.

The model and decision components are not implemented as described, because the

evaluation and testing is performed on a desktop computer. Data preparation, training

and evaluation code is written in the R programming language11, which makes proto-

typing easier and more efficient.

Since the authentication subsystem is fully described by the BioAPI standard, an im-

plementation of it would not add much value to the objectives of the presented thesis.

A reference implementation of the Java BioAPI12 already exists, so that an implementa-

tion of the authentication subsystem mainly requires the development of Android specific

functionality.

However, all parts that are required for the data collection are implemented. This

includes the context component, preprocessors, sensors and the simplified database.

A topic that is not addressed by the interface specifications is the inherent concurrency

when using multiple sensors. The preprocessing components buffer the raw data that

they poll from the sensors before notifying the context component. When the context

component polls data from the preprocessor, a conflict can occur when trying to modify

a buffer that is not synchronised. If an element is removed from such a buffer while

an iterator uses it, a ConcurrentModificationException13 is thrown. In order to avoid

synchronisation problems, preprocessor components shall use thread-safe containers, for

instance a LinkedBlockingQueue14. If the context component aggregates data units of

all registered sensors before storing a combined feature vector in the ContextStore, then

it shall also implement a thread-safe container for the buffering.

11http://www.r-project.org
12http://sourceforge.net/projects/bioapijava/
13http://docs.oracle.com/javase/7/docs/api/java/util/ConcurrentModificationException.

html
14http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.

html
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5. Data Collection

An important part in the process of developing a context-aware system is the feature

extraction from available signals. A data collection was carried out as part of this work,

in order to statistically analyse various sensor signals and determine which features carry

the most valuable information about a subject in terms of context-modelling.

This chapter contains information on the collection process, the collected raw features,

privacy aspects, and challenges along the way. Obtained results are presented in the last

subsection.

5.1. Collection Process

The collection of context data in order to build a model of a subjects’ daily activities

requires time. Ideally, two weeks of contextual information per subject shall be collected

for the purpose of this thesis. Using a small set of devices and handing them to one

subject after another would either put a limitation on the maximum number of subjects

or the duration of each individual collection phase. Thus, the data collection has to be

performed on the personal devices of the subjects to ensure scalability.

To achieve this goal, a data collection application for the Android operating system,

which is referred to as ContextCollector, is developed. Before a subject can start the

collection, a questionnaire has to be filled in. The following information is requested:

• Gender (male, female)

• Age group (<18, 19–25, 26–35, 36–45, 46–55, >55)

• Profession (Student, Researcher, Other)

Subjects enrol by filling in the questionnaire and accepting the terms and conditions.

The following additional information is sent to the server:

• Device model
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• Android version

• User ID

The user interface of the application is depicted in Figure 5.1.

Figure 5.1.: User interface of the ContextCollector application

After enrolment, the application starts to acquire sensor data in twenty minute inter-

vals. Each sensor collects data for ten seconds. The collected data is then preprocessed,

transformed to a JSON representation, an sent to a server over a Secure Sockets Layer

(SSL) connection. The server application is based on Ruby1 and MongoDB2, which is

a schema-free and document-based NoSQL database3. MongoDB is chosen as it can

handle heterogenous data and directly insert JSON formatted strings of text.

The server verifies the validity of a request by a successful parsing of the input into

a dictionary. Enrolment requests are stored in the “user” collection, while requests

containing contextual units are stored in the “data” collection of the database. If the

structure of the received JSON is invalid, i.e. it cannot be parsed into the dictionary,

the received packet is discarded.

A simplified version of the collection process, that omits the collection intervals and

durations, is depicted in Figure 5.2.

1http://www.ruby-lang.org/en/
2http://www.mongodb.org
3http://www.christof-strauch.de/nosqldbs.pdf
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Figure 5.2.: Sequence diagram of the collection workflow without collection intervals and

durations

5.2. Collected Data

Smartphone devices include a multitude of sensors that measure a variety of environ-

mental aspects, i.e. contextual information can be easily acquired. In addition to generic

sensors that measure physical magnitudes, quantities such as the current time, network

traffic, battery percentage, etc. can be analysed, representing a second type of sensor

measures. The former type of sensors is referred to as physical sensor, the latter as logical

sensor. Furthermore, a discrimination between active and passive sensors is necessary.

Active sensors can be activated and deliver data in predefined intervals, while passive

sensors only deliver data in case a subject interacts with the device. An example for a

passive-logical sensor is the measurement of activations and deactivations of a devices’

screen.

Sensors send the acquired data (together with a timestamp) to the preprocessing

element (see Figure 4.2) which can perform a normalisation, transformation, reduction,

filtering, or mapping of the data in order to extract features. Sophisticated algorithms

may be leveraged to extract higher-order features, instead of trivial statistical ones.

An example is the use of raw accelerometer data as input for an activity recognition

algorithm [WN11]. The derived activity may then be represented as a discrete value.
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Preprocessing of sensor data in the presented configuration of the system is limited to a

reduction of the data by computing the mean and median of a set of raw sensor values.

This simplification is imposed in order to keep the focus on system design, development,

and evaluation. The employed types of sensors are summarised in Table 5.1.

Table 5.1.: Different types of employed context sensors (P=physical, L=logical,

A=active, PS=passive)

Sensor Type

Location P,A

Accelerometer P,A

Magnetic Field P,A

Microphone P,A

Light P,A

Battery L,A

ScreenState L,PS

ShutdownBoot L,PS

Call L,PS

A detailed discussion of the included types of sensors is given in the next subsection.

5.3. Sensor Overview

This subsection contains a detailed discussion of the sensors included in the data collec-

tion (see Table 5.1). In addition to a description of the collected features, sensor-specific

information with regard to functionality and calibration aspects is provided where ap-

propriate.

5.3.1. Location

Location sensors are used to determine position coordinates and supplemental informa-

tion. Mobile devices have access to two different kinds of location providers:

Network provider This location provider uses cell identifiers and WiFi SSIDs to query

a database which delivers the locations of the mobile cell or WiFi router. The

position estimate is computed based on signal strength of the surrounding cells and

routers by triangulating the signals. The accuracy of network location providers
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depends on the distance between cell towers or routers. Thus, better performance

is achieved in cities with a tight grid of cell towers and WiFi networks.

Global Positioning System (GPS) provider This provider delivers the most accurate

position estimate with an accuracy of up to ten meters. It is not guaranteed that

the mobile device can find a satellite signal and the search for it can take up to a

few minutes. Location fixes from the network provider can be used to speed up the

search. Thus, it takes more time to receive position estimates from this location

provider. A GPS sensor also requires a lot of power and thus reduces battery life

significantly.

Depending on the type of location sensor that is used, different kinds of data are de-

livered. While the network providers are limited to a position estimate which is returned

as a pair of latitude and longitude coordinates, GPS provides additional information like

altitude and speed. Table 5.2 provides an overview of which data is collected by the

ContextCollector application.

Table 5.2.: Location Data

Data Field Data Type Description Location Provider

Latitude float Coordinate Network and GPS

Longitude float Coordinate Network and GPS

Accuracy int m Network and GPS

Altitude float m GPS

Speed float m
s GPS

The mobile application receives updates of both location providers and keeps the

location fix with the best accuracy. The rational behind collecting location information

is to determine the places a subject visits at a given day and time.

5.3.2. Accelerometer

Accelerometers in smartphones measure accelerations of the device on three axes. These

sensors were initially used to automatically adjust the user interface when the device is

rotated [App13]. They can also be used as an input device to control games or other

applications by moving the device.
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In previous work of the da/sec Biometrics and Internet Research Group4 at CASED,

research was carried out on using accelerometers for biometric gait recognition [NBRM11;

NBB11; NWB12]. The acceleration signal is recorded, normalised, segmented and sub-

sequently used to train Hidden Markov Models (HMM) [RJ86] and Support Vector

Machines (SVM) [Vap82]. The resulting classifiers were used in authentication processes

to authenticate subjects. For this purpose, a large amount of raw accelerometer data

was acquired for the training process.

Raw data is not collected in the presented thesis in order to save memory and band-

width, and to focus on developing multiple sensors and the overall architecture of

the system. Instead, the mean of the raw data is computed for each axis for a set

X = {x1, x2, . . . , xn} of n collected values (where n ≈ SensorFrequency ∗ 10):

mean(X) =

n∑
i=1

xi

n
(5.1)

Since the mean is sensitive to outliers, the median is computed as well:

median(X) =

xn+1
2
, if n is odd

xn
2
, else

(5.2)

The rational for this reduction is given in section 5.2.

By reducing the data set and only using the locational information of summary statis-

tics, sophisticated algorithms for activity recognition cannot be performed. Instead, a

heuristic is applied, by assuming physical activity whenever the sum of the accelera-

tions of all axes exceeds the gravitational force of 9.81m/s2 by a certain threshold. The

collected fields are listed in Table 5.3.

Table 5.3.: Acceleration Data

Data Field Data Type Description

median X,Y,Z float m
s2

mean X,Y,Z float m
s2

4http://www.dasec.h-da.de
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5.3.3. Magnetic Field

A magnetic field sensor measures the magnetic field of the earth on three axes in micro

Tesla (µT ), which is a unit for magnetic flux density. A majority of the available smart-

phones include such a sensor. It is primarily used to provide additional information in

mapping applications, so that an arrow can be drawn on a map of the current location,

that reflects the direction in which the device is headed.

The magnetic field sensor can be used in combination with the accelerometer to de-

termine the current position relative to the magnetic North Pole. Sensor readings are

influenced by metallic objects, electronics and the earth magnetic field itself and thus,

are context-dependent.

A drawback of this sensor is, that it needs to be calibrated from time to time. This is

normally done by waving the phone around in an eight-figure, which triggers recalibra-

tion. Since the required user interaction contradicts the goals of the presented thesis,

the sensor remains possibly uncalibrated throughout the entire data collection. Thus,

the aforementioned computation of a position relative to the magnetic North Pole is not

performed, as the correctness of the underlying data cannot be guaranteed.

The collected data is reduced by computing the mean and median. An overview is

given in Table 5.4.

Table 5.4.: Magnetic Field Data

Data Field Data Type Description

median X,Y,Z float µT

mean X,Y,Z float µT

5.3.4. Microphone

Data recorded by microphones can be analysed and are used to authenticate subjects

based on their voice characteristics.

For the context model in the presented thesis, the noise levels shall be collected. A

method to retrieve the maximum amplitude of the recorded samples is offered by the

Android API for the microphone. Instead of raw samples, the mean and median of

these maximum amplitude values are computed and stored in the database. No physical

unit is associated with the amplitude values, which have a range of 0 to 32767. A
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microphone converts pressure (Pascal) to Volts and the maximum amplitude values can

be understood as a 16 bit discretisation of the volume.

Unfortunately, the discretisation results vary among different vendors or microphone

models. Again, a calibration is necessary to obtain reliable results. As the goal of this

sensor in the context model is to give a clue about the noise level, the calibration is not

necessary. A comparison of data recorded by different devices without the calibration

step has to take this into account.

An overview of the collected data is given in Table 5.5.

Table 5.5.: Microphone Data

Data Field Data Type Description

median amplitude float value between 0 to 32767

mean amplitude float value between 0 to 32767

5.3.5. Light Sensor

Ambient light sensors are used in smartphones to automatically adjust the screen bright-

ness to ambient light levels, or to turn off the screen in case a user is holding the device

to his/her ear during a phone call.

The unit of the data delivered by the light sensor is lux (lx), which measures luminous

flux per unit area. Since the sensor is factory-calibrated, no further calibration steps are

necessary and the raw data can be used directly. Illuminance data carries information

about the environment a subject uses the device in, as well as behavioural characteristics,

e.g. when a subject is keeping the device in a pocket or bag at the time of measurement.

Again, the mean and median of the illuminance values are stored in the database. An

overview of the collected data is given in Table 5.6.

Table 5.6.: Ambient Light Data

Data Field Data Type Description

median brightness int/float (depends on device type) lx

mean brightness int/float (depends on device type) lx
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5.3.6. Battery

The battery sensor is a logical sensor. Collected data includes the battery percentage

and a charging indicator at measurement time.

Monitoring battery and charging status gives an insight into how intensely a subject

uses a device and the charging behaviour. Some people may carry their chargers with

them all the time or charge their devices every time they encounter a free USB port on

a computer. Others may not mind draining their batteries and operate their device on

lower average battery percentages.

A direct comparison of the data collected on different devices has to take the quality

of the battery and the operating system version into account. The energy consumption

of a device is heavily influenced by factors, which do not correlate to user behaviour.

Thus, data about the device model and operating system version is collected as part of

the enrolment process. Additional information on the energy consuming processes would

deliver even more insight. An indicator for user driven energy consumption is, when the

display is among the top energy consumers. However, this information is not part of the

data collection in the presented thesis.

An overview of the collected data is given in Table 5.7.

Table 5.7.: Battery Data

Data Field Data Type Description

battery percentage float current charge of the battery in percent

charging status boolean indicates if the device is currently charging

5.3.7. ScreenState

Another logical sensor is the screen state sensor. Every time a subject activates the

display of a device, the timespan until display deactivation is measured. Deactivation

may be triggered by the user pressing a button, or by a timeout defined in the devices

system settings.

Some people may constantly check news, websites, social media, or other online re-

sources on their smartphones, while others might only use the phone and texting features

of their device. This data might also serve as a corrective for the battery sensor data,

as it measures user activity. Besides the sheer volume of screen activations, the part
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of the day where the activity occurs may be relevant. Since all sensor units include a

timestamp so that this property can be exploited.

An overview of the collected data is given in Table 5.8.

Table 5.8.: Screen State Data

Data Field Data Type Description

activation String timestamp of the display activation

deactivation String timestamp of the display deactivation

5.3.8. ShutdownBoot

This logical sensor saves a timestamp for the shutdown and boot of a device. Information

is stored in the database in the event of a boot.

Given the shutdown and startup times of a device, usage patterns can be derived.

For instance, while some users may shutdown their device before going to sleep and

turn it on in the morning, others may leave the device running indefinitely. Some may

also restart their device regularly in order to clean up memory. Lots of scenarios are

possible, so this data shall give insights into this specific user behaviour. Additionally,

by combining this information with the battery sensor, it can be inferred if the device

went off because of a low battery charge.

An overview of the collected data is given in Table 5.9.

Table 5.9.: Shutdown and Boot Data

Data Field Data Type Description

boot String timestamp of the boot

shutdown String timestamp of the shutdown

5.3.9. Calls

Learning when a subject makes or receives calls and the duration of those calls, gives

insight into the social or professional behaviour. Among the collected data is the in-

formation if the current call target or source number is stored in the subjects’ contacts

list.
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While it cannot be inferred, whether the call is made in a personal or professional

context, based on this information, it can be assumed that the respective person or

institution is of some significance to the subject.

An overview of the collected data is given in Table 5.10.

Table 5.10.: Calls Data

Data Field Data Type Description

duration int in seconds

direction int 0 incoming, 1 outgoing

number known boolean indicates if the calling or called number is in

the contacts list

5.3.10. WiFi

A hash of the WiFi SSID is stored if a subject is logged onto a network at the time of

measurement. This information seems unnecessary or redundant at first, given that a

network is always associated with a location and the location providers even use this

data to determine a location fix. At second glance, there are cases where this information

can be of help in determining the security level. When a device is lost or stolen, picked

up by someone and subsequently logged onto an unknown network, this can be classified

as an anomaly. The unknown network does not need to be in proximity of the usually

used network, since the location information is evaluated separately. Even if the subject

willingly logs on to foreign networks, the event should be classified as anomalous.

As WiFi developed into a mainstream technology years ago, a multitude of networks

may exist at the same physical location. Thus, the physical position which often is

inaccurate can be augmented by using network information.

An overview of the collected data is given in Table 5.11.

Table 5.11.: WiFi Data

Data Field Data Type Description

SSID String SHA–256 hash of the SSID
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5.4. Behavioural Characteristics

According to the harmonised biometric vocabulary [ISO12a], a behavioural characteristic

is understood as physiological or behavioural processes created by the body. A common

behavioural characteristic is keystroke-dynamics, which measures the typing behaviour

of a subject. This characteristic fits with the definition, since it directly relates to the

human hand. It can be safely assumed though, that human behaviour is still a unique

property of a subject, even in case it does not directly relate to a visible part of the body.

Thus, the definition seems a bit narrow. Behavioural features collected in the presented

thesis mainly relate to the subject as a whole and not necessarily to a single body part.

To fit with the definition though, behaviour can be regarded as the result of a thought

or learning process and thus, directly relates to neural structures in the human brain.

A majority of the collected features can be regarded as behavioural characteristics

of a subject. For instance, data from the accelerometer indicates physical activity, the

geographical location gives insight into the traveling behaviour of a subject, and the

screen state sensor measures interaction with a device. Furthermore, the call sensor

gives insight into the communication behaviour of subject, i.e. when calls are made and

how long these usually are. Additionally, the shutdown and boot sensor indicates when a

subject turns the device off and on, but it also measures automatic shutdowns in case of

a drained battery. The automatic shutdown case could be discarded by simultaneously

checking the current battery charge and ignore the event in case the battery is low. The

microphone sensor measures the acoustic noise level, but could be modified to record

sound to audio files, which could be processed in order to identify the voice of a subject

and thus, the talking behaviour (frequency, duration, loudness etc). The magnetic field

sensor could be used to determine the direction a subject is facing.

Some of these ideas can not be implemented as part of the presented thesis due to

time constraints and thus, are subject to future work.

5.5. Privacy Aspects

When collecting personal data, an important aspect is privacy. A detailed description

of the data collected and their use is specified in the terms and conditions participants

had to accept as part of the enrolment. Besides stating what is collected and what it is

used for, the collected data itself should only carry as much information as required for

the analysis.
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The protection of an individuals privacy starts with the registration process. No per-

sonally identifiable information is requested from the participants. A basic requirement

is the assignment of unique identifiers to the subjects. An easy and straightforward way

to do so is to use the Unique Device Identifier (UDID) of the smartphone. This solution

is problematic, since everyone who has access to the device and the database can directly

find the data records of a subject. To avoid such a scenario, the UDID is combined with

a random number and then passed to an Android system function, that computes a Uni-

versally Unique Identifier (UUID) of the string. Additionally, demographic information

of the subjects is collected (see section 5.1), as well as the device model and Android

version. This data may also threaten the privacy in case that only a single subject is

enrolled with a specific device model and Android version.

A harsh critique during the collection phase was, that the application uses the mi-

crophone, the fear being, that calls are intercepted and contents of the talk sent to the

server. As already stated in subsection 5.3.4, only the volume or acoustic noise level is

measured, even though raw audio data contains valuable and exploitable information.

Furthermore, the microphone is polled in fixed intervals and not activated when a call

is active (at least not intentionally).

Some participants were worried by the collection of the location feature. While several

methods exist to perturb location information [SS98] by adding noise and grouping

several subjects into a large enough location cluster, these methods would defeat the

purpose of the data collection. Location information has to be as accurate as possible

for the context-model of a subject.

Other features, like the recording of screen activations, were not criticised, presumably

because these measure when an activity occurs and not what the activity involves. While

it would be great to learn about the specifics of a subjects activity, it would arguably

be harder to find participants willing to deliver this data.

The WiFi sensor stores a hash of the SSID instead of cleartext, which might include

valuable information to identify a subject. While an attacker might use dictionary or

similar attacks, this protection method is adequate for the purpose.

Another aspect is the transfer of the data from the mobile devices to the server. Data

uploads only occur when a WiFi connection is available. Since a subject may well be

using an unencrypted public WiFi network, the data transfers between the mobile device

and the server shall be secure. To ensure privacy, the devices establish encrypted SSL

connections only.
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5.6. Challenges

Among the challenges, getting enough subjects to participate in the data collection was

the hardest. As described in the previous section, people are worried about the amount

and type of data that is collected.

Several calls for participation were sent via email, social networks (Twitter5, Face-

book6, Google+7, LinkedIn8, Xing9) and technology forums. Additionally, posters with

the call for participation were hung in the kitchens and student pools of CASED and

the blackboard of the computer science department of the university.

Another non-negligible challenge of this data collection is the support of heterogenous

devices. Given the requirement, that subjects have to use their personal smartphones,

a wide variety of device models, vendors and Android versions had to be supported. It

is a general problem in the development process for Android, that can only be solved

by testing on a wide range of Android versions and device models. Only a single device

(Google Nexus S) was available for the development and testing of the mobile application.

This turned out to be problematic, as some software failures occurred only on a subset of

the devices. Thus, software bugs had to be fixed as part of an ongoing process, instead

of within a testing period.

Since the context data collection application constantly activates sensors and estab-

lishes network connections, maximising battery life is a major objective. The first ver-

sions of the application used a WakeLock to keep the CPU active, since otherwise timers

and sensor callbacks are not triggered. This led to unacceptable power consumption and

drained batteries fast. A solution to this problem was using the Android AlarmManager,

that is capable of waking devices from sleep at a given time. When the device is woken

up by the alarm, a WakeLock is set for the duration of the collection of each sensor and

released afterwards. Each sensor sets and releases its own WakeLock.

Current data plans for smartphones have a hard limit of approximately 300MB of

monthly data usage. Hence, data is only sent if a WiFi connection is available. In case

the device is not logged onto such a network, the data is written to a cache. A timer is

triggered every five minutes to check for the network state, sends the cached data in case

the device is connected to WiFi, and deletes the data from the internal cache. An error

5http://www.twitter.com
6http://www.facebook.com
7http://plus.google.com
8http://www.linkedin.com
9http://www.xing.de

67

http://www.twitter.com
http://www.facebook.com
http://plus.google.com
http://www.linkedin.com
http://www.xing.de


CHAPTER 5. DATA COLLECTION

in the implementation of this functionality lead to the creation of duplicate entries that

accumulated quickly and increased battery and bandwidth usage. A problem that is not

addressed by the application is the switch from a WiFi to a cellular network during a

transfer.

Failed data transfers shall not lead to data loss. When a transfer fails, the data is

written back to the internal cache, so that it can be send in a later attempt.

5.7. Results

In the following subsections, summary statistics of the participants, used devices, An-

droid versions and collected data are presented. Demographic and quantitative informa-

tion is presented, and the quality of the data is measured in terms of completeness. An

analysis of the individual features is provided in chapter 7.

5.7.1. Participants

During the enrolment, participants had to specify their gender, age group and profession.

While a more diverse group of participants would be desirable, the results indicate a large

homogenous subgroup. The total number of participants is 26.

A majority of the participants is male and in the age group 26–35. This distribution

across age group and gender was expected, as most of the participants are computer

science students at the university.

Participants could choose between “Student”, “Researcher”, and “Other” for the pro-

fession. If they selected “Other”, they could provide the job title in a text field. Most

of the participants are students, and the other major group provided other profession

titles.

5.7.2. Devices

As indicated in section 5.6, a multitude of devices had to be supported. Among the 26

participants were 16 unique device models (see Figure 5.3) and eight different versions

of Android (see Figure 5.4).
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Figure 5.3.: Devices used in the data collection

Figure 5.4.: Android versions used in the data collection
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5.7.3. Data Quality

Since several errors occurred during the data collection, it is necessary to analyse the

amount of lost information for each feature that is collected in fixed intervals. Features

that are based on user activity cannot be evaluated for this purpose, as they are collected

at arbitrary times.

Data units are grouped into the cells of a matrix, which has weekdays as columns and

day sections as rows. Each data unit is annotated with a timestamp, which includes

the weekday and the time. The matrix column of a data unit is determined directly by

extracting the weekday from the timestamp. The section of day is computed by mapping

the hour to one of the sections as described in Table 5.12.

Table 5.12.: Mapping of hour to day section

Day Section Hours

1 [0, 3)

2 [3, 6)

3 [6, 9)

4 [9, 12)

5 [12, 15)

6 [15, 18)

7 [18, 21)

8 [21, 0)

The cell that includes the most data units determines the number of days the data

collection was active on the device, and is used as the basis for computing the average

degree of completeness in the other cells.

The average degree of completeness for each subject and feature is presented in Ta-

ble 5.13. Not all subjects delivered enough data to be considered in the evaluation, thus

the total number of subjects is reduced to 17. This metric is employed in order to deter-

mine how much data of a feature was lost during the collection phase. This information

might be valuable when evaluating the system performance, since it provides a means to

compare evaluations for different subjects based on the completeness of each feature. For

instance, if a model performs poorly and the underlying data has a low average degree

of completeness for the location feature, and another model performs good with a high

average degree of completeness for this feature, it might be worthwhile to investigate
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whether the low performance of the former model is due to the lack of available location

information, or to a low quality of the location data that is available.

Table 5.13.: Average relative degree of completeness per subject and feature in

percent (A=Acceleration, M=Magnetic Field, Loc=Location, N=Noise,

Lig=Ambient Light, B=Battery, W=WiFi)

Subject A M Loc N Lig B W

1 66.84 71.89 50.91 23.86 64.47 63.20 63.27

2 66.87 66.63 46.01 26.67 63.37 26.40 26.90

3 67.07 66.36 61.72 3.64 0.00 66.16 65.35

4 43.64 43.77 42.96 25.91 43.85 43.97 43.89

5 82.99 82.92 78.22 16.46 82.53 73.44 73.01

6 60.10 60.27 63.17 16.36 59.64 58.79 58.41

7 69.50 71.21 70.13 4.85 0.00 67.66 67.72

8 78.34 77.43 58.10 12.73 77.87 80.24 76.13

9 63.97 63.80 55.14 6.97 64.10 63.43 63.47

10 57.06 54.00 47.27 6.97 0.00 57.91 60.25

11 27.08 28.08 27.86 3.12 27.89 29.91 29.09

12 52.08 54.29 49.95 4.68 51.92 52.73 56.11

13 73.19 69.03 47.27 12.73 0.00 66.65 65.86

14 69.14 69.88 48.26 18.60 68.15 66.32 67.50

15 8.79 8.05 23.71 7.27 0.00 39.28 40.25

16 52.08 54.29 49.95 4.68 51.92 52.73 56.11

17 58.85 58.95 55.50 2.73 59.14 58.85 58.95

Let F be a matrix containing the data units of a feature in its cells, with m = 8 rows

representing day sections and n = 7 columns representing weekdays. The cell containing

the most data units is referred to as the baseline cell, and max(F ) denotes the number

of units in the baseline cell. The average degree of completeness of a feature is computed

as follows:

degcomp(F ) =

(∑m
i=1

∑n
j=1 100 ∗ |Fij |

max(F )

)
− 100

(m ∗ n)− 1
(5.3)

To exclude the baseline cell from the average degree of completeness, 100 is subtracted

and the result divided by the number of cells minus one (the baseline cell). In addition
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to the degree of completeness, the average number of days per subject and feature is

presented in Table 5.14.

Table 5.14.: Average days per subject and feature (A=Acceleration, M=Magnetic Field,

Loc=Location, N=Noise, Lig=Ambient Light, B=Battery, W=WiFi)

Subject A M Loc N Lig B W

1 11.46 12.07 8.29 0.67 10.42 12.35 12.57

2 10.12 10.08 5.17 1.68 10.03 12.84 12.79

3 4.06 4.02 3.74 0.02 NA 4.01 3.96

4 6.25 6.27 5.13 0.36 6.28 6.45 6.43

5 33.60 33.57 25.15 1.08 33.96 34.74 34.54

6 11.15 10.98 10.00 0.42 11.27 11.31 10.85

7 15.64 13.15 15.31 0.07 NA 15.92 15.71

8 12.07 11.93 8.63 0.29 12.26 12.36 11.99

9 14.21 13.96 12.49 0.17 14.24 14.74 14.32

10 7.52 7.31 6.27 0.17 NA 7.82 7.52

11 3.60 3.52 3.60 0.34 3.70 4.15 3.85

12 9.35 9.18 8.98 0.30 9.50 9.64 9.67

13 17.19 14.85 10.77 0.48 NA 18.83 18.83

14 17.89 17.84 12.95 1.74 18.10 18.29 18.38

15 0.21 0.23 2.09 0.03 NA 5.11 5.10

16 9.35 9.18 8.98 0.30 9.50 9.64 9.67

17 3.77 3.78 3.57 0.03 3.79 3.77 3.78

It is evident, that not enough data of the noise feature was collected for all participants.

The reason for this error could not be found. Furthermore, some of the devices did

not deliver ambient light values. Affected devices are the Samsung Galaxy Ace (GT-

S5830(i)) and the Sony Xperia Ray (ST18i). The Galaxy Ace does only include a

proximity sensor, so the ambient light feature cannot be collected on these devices.

According to the technical specification of the manufacturer, the Xperia Ray does include

an ambient light sensor, so the missing data must be related to a bug in the operating

system.

An almost complete data set of the acceleration, magnetic field, battery and WiFi

features was collected for each subject. However, almost one half of the participants did

not deliver enough data and is not considered in the evaluation of the system.
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Since the collected data shall be used to build a model of a subject, the next chapter

introduces a classification technique referred to as the Support Vector Machine. It lays

the foundation for the evaluation of the system which is presented in chapter 7.
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6. SVM-based Classification

A Support Vector Machine (SVM) is a supervised learning algorithm for classification

tasks, that can also be used for regression and novelty detection purposes. SVMs were

first introduced by Vladimir Vapnik in 1982 [Vap82], and have been successfully applied

in biometrics, e.g. for the classification of subjects based on their gait [NBB11], the fusion

of fingerprint and voiceprint [WLL+09], multimodal face and ear recognition [YFEE10],

speaker recognition [FLBG10], and keystroke dynamics [LZC+11]. Since the context-

aware system presented in this thesis performs a classification, only this use case of an

SVM is considered in this section.

SVMs are binary classifiers, that compute a separating hyperplane with a maximum

margin to the training examples. The margin is represented by the perpendicular dis-

tance between the separating hyperplane and the training example.

A discrimination between the following three cases is necessary to describe the concept

of SVMs for classification purposes:

1. Linear Separability

2. Non-Linear Separability

3. Linear Inseparability

A detailed description for each of these cases is given in this chapter, as well as

information on class probabilities and general advantages and disadvantages of using

SVMs. The examples presented in this chapter are based on the lecture notes of the

machine learning course at the Stanford university [Ng13].

The next subsection provides an introduction to the idea of margins.

6.1. Margins

SVMs compute a separating hyperplane to discriminate between two classes. If a train-

ing example is far away from the hyperplane, the confidence in its association with the
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respective class is high. When a training example is close to the hyperplane, the con-

fidence that it belongs to the class is lower, since a small change to the function that

determines the hyperplane would lead to a different classification. An example for three

possible separating hyperplanes is depicted in Figure 6.1.

Figure 6.1.: Examples for separating hyperplanes

In order to maintain a high confidence in the classification results, a large margin shall

exist between the hyperplane and the closest training examples. Maximising this margin

increases the confidence in the classification results.

More formally, two types of margins can be defined. Before discussing these margins,

a notation for a linear classifier with class labels y and features x is required. Since SVMs

represent binary classifiers, y ∈ {−1, 1} denotes the class labels. The parameters for the

classifier are referred to as w and b, so that the hypothesis function can be defined as

hw,b(x) = g(wTx+ b) (6.1)

with g(wTx+b) = 1 if wTx+b ≥ 0, and g(wTx+b) = −1 otherwise. This functionality

is provided by the sign function.

With this notation, the functional margin ψ(i) of (w, b) for a training example (x(i), y(i))

is defined as
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ψ(i) = y(i)(wTx(i) + b) (6.2)

Since a large margin represents a high confidence in the classification results, wTx+ b

needs to be large positive number for y = 1 and a large negative number for y = −1.

A classification result is correct, whenever ψ(i) > 0, since a misclassification always

results in a negative number for ψ(i), while ψ(i) = 0 means that the example lies on

the separating hyperplane. Furthermore, the smallest functional margin of all training

examples is used as the functional margin of (w, b):

ψ = min
i=1,. . . ,m

ψ(i) (6.3)

This definition is problematic, since scaling the parameters (w, b) does not change the

result of the hypothesis function hw,b(x), but increases ψ. Hence, this is not a good

metric for the confidence in a classification result.

A better approach is the geometric margin, which is defined as

γ(i) = y(i)

((
w

‖w‖

)T
x(i) +

b

‖w‖

)
(6.4)

This definition of a margin is invariant with respect to a scaling of (w, b), since the

parameters are normalised by dividing the 2-norm of vector w. Again, the smallest

geometric margin of all training examples is used as the overall geometric margin of the

classifier:

γ = min
i=1,. . . ,m

γ(i) (6.5)

The training examples with the smallest geometric margin are called the support

vectors.

Invariance with respect to scaling the parameters of the classifier allows for a definition

of arbitrary constraints, e.g. ‖w‖ = 1, since these can be satisfied by rescaling (w, b).

With this constraint, the geometric margin equals the functional margin.

6.2. Linear Separability

Linear separability is given, when the positive and negative training examples can be

directly separated by a hyperplane. An example for linear separability and the geometric

margin is depicted in Figure 6.2.
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Figure 6.2.: Example for linear separability. The support vectors are indicated by the

green colour, w is the parameter vector, and γ the geometric margin

The goal is to maximise the geometric margin γ. Instead of directly maximising

the geometric margin γ, which would require constraints that lead to a non-convex

optimisation problem, the property of the geometric margin being invariant to scaling

(w, b) is used to find a different solution. Scaling (w, b) also scales the functional margin

ψ, so the scaling constraint ψ = 1 can be imposed. Since the functional and geometric

margin are related by γ = ψ/ ‖w‖, and taking the scaling constraint into account,

1/ ‖w‖ can be maximised instead of γ. Furthermore, maximising 1/ ‖w‖ is equivalent to

minimising ‖w‖2, so the latter is used as it can be solved with quadratic programming

(QP) techniques.

An optimisation problem for this task, that can be solved with QP software is defined

as follows:

minw,b
1

2
‖w‖2

subject to y(i)(wTx(i) + b) ≥ 1, i = 1, . . . ,m
(6.6)

This is a convex optimisation problem that can be efficiently solved by QP algo-

rithms [BC99].
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This optimisation problem can be improved further, so that it can be solved by com-

puting inner vector products, which is the key idea for applying the kernel trick. Ac-

cording to the theory of Lagrange duality, optimisation problems can be represented as

primal and dual problems. The dual problem can be solved in lieu of the primal problem

under certain conditions [BV09]. Lagrange multipliers represent a method for solving

constrained optimisation problems. The dual problem to the optimisation problem is

defined as follows [Vap99]:

maxα W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

y(i)y(j)αiαj
〈
x(i), x(j)

〉
s.t. αi ≥ 0, i = 1, . . . ,m
m∑
i=1

αiy
(i) = 0

(6.7)

The αi in the equation are referred to as Lagrange multipliers. From the partial

derivative of the Lagrangian with respect to w the following equation can be derived:

w =
m∑
i=1

αiy
(i)x(i) (6.8)

It follows from the Karush-Kuhn-Tucker (KKT) conditions, that the αi take on val-

ues different from zero solely for the support vectors. Thus, only the support vectors

contribute to the position of the separating hyperplane. By using the last equation and

plugging it into the hypothesis function of the classifier and simplifying the result, the

following equation can be derived:

m∑
i=1

αiy
(i)
〈
x(i), x

〉
+ b (6.9)

Since many of the terms of this sum will be zero, only the inner products of the

support vectors with the presented example need to be computed in order to perform a

classification.

6.3. Nonlinear Separability and Kernels

There are cases, where the data can only be separated by a nonlinear function, instead

of a straight line. An example for such a case is depicted in Figure 6.3.
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Figure 6.3.: Example for a nonlinear decision boundary

The basic idea is, that the data is mapped to a higher dimensional space, where

it is linearly separable. Instead of introducing polynomial terms to the hypothesis to

model nonlinear functions, SVMs apply the kernel trick to compute nonlinear decision

boundaries.

In order to illustrate the concept of kernels, a simple example is considered [Ng13]. A

mapping φ of the feature vector x to a higher dimensional space could be performed as

follows:

φ(x) =

 x

x2

x3


Instead of training an SVM with the original feature vector, the transformed vector

can be used. Replacing 〈x, z〉 in equation (6.9) with 〈φ(x), φ(z)〉 allows the definition of

the following kernel

κ(x, z) = φ(x)Tφ(z)

The computation of all inner vector products can now be replaced with κ(x, z), which
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can be efficiently computed, even with a high-dimensional feature mapping φ(x). A

simple example is illustrated by the following polynomial kernel

κ(x, z) = (xT z)2

This can be expanded to

κ(x, z) =

(
n∑
i=1

xizi

)(
n∑
j=1

xjzj

)

=
n∑
i=1

n∑
j=1

xixjzizj

=
n∑

i,j=1

(xixj)(zizj)

This computation has a time complexity of O(n2) and the resulting feature vector for

n = 3 is given by

φ(x) =



x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3


Considering the definition of the Kernel, it can be seen that the computation requires

only linear time O(n) compared to the quadratic time complexity for mapping the input

features to a high dimensional space. Hence, it is not necessary to compute the expensive

feature mapping.

Kernels can also be regarded as a measure of similarity. The inner product of two

vectors is large if they are similar, and zero in case they are orthogonal. Thus, functions

that compute the similarity between two vectors are candidates for kernel functions. An

example is the Gaussian radial basis function kernel (RBF), which is also used for the

training of an SVM in the presented thesis
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κ(x, z) = exp
(
−γ ‖x− z‖2

)
(6.10)

The necessary and sufficient conditions for a valid kernel function are given by Mercer’s

theorem [Mer09], which basically states that the kernel matrix needs to be symmetrical

and positive semi-definite.

6.4. Linear Inseparability and Outliers

The concept of an SVM presented so far assumes linear separability of the input data and

is sensitive to outliers. Consider the example depicted in Figure 6.4: outliers result in a

much smaller geometric margin and unintuitive position of the separating hyperplane,

which may result in a reduced classification performance.

Figure 6.4.: Example for an outlier that changes the position of the separating hyper-

plane. The green hyperplane is desirable, but the red one is computed due

to the presence of the outlier indicated by the orange colour.

Furthermore, the current SVM formulation cannot find a separating hyperplane if the

data set is linearly inseparable. While mapping the input data to higher dimensional
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feature spaces, as described in the last subsection, increases the likelihood of linear

separability [Cov65], there is no guarantee for it. An example for a linearly inseparable

data set is given in Figure 6.5.

Figure 6.5.: Example for a linearly inseparable data set

Visualising the convex hulls of the training examples for each class makes the linear

inseparability obvious. Without the outlier indicated by the orange colour, the deci-

sion boundary could be computed as indicated by the green line. In order to solve

this problem, the margin constraint of the optimisation problem needs to be relaxed

and combined with a regularisation term in the objective function, which leads to the

following formulation of the optimisation problem [Bur98]

minw,b
1

2
‖w‖2 + C

m∑
i=1

ξi

s.t. y(i)(wTx(i) + b) ≥ 1− ξi, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

(6.11)

The modified constraint allows training examples to be within the margin or on the

wrong side of the separating hyperplane. Specifically, it allows a functional margin that
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is smaller than one. However, the regularisation term provides a balance to the relaxed

margin criterion, so that the objective function is optimised for small ξi and a large

margin.

When the cost parameter C goes to infinity, the resulting hyperplane is similar to the

one computed without regularisation and relaxed margins. However, the value of C has

to be determined empirically.

Again, this problem can be represented as a primal and dual problem. The dual

problem differs only slightly from the original problem:

maxα W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

y(i)y(j)αiαj
〈
x(i), x(j)

〉
s.t. 0 ≤ αi ≤ C, i = 1, . . . ,m

m∑
i=1

αiy
(i) = 0

(6.12)

The only change introduced to the original formulation is α ≤ C. With this result,

the description of the SVM as used in the presented thesis is complete.

6.5. Class Probabilities

Since the output of an SVM is a label y ∈ {−1, 1} that denotes the class membership,

probability estimates must be computed separately for the classes. A well-known method

to derive such probabilities is logistic regression. Logistic regression employs a sigmoid

function to map input values to a class. An example for such a sigmoid function is

hθ(x) =
1

1 + e−θT x

This function maps to y = 1 for θTx > 0 and y = −1 otherwise. A big absolute value

of θTx corresponds to a high confidence in the classification result. The sigmoid function

is depicted in Figure 6.6.

The confidence in a classification result can be modelled by introducing a scaling factor

for θTx.
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Figure 6.6.: Example for a sigmoid function. The decision boundary is at θTx = 0. The

estimated probability for the positive class is given by hθ(x), and for the

negative class by 1− hθ(x).

6.6. Advantages and Disadvantages

One of the advantages of the SVM is the availability of efficient optimisation algorithms,

which solve the underlying quadratic optimisation problem. In contrast to other machine

learning techniques such as artificial neural networks or decision trees, SVMs always find

the global optimum due to the underlying convex optimisation problem.

Only a small number of parameters need to be fine-tuned SVMs. In the case of the

RBF kernel, only the kernel parameter γ and the regularisation parameter C need to be

selected.

By applying the kernel trick, the probability of linear separability is increased without

increasing the computational complexity.

However, a problem that is not addressed by SVMs is the feature selection. The

selection process still requires the domain-knowledge of experts in the respective field.

Additionally, correlated features cannot be transformed automatically, so that a manual

analysis is required to do so.

SVMs require numerical attributes in order to train a model. For instance, categorial

attributes need to be transformed into numerical values before they can be used in a
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feature vector. Furthermore, it is considered a best practice to perform feature scaling

before training a model. Features can be scaled, e.g. by subtracting the mean and

dividing by the standard deviation of the underlying distribution.

In the next chapter, an SVM is trained with the collected data and its performance is

evaluated.
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7. Subject Modelling

In this chapter, the process for building a subject-specific model based on the collected

data is outlined. Context data frames are used to train an SVM for each of the partic-

ipants. The resulting model is evaluated on a test set and the results are discussed. In

addition, a specific subject is selected based on the performance of the SVM to analyse

the contextual data.

7.1. Related Work

Using contextual data in order to authenticate subjects is also referred to as implicit

authentication. For instance, Shi et al. proposed a system that uses phone, SMS, GPS,

and browser data to implicitly authenticate subjects [SNJC11]. Their approach is based

on the discrimination between good and bad events, that increase or lower a confidence

score. An active authentication is required as soon as the score falls below a certain

threshold. A subject model is built by determining the probability density functions

for each feature, which are conditioned on the weekday and time of day. Their results

show, that an adversary is locked out of the system after 16 usages of the device with

95% probability and two usages with 50% probability. The most interesting feature in

the evaluations turned out to be the GPS information. The best performance could be

achieved by combining all the aforementioned features.

Hulsebosch et al. [HBL+07] estimate the probability for a subjects’ current location in

order to perform such implicit authentication utilising multiple location sensors. Multiple

distributed sensors are required in their approach, i.e. they must be spread across a

building. Again, the probabilities of multiple sensors are fused in order to compute the

total probability of a subject being in a certain location at a certain time.

A work that is similar to the approach in the presented thesis was published by Lima

et al. [LRAD11]. They collect environmental information as part of a spatial-temporal

context, as well as behavioural information in order to implicitly authenticate a subject,

or to determine whether the subject shall be challenged or not. Their approach is based

on the clustering of contextual data and performing anomaly detection. A new event is
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associated with a genuine subject, if it is within the standard deviation of the underlying

distribution. However, they did not perform an evaluation of the proposed system, so

that its performance cannot be compared to aforementioned approaches.

7.2. Context Modelling

Before a subject-specific model can be built, a context model is required. Such a model

is comprised of contextual information, which describes a distinct situation. Contextual

information is obtained from sensors, preprocessed, and aggregated into a context data

frame (see Figure 4.2). Since the system is designed as a mobile application, data

acquired from all available sensors, as well as information related to user-smartphone-

interaction is included.

Since varying amounts of feature instances were collected per weekday and day section,

as indicated by the average degree of completeness in Table 5.13, the question arises

how missing feature instances shall be treated. In many cases, more data of a specific

feature was collected, thus the remaining features have to be filled with defined values

as part of the aggregation phase. A common approach is to replace missing data by the

mean, so that the underlying distribution does not change. However, this would add

incorrect contextual information. For instance, latitude and longitude pairs of locations

a subject visits are collected. Inserting the mean for missing data would add locations

to the training set, which the subject never visited but that may be close to locations an

impostor visits. Thus, missing values are set to zero. However, this represents a problem

for existing binary features, which take on values x ∈ {0, 1}. This issue is solved by

increasing the measured value by one, so that after the transformation t(x) = x+ 1 the

features take on values xt ∈ {0, 1, 2}, with zero denoting a missing value, one denoting

a logical false, and two a logical true.

All collected features are grouped into a matrix as described in subsection 5.7.3, so

they can be matched by their cell and fused into a single vector, which is referred to

as a context data frame. Each context data frame contains an instance of each feature.

Each cell of the matrix denotes a day section of a three hour duration. Since the data is

collected in 20 minute intervals, this leads to three feature measurements per hour.

An issue with the combination of features is, that while the data units in the feature

matrix are mapped to a certain day section, it is not defined at which of the 20 minute

intervals they were collected. This can lead to a situation were features are combined,

that have a temporal difference of 40 minutes. Combining the features based on their
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part of a day section would lead to numerous missing values, since the individual sensor

activations are not synchronised. For instance, feature A might have been collected

at minute 20, and feature B at minute 21. While both features are part of the same

measurement, they would be mapped to different parts of a day section. So the fusion

process may create inaccurate context descriptions, that contain a mix of temporally

unrelated feature instances, but this is a limitation that is accepted due to the coarse-

grained temporal resolution of the current implementation. A fine-grained temporal

resolution requires smaller data collection intervals, which would even further increase

the power consumption of the application. This trade-off might become a non-issue

with better battery technology or more energy-efficient sensors and CPUs. A non-

scalable solution to this issue is to first compare the date and then compute a diff of the

timestamps between all features and combine those that do not exceed a threshold of

e.g. five minutes. A solution for a production system is to combine the features in the

context component of the context subsystem and store the context data frame instead

of the individual features. Still, the question of how to integrate the non-periodically

collected features remains. These methods represent improvements over the presented

approach, but are not implemented due to the time constraints of the presented thesis,

and are subject to future work. The resulting context data frame is a 19-dimensional

vector, as depicted in Table 7.1.

The WiFi feature was removed, since a transformation of the hash to a numerical value

leads to very large numbers. The result would have to be scaled down to a much smaller

value as part of the feature scaling and thus, lose precision, which might increase the

probability of collisions. Thus, including the WiFi feature in the evaluation is subject

to future work. These vectors are used for the training of an SVM in order to compute

a subject-specific model. The next subsection explains the training process in detail.

7.3. Context-based Subject Modelling

While the context model is defined by a composition of situational, environmental, and

behavioural information, a subject-specific model has to be derived from a set of context

data frames. The goal of building a subject-specific model is to perform a classification

of context data frames in order to determine if the current context is associated with the

enrolled subject. Solutions to classification problems are provided by machine learning

methods. An SVM in combination with logistic regression for class probabilities is used

in the presented thesis.
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Table 7.1.: 19-dimensional feature vector for the training of an SVM

Position Feature

1 Weekday

2 Day section

3 Acceleration x

4 Acceleration y

5 Acceleration z

6 Magnetic Field x

7 Magnetic Field y

8 Magnetic Field z

9 Battery Percentage

10 Battery Charge Indicator

11 Illuminance

12 Latitude

13 Longitude

14 Location Accuracy

15 Duration of Screen Activity

16 Boot Indicator

17 Call Duration

18 Call Direction

19 Number in Contact List Indicator
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A predefined set containing negative examples is labeled with class –1, while the

subjects’ context data frames are labeled with class 1. A simple cutting strategy is

applied by dividing the complete set of context data frames for each of the classes into a

training set of size 4/5 and a test set of size 1/5, and combining the respective sets. The

employed libsvm1 implementation of a support vector machine performs cross-validation

on the training data, i.e. a cross-validation set is not part of the aforementioned cutting

strategy.

Since the data set is ordered by weekday and day section, it cannot be cut directly at

the aforementioned boundaries, since the sets would include disjoint temporal informa-

tion. The following strategies are applied for the creation of training and test sets:

Random Sets A simple approach to create training and test sets is to apply a random

permutation on the complete sets for the classes, thus assigning random context

data frames to the training and test sets. This method may lead to the problem,

that examples for a certain weekday and day section combination are only assigned

to one of the sets, thus decreasing the classification performance.

Static Sets Instead of applying random permutations for the assignment of context

data frames to the training and test sets, the data set can be divided by class,

weekday, and day section. The aforementioned cutting strategy is then applied

to the lowest level represented by the day sections. This method ensures, that

most weekday and day section combinations are represented in both the training

and the test set. Still, if there are more combinations of weekday and day section

than slots in the test set, some combinations will not be represented in the test

set. This is not an issue, since it is more important, that a good representation of

context data frames is included in the training set. An example for this is depicted

in Figure 7.1.

Randomised Static Sets Using static sets instead of random sets solves the issue of

balancing the assignment of context data frames to the respective sets. However,

not all context data frames might include discriminative information (e.g. if the

frames include a lot of missing values), which can lead to discriminative context

data frames being assigned to the test set only, which would also decrease the

classification performance. This issue can be solved by applying a random permu-

tation on the lowest level, which is represented by the day sections. By randomising

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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the static sets and performing multiple evaluations, the data set can be explored,

and the likelihood of including discriminative data in the training and test sets

increases.

Figure 7.1.: Examples for the creation of training and test sets. The random set strategy

assigned examples to the test set, that are not represented in the training

set. The randomised static set has a different order of the day sections

compared to the static set. The different training and test set sizes between

the random and static set variants are indicated by the yellow coloured

background.

Randomised static sets are used for the training of the classifier in the presented thesis,

since these have a higher likelihood of distributing good context representations among

the training and test sets. It should be noted, that results can only be reproduced by

storing a snapshot of the best performing partition of the data set, since the random

permutation creates different training and test sets every time. In addition, this strategy

leads to different total sizes of the training and test sets. For instance, in the example

from Figure 7.1 the complete data set would normally be divided into a training set of

size eight and a test set of size two. By applying the cutting strategy to the day sections,

the test set size increases. This effect is desirable, since it represents a better distribution

of relevant context data frames.

Furthermore, it is considered a good practice to remove redundancy from the data

sets. Aside from removing duplicate entries, this can be done by searching for strongly

correlated features and investigate if one of these can be removed. This preprocessing

step is not performed due to time constraints of the presented thesis and is subject to

future work.

In the next subsection, an evaluation of the proposed system is presented.
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7.4. Evaluation

This subsection provides an overview of the classification performance and learning

curves for different training and test set sizes. Furthermore, the contribution of in-

dividual features is determined by analysing the weights of the parameter vector that is

computed by the SVM.

The radial basis function (RBF) kernel is employed for the training, with the param-

eters γ = 0.1 for the kernel function and C = 10 for the cost. The initial parameters

are chosen arbitrarily and are subject to change with respect to tuning capability of the

e1071 package2 of the R programming language, which performs a grid search on defined

intervals for the parameters. In addition to the decision output values of the SVM, the

respective class probabilities are computed. The required functionality, which is based

on a logistic regression like sigmoid function (see section 6.5), is provided by the libsvm.

7.4.1. Classification Performance

In order to evaluate the classification performance, the precision P , recall R and the

resulting F1-scores are computed. Let Tp , Fp , Fn denote the amount of true-positives,

false- positives, and false-negatives, then the applied metrics are defined as:

P =
Tp

Tp + Fp
, R =

Tp
Tp + Fn

, F1 = 2
PR

P +R
. (7.1)

Accuracy is not considered as a performance measure, because of the unbalanced

classes in the training set (there are a lot more examples for the negative class).

The results for an arbitrary evaluation are given in table Table 7.2. Five of the

generated models have F1-scores of over 70%, all except two exhibit a precision of more

than 70%, and four a precision of over 90% with varying recall scores. A good or bad

F1-score does not seem to be related to the amount of positive class training examples or

average degree of completeness (see Table 5.13), so other factors must be influencing the

quality of the model. Varying the decision threshold for the positive class probability

leads to better precision or recall scores, but cannot improve the F1-score.

Performing the evaluation again leads to slightly different results, which is due to the

fact, that the data for positive and negative examples is permuted for individual day

sections before being assigned to training and test sets. A permutation is employed in

order to explore the data set, so that missing values or less discriminative examples do not

2http://cran.r-project.org/web/packages/e1071/index.html
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Table 7.2.: Classification performance for all subjects with the parameters γ = 0.1 and

C = 10. The results are computed based on the confusion matrices. The

set size denotes the combined number of positive class examples, which are

distributed among the training and test set. The data for models 12 and 16

contains numerous undefined values, thus the missing performance values.

ID Precision Recall F1-Score Set Size

1 0.85 0.32 0.46 2364

2 0.78 0.43 0.56 2268

3 0.74 0.15 0.25 865

4 0.82 0.42 0.56 383

5 0.95 0.82 0.88 5536

6 0.97 0.84 0.9 2023

7 0.95 0.86 0.9 2782

8 0.76 0.21 0.33 2440

9 0.77 0.34 0.47 3190

10 0.78 0.18 0.3 1333

11 0.78 0.18 0.3 1106

12 0 0 NaN 1842

13 0.83 0.43 0.56 3349

14 0.87 0.62 0.72 3938

15 0.8 0.41 0.55 1099

16 0 0 NaN 1842

17 0.92 0.76 0.83 715
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always end up in the training set. The varying performance of the models indicates, that

some of the training examples carry more information than others. An analysis of the

relevant features for good and bad performing models is provided in a later subsection.

It has to be considered, that the results are based on a very large number of training

examples per subject. The duration of the computation for a single model ranges from

two to twelve minutes, which is not feasible on mobile devices. Thus, the next subsection

provides an evaluation for the performance of a good model for different training set sizes.

Another aspect is, that no advanced adversary model is employed in order to evaluate

the performance of the system. For instance, most of the examples have spatially disjoint

location information. In order to model an adversary, the location of a genuine subject

and impostor needs to be identical at some point in time. Shi et al. [SNJC11] employ

a splicing strategy, which is based on computing a delta of the adversaries location and

the location of the genuine subject at a defined point in time. This delta is added

subsequently to the other locations of the adversary in this particular time series. This

strategy does not make sense for the presented context model, since the information is

not recorded as a fine-grained time series, but rather as part of a day section. Again,

this is a matter of granularity or temporal resolution, that can be addressed in future

work.

The classification results indicate, that a discrimination between subjects based on

contextual information is feasible.

7.4.2. Performance Curve

The presented classification results are based on a training set size of approximately

28.000 vectors, and a test set size of approximately 7.000 vectors. Hence, the computa-

tion of a model takes a significant amount of time, which is not feasible on a resource

constraint mobile device.

Since the overwhelming majority of training examples belong to the negative class,

which is comprised of examples for all other subjects, the first step is to reduce the

amount of these. Including twice the amount of negative training examples compared

to positive examples is a heuristic that is applied for this task. Furthermore, in order

to better understand how much training examples are required, the amount of training

examples is gradually increased. The test set size remains constant, since the goal is to

measure the generalisation performance of the model relative to the size of the training

set.
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The models with the id 5, 6, 7, 14, and 17 have a good performance on the test data,

as denoted by the respective F1-score (see Table 7.2). Since the model with id 5 has the

most positive class examples, it is used for this evaluation.

Ten gradually increasing training set sizes are used to train and evaluate the model. In

each step, a part of the data for each weekday and day section combination is included

in the training set for the positive class. The number of training examples T (s, d) for

each step s ∈ {1, 2, . . . , 10} and current number of examples for the day section d is

computed as denoted by the following simple formula:

T (s, d) = s ∗ 1

10
∗ d

After the number of positive class examples for the current iteration is computed, the

number of negative class examples is determined by multiplying this number by two.

When all weekday and day section parts are created, these are combined into a single

training set data frame, which is used to train the model.

Figure 7.2.: F1-scores for the model with id 5 for gradually increasing training set sizes.

The set size is comprised of positive and negative examples, in contrast to

the set sizes given in Table 7.2, and must be compared with the original

training set size of approximately 28.000.

An F1-score of over 80% can already be achieved with a training set of size 5.000, as

indicated by Figure 7.2. This amounts to an 8% loss of performance for a reduction of
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the training set size by a factor > 5, or a 4% loss of performance for a reduction by a

factor > 2.

This result indicates, that a far smaller training set can be used without sacrificing

too much performance. Since the required time for training the model is a crucial factor

for the computation on mobile devices, a benchmark for the different training set sizes

is performed. The results are depicted in Figure 7.3.

It can be seen, that reducing the original training set by a factor of 2.16 also reduces

the time required for the training of the SVM by a factor of 3.34, while still maintaining

an F1-score > 0.84. This benchmark was performed on a quad-core Intel Core i7 with

2.3GHz and 8GB of RAM. Performing these operations on a resource-constraint mobile

device would lead to increased durations for the training. Thus, only small training

sets are a viable option for the training on mobile devices. However, long running

computations could also be performed at night and when the device is attached to a

power source.

Figure 7.3.: Time in seconds for the training of the SVM for model with id 5 with

gradually increasing training set sizes

96



CHAPTER 7. SUBJECT MODELLING

7.4.3. Contribution of Features

A question that still remains is, which features contribute most to the classification

decision. The contribution of each feature is equivalent to its weight in the parameter

vector of the SVM, which can be directly retrieved from the computed models. Figure 7.4

depicts an overview of the feature weights of three selected models. In order to gain

comparable weight vectors, the absolute value of each weight is computed, and the

vectors are normalised.

Figure 7.4.: Normalised weights of the individual features for the models 5, 14, 16

The results indicate that the most relevant features vary greatly from subject to

subject. Thus, a general feature selection cannot be performed on the basis of the

weights computed by the SVM. Instead, it might be more sensible to include even more

discriminative features.

An inherent problem of the feature analysis is, that the data was recorded on different

devices with potentially different sensor characteristics. Thus, there is a high risk asso-

ciated with giving a strong weight to a feature that was collected by a physical sensor,

because it might emphasise characteristics of the specific device instead of behavioural
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characteristics of the subject. This issue could be mitigated by calibrating the sensors

of all devices to ensure comparable values under controlled conditions. Unfortunately,

this is not possible due to the distributed and anonymous nature of the performed data

collection. Another solution for this issue is to perform these evaluations on a single

device with multiple subjects, which is subject to future work.

However, when building a sum over the normalised feature weights of all models, a

trend towards behavioural features becomes visible, as depicted in Figure 7.5.

Figure 7.5.: Sum over the normalised feature weights for all models

This result is not yet very relevant, considering that it also contains the feature weights

of models with a bad performance. Thus, the average feature weights shall be compared

between the models with a good and bad performance. The comparison result is depicted

in Figure 7.6. It is obvious, that good models assign a higher weight to the location

feature (longitude) and a much smaller weight to calling behaviour related features. It is

not surprising that the location feature is a strong discriminator, so the performance of

the system decreases significantly in its absence. The high weight for the magnetic field

values may be due to sensor characteristics and is biased by the high weight assigned

by model with id 5 for this specific feature. An interesting result is, that both good and
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bad models assign a high weight to the duration of device usage feature (scrDuration),

so it might be worthwhile to add more features that model the subjects interaction with

the device more precisely.

Figure 7.6.: Comparison of average feature weights between the good models (id

5,6,7,14,17) and the rest.

Furthermore, a step that is normally performed before the training of an SVM is to

determine the correlation between features, and the transformation or removal of one

of the features which are strongly correlated. A correlation diagram that is created

using Pearsons’ correlation coefficient is depicted in Figure 7.7. A deep colour denotes

a strong, blue colour a positive, and red colour a negative correlation. An alternative

presentation of this relationship is depicted by the pie charts in the lower panel.

Five feature groups have a medium to strong correlation in the diagram:

• Accelerometer (X,Y,Z)

• Magnetic Field (X,Y,Z)

• Location (Latitude, Longitude, Accuracy)

• Battery percentage and charging indicator
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• Call duration, direction and if the number is in the contact list

Thus, these features are candidates for a transformation or removal. Location infor-

mation could be transformed by applying a grid, so that there is a single value repre-

sentation that sufficiently describes a location with a defined precision. Furthermore,

the accelerometer data may e.g. be replaced by a discrete value indicating a specific

activity. Magnetic field data could be used to derive the direction (N,NE,ES,SW,NW) a

subject is facing (ignoring possible errors due to the calibration issue described in sub-

section 5.3.3). Transforming physical sensor data to discrete categorial attributes has

the additional benefit, that sensor or device specific characteristics do not have such a

strong influence on the performance of the resulting model.

Figure 7.7.: Correlation of all features for the model with id 5. Positive correlation is

indicated by the blue colour, negative correlation by the red colour. The

colour saturation and pie charts indicate the strength of the correlation.
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7.5. Additional Evaluations

In addition to the results presented so far, an evaluation was performed utilising the

KXEN InfiniteInsight3 software, which provides methods for classification, regression,

and segmentation/clustering. The software performs sophisticated preprocessing and

statistical optimisations on data sets prior to the training of a classifier. Optimisations

include the binning of continuous variables and compression of the resulting categories

based on statistical properties.

The SVM models computed by this software exhibit an even higher performance on the

collected data for some models, which is not surprising given its sophisticated preprocess-

ing methods. While the performance of model 5 was improved by 4%, the performance

of model 6 was reduced by 14%. However, the performance of bad models was improved

significantly. The applied cutting strategy is comprised of periodically choosing three

examples for the training set and one for the test set. Custom cutting strategies can

be provided, but were omitted for the sake of simplicity. The classification results of

this software for a subset of the evaluated models are compared to the evaluation results

described in subsection 7.4.1, and are presented in Table 7.3.

Table 7.3.: Performance comparison of some models between KXEN and the approach

in the presented thesis (P=precision,R=recall,F1=F1-score)

ID P KXEN R KXEN F1 KXEN F1 thesis

3 0.59 0.70 0.64 0.25

5 0.91 0.92 0.92 0.88

6 0.86 0.68 0.76 0.9

10 0.81 0.71 0.75 0.3

12 0.5 0.44 0.48 0

The results indicate that improvements are possible, but the model with id 6 as

computed in the presented thesis performs better and the performance of model with id

5 improved only slightly. However, the improvements for the bad performing models 3

and 10 were significant. The model with id 12 exhibits a performance almost identical

to a random model, which indicates a problem with the underlying data.

The distribution of feature weights for the models computed by this software vary

from the results presented in subsection 7.4.3, in that a higher weight is put on the

3http://www.kxen.com/Products
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accelerometer, location, and brightness features. Again, this might be problematic, since

the model might adapt to a variance introduced by device specific sensor characteristics.
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8. Conclusion

In the presented thesis the design and partial implementation of an architecture for a

context-aware mobile biometric system was presented and the constituent components

were described in detail. The feasibility of the proposed architecture has been demon-

strated by developing a mobile application which has been applied for data collection pur-

poses. Furthermore, the results of the data collection were utilised to train an adequate

classifier in order to obtain models of according subjects. The models were evaluated by

applying standard statistical classifier evaluation metrics. The results demonstrate the

feasibility of the proposed system and classification approach.

Despite the low response-rate to the calls for participation of the data collection,

enough data could be collected in order to perform an evaluation. Convincing people to

participate in a data collection like this is a time-consuming task due to the private na-

ture of the collected information. This might as well be a result of the reached audience,

which is mainly comprised of computer science students from Germany. Germany has

a long tradition in privacy related topics with respect to data collections, which might

have made the endeavour more complicated. Unfortunately, the goal of collecting two

weeks worth of context data could not be achieved for all participants. However, this

circumstance did not have a measurable impact on the classification performance, which

did not correlate with the training set size across models. The data collection process,

as well as privacy aspects, challenges and the employed sensors were described in detail.

Descriptive statistics of the participants demonstrate the variability of Android versions

and devices that had to be supported by the data collection application. A final eval-

uation of the collected data revealed that very few instances of the noise feature were

recorded and that the amount of measurements between features varies for each subject.

Furthermore, the application of a metric, that expresses the estimated average degree of

completeness, revealed, that up to 70% of the data of some subjects was lost during the

collection process.

The theory of support vector machines, which is a supervised learning algorithm for

binary classification tasks, was introduced to the reader in order to lay the foundation

for the subject-specific modelling. The results obtained by training an SVM with the
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collected contextual information encourage further research in this area.

All models except two had precision scores of over 70%, the majority even a precision of

over 80%. Five of the models had an F1-score of over 70%, four of over 80%. The low F1-

score of the other models is a result of the low recall scores, i.e. too many false negatives.

A low recall score indicates, that not enough discriminative features are included in the

model, or that the existing features are correlated between the subjects. By gradually

increasing the training set and evaluating the resulting model on a fixed test set, it was

shown that a smaller training set can lead to a comparable performance and shorter

training time of the classifier, which is especially important for the implementation of

the proposed system on a mobile device.

In addition, the features that contribute most to the classification decision were re-

trieved from the computed models. A general feature selection based on the weights of

all models is not feasible, since the weight distributions vary greatly among these. How-

ever, by building a sum over the feature weights of all models, it became obvious that

behavioural characteristics have a higher total weight compared to the data obtained by

physical sensors. A comparison between the average feature weights of good and bad

performing models revealed, that the good performing models put a high weight on the

location feature, while bad performing models put a high weight on the call duration

feature. This result requires further investigations, to determine whether the good mod-

els adapt to the variance introduced by device specific sensor characteristics, or if they

model a subject-specific behaviour.

Furthermore, the correlation between individual features was computed in order to

reveal redundancy in the data set. An unsurprising result of this test is a strong cor-

relation of the individual components of features extracted from physical sensor data.

For instance, data for the individual axes of the accelerometer or magnetic field sensor

are strongly correlated. Other examples for correlation are the latitude and longitude,

and the three features associated with the calling behaviour of a subject. There was no

significant correlation between seemingly unrelated features, which is a desirable result.

8.1. Future Work

Future work will be comprised of utilising more sophisticated features. For instance,

instead of using the mean and median values of the accelerometer data, activity recog-

nition could be performed to discriminate between different activities. This fits well

with the result, that behavioural characteristics had a strong overall contribution in the
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evaluation of all models. By employing more sophisticated and additional behavioural

features in the context model instead of simple statistical ones, the overall performance

might improve. Other strategies for creating the training examples and replacing miss-

ing data could be tested, in order to evaluate the influence on the performance of the

system. Instead of using the fixed values for the hyper parameters of the SVM, these

should be optimised by performing a grid search. Since the evaluation in the presented

thesis is performed on a desktop computer, an implementation and evaluation of the

presented algorithms on a mobile device is recommended.

In addition to improvements to the context subsystem, an implementation of the

missing components of the proposed architecture is desirable. This mainly includes the

authentication subsystem, which is fully described by the BioAPI standard. By im-

plementing the respective interfaces, the proposed architecture could be used as the

foundation for a standard compliant new version of MBASSy. Furthermore, by imple-

menting all of the proposed components, an SDK could be built, that can be used by

developers as an authentication plugin for new applications. This resolves the issue of

the current implementation of MBASSy, which is restricted to the demonstration of

authentication algorithms.
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A. Glossary

API – Application Programming Interface

BFP – Biometric Function Provider

BSP – Biometric Service Provider

CASED – Center for Advanced Security Research Darmstadt

CPU – Central Processing Unit

DET – Detection Error Tradeoff

DSL – Domain Specific Language

EER – Equal Error Rate

FAR – False Accept Rate

FMR – False Match Rate

FNMR – False Non-Match Rate

FRR – False Reject Rate

FTA – Failure To Acquire

FTE – Failure To Enrol

GPS – Global Positioning System

HCI – Human Computer Interaction

HMM – Hidden Markov Model

IEC – International Electrotechnical Commission

ISO – International Organization for Standardization

JSON – JavaScript Object Notation

JTC – Joint Technical Committee

KKT – Karush-Kuhn-Tucker

MBASSy – Modular Biometric Authentication Service System

NFC – Near Field Communication

PC – Personal Computer

PIN – Personal Identification Number

QP – Quadratic Programming

RBF – Radial Basis Function

SDK – Software Development Kit
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SIGCHI – Special Interest Group on Computer-Human Interaction

SIM – Subscriber Identity Module

SMS – Short Message Service

SSID – Service Set Identifier

SSL – Secure Sockets Layer

SVM – Support Vector Machine

ubicomp – Ubiquitous Computing

UDID – Unique Device Identifier

UIDAI – Unique Identification Authority of India

USB – Universal Serial Bus

UUID – Universally Unique Identifier

VPN – Virtual Private Network
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B. Additional Evaluation Results

The following pages contain the normalised feature weight distributions for all generated

models, as well as performance evaluation charts (Detected Curve, Lift Chart, ROC

Curve) generated by the KXEN InfiniteInsight software.
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(a) Normalised Feature Weights Model 1

(F1-score 0.46)

(b) Normalised Feature Weights Model 2

(F1-score 0.56)

(c) Normalised Feature Weights Model 3

(F1-score 0.25)

(d) Normalised Feature Weights Model 4

(F1-score 0.56)

(e) Normalised Feature Weights Model 5

(F1-score 0.88)

(f) Normalised Feature Weights Model 6

(F1-score 0.9)

Figure B.1.: Normalised Feature Weights
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(a) Normalised Feature Weights Model 7

(F1-score 0.9)

(b) Normalised Feature Weights Model 8

(F1-score 0.33)

(c) Normalised Feature Weights Model 9

(F1-score 0.47)

(d) Normalised Feature Weights Model

10 (F1-score 0.3)

(e) Normalised Feature Weights Model

11 (F1-score 0.3)

(f) Normalised Feature Weights Model

12 (F1-score not available)

Figure B.2.: Normalised Feature Weights
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(a) Normalised Feature Weights Model

13 (F1-score 0.56)

(b) Normalised Feature Weights Model

14 (F1-score 0.72)

(c) Normalised Feature Weights Model

15 (F1-score 0.55)

(d) Normalised Feature Weights Model

16 (F1-score not available)

(e) Normalised Feature Weights Model

17 (F1-score 0.83)

Figure B.3.: Normalised Feature Weights
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(a) Detected Curve for Model 3 (b) Lift Chart for Model 3

(c) ROC Curve for Model 3 (d) Detected Curve for Model 5

(e) Lift Chart for Model 5 (f) ROC Curve for Model 5

Figure B.4.: KXEN performance evaluation results
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(a) Detected Curve for Model 6 (b) Lift Chart for Model 6

(c) ROC Curve for Model 6 (d) Detected Curve for Model 10

(e) Lift Chart for Model 10 (f) ROC Curve for Model 10

Figure B.5.: KXEN performance evaluation results
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(a) Detected Curve for Model 12 (b) Lift Chart for Model 12

(c) ROC Curve for Model 12

Figure B.6.: KXEN performance evaluation results
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C. Terms and Conditions of the Data

Collection

C.1. Voluntary participation in the collection of

contextual data

I participate voluntarily in the collection of contextual data. By using this software, I

agree to the collection and use of my data as described below.

Data processing site which processes the collected data, is the Hochschule Darmstadt.

The Hochschule Darmstadt ensures that the data will be used solely for the purposes of

teaching and research. I have been informed that I can refuse my participation for any

reason. I will use the software as described and participate at my own risk. I understand

that I may inspect the collected data before they are used for teaching and research

purposes. The insight is only possible by indicating the user ID, which is included in

the software.

I was informed about the content and purpose of the data collected about me in

written form. My data will be used only for the purposes described below.

All data collected will be deleted or reduced so that any relation to my person is

irrevocably removed, as soon as they are no longer needed, but no later than after

completion of the research.

C.2. Background information on the consent form

Description of the project purpose

After the installation and acceptance of these terms and conditions, context data will

be collected in 20 minute intervals from each participant. The following data is collected

continuously and sent over an encrypted connection to a server for storage:

• Anonymous subscriber information (gender, age group, occupation)
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• Battery level and charging status

• Acceleration data

• Magnetic field strength

• Ambient brightness

• Ambient noise levels

• Encrypted Wi-Fi network name (SSID hash)

• Position data (based on network information, if available GPS)

• Time of the (de) activation of the screen

• Time from the start and shut down of the device

• Time of incoming and outgoing calls and information whether the number is known

(the numbers themselves are not stored)

These data are used for the following purposes: Anaylsis of the data for model building

and software development Publication of the records to the h da biometric research group

in the CASED (Center for Advanced Security Research)

The aim of the work in this thesis (MSc) is the improvement of mobile biometric

systems by using contextual information. The data are used to generate a profile of the

user, which allows the system to detect deviations from the normal usage. This will

enable a more intelligent control of authentication processes. Security measures such as

the PIN are used rarely, since they represent an impairment in the use of the devices. By

using contextual information, an authentication will only be required, when an abnormal

behavior is detected by the system.
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[WN11] T Wirtl and C Nickel. Aktivitätserkennung auf Smartphones. In BIOSIG

2011 - Proceedings of the Special Interest Group on Biometrics and Elec-

tronic Signatures, 08.-09. September 2011 in Darmstadt, Germany, pages

195–202, 2011.

[XS02] N Xiong and P Svensson. Multi-sensor management for information fusion:

issues and approaches. Information Fusion, 3(2):163–186, June 2002.

[YFEE10] Z Yaghoubi, K Faez, M Eliasi, and A Eliasi. Multimodal biometric recog-

nition inspired by visual cortex and Support vector machine classifier. In

International Conference on Multimedia Computing and Information Tech-

nology (MCIT), pages 93–96, 2010.

121


	Introduction
	Objectives
	Organisation of Thesis

	Biometrics
	Categorisation
	Biometric Systems
	Enrolment
	Verification
	Identification

	Performance Metrics
	False Accept Rate
	False Reject Rate
	Equal Error Rate
	Further Metrics


	Context and Context-Awareness
	Definition of Context
	Categorisation
	Acquisition
	Sensors
	Granularity

	Preprocessing
	Multi-Sensor Information Fusion

	Context-Aware System Design
	Android
	Intent
	Activity
	Service and WakeLock
	AlarmManager
	Sensors

	Previous Work
	System Architecture
	Context Subsystem
	Sensor Component
	Preprocessor Component
	Context Component
	ContextStore Component
	Model Component
	Decision Component

	BioAPI-based Authentication Subsystem
	Result Action Subsystem

	Implementation Aspects

	Data Collection
	Collection Process
	Collected Data
	Sensor Overview
	Location
	Accelerometer
	Magnetic Field
	Microphone
	Light Sensor
	Battery
	ScreenState
	ShutdownBoot
	Calls
	WiFi

	Behavioural Characteristics
	Privacy Aspects
	Challenges
	Results
	Participants
	Devices
	Data Quality


	SVM-based Classification
	Margins
	Linear Separability
	Nonlinear Separability and Kernels
	Linear Inseparability and Outliers
	Class Probabilities
	Advantages and Disadvantages

	Subject Modelling
	Related Work
	Context Modelling
	Context-based Subject Modelling
	Evaluation
	Classification Performance
	Performance Curve
	Contribution of Features

	Additional Evaluations

	Conclusion
	Future Work

	Glossary
	Additional Evaluation Results
	Terms and Conditions of the Data Collection
	Voluntary participation in the collection of contextual data
	Background information on the consent form


